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The exact dispersion relations of the transverse magnetic surface plasmons (SPs) supported by a

graphene parallel plate waveguide (PPWG), surrounded on one or both sides by Kerr-type

nonlinear media, are obtained analytically. It is shown that if self-focusing nonlinear materials are

chosen as the surrounding media, the SPs localization length (LL) is decreased, while their

propagation length (PL) remains unchanged, as compared to those of a typical graphene PPWG.

Moreover, PL and LL of the SPs are considerably affected by adjusting nonlinear parts of the

dielectric permittivities of the nonlinear media. It is found that using an appropriate defocusing

nonlinear material as a substrate of the graphene PPWG, which is surrounded on one side by the

nonlinear medium, leads to noticeable enhancement of the propagation and localization

characteristics of the surface plasmons. The results presented here can be useful for enhancing

capabilities of plasmonic devices based on the graphene PPWG for sensing and waveguide

applications. VC 2014 AIP Publishing LLC. [http://dx.doi.org/10.1063/1.4865435]

I. INTRODUCTION

Graphene,1–6 planar atomic layer of carbon atoms

arranged in a honeycomb lattice, has recently attracted a

great deal of attention due to its potential applications in

optoelectronics and plasmonics.7–12 Being tunable [through

the tuning of the optical conductivity (rg)] by either electro-

static/magnetostatic gating or chemical doping1,2 is the

unique characteristic of the electronic and optical properties

of its doped version. When Im(rg)< 0, weakly guided

transverse electric (TE) surface plasmons (SPs) might propa-

gate along a monolayer graphene.13–16 Moreover, when

Im(rg)> 0, a monolayer graphene effectively behaves as a

very thin metal layer capable of supporting only transverse

magnetic (TM) SPs.13–15,17–22 (The SPs are bound electro-

magnetic modes propagating at the interface between a

dielectric and a conductor, evanescently confined in the per-

pendicular direction23–25). The graphene SPs are believed to

be a conveniently tunable means for strong light-matter

interaction in the IR and terahertz range.9,16 Therefore, like

previous studies have been done on SPs supported at metal-

Kerr medium interfaces,26–35 the nonlinear contribution from

substrate to the properties of monolayer graphene SPs has

also been studied recently.36 It should be noted that, for

metal-Kerr medium interfaces with TM electromagnetic

waves being supported, the corresponding nonlinear

Maxwell equations involve two components of the electric

field. By employing some approximations,26–28 using semi-

analytic/analytic approaches29–32,34 or numerical

methods,33–35 the problem has been solved. It was shown in

Ref. 36 that the strong electromagnetic field of graphene SPs

(the enhancement factor can be as large as 1015 [Ref. 37])

makes the nonlinear contribution from the substrate a consid-

erable factor; i.e., the nonlinear substrate enhances the con-

finement [decreases the localization length (LL)] of the SPs

without impairing their propagation length (PL).

Graphene parallel plate waveguide (PPWG),17 in which

the separation distance (D) of the graphene sheets is suffi-

ciently large (�6 nm),19 is also capable of supporting SPs

with considerable larger PL, as compared with those of the

monolayer graphene.17,19–22 In addition to having sensing

and waveguide applications, this structure can be a remark-

able candidate to design/fabricate miniaturized optical non-

linear couplers38 and modulators.39,40 The nonlinear

contribution from the substrate and cladding to propagation

and localization characteristics of the graphene PPWG SPs

has not been considered in the previous studies. Since simply

using a Kerr-type dielectric permittivity in the typical disper-

sion relations of the SPs is not justified, in this paper, follow-

ing Refs. 30–32, we obtain exact dispersion relations for TM

SPs of the graphene PPWG, which is bounded either asym-

metrically (on one [Fig. 1(a)] or two sides [Fig. 1(b)]) or

symmetrically [Fig. 1(c)] by Kerr-type nonlinear media.

(It should be noted that the obtained exact dispersion rela-

tions can be solved even without detailed knowledge of the

field distribution in the nonlinear media). Besides, effect of

the nonlinear contributions on the SPs characteristics is also

investigated. To the best of our knowledge, the results

extracted in this paper have not been previously reported.

II. MATH AND EQUATIONS

Fig. 1 depicts side view of the structures considered

here. As this figure shows, the graphene plates are placed at

z ¼ 6D=2 and separated by a linear medium of width D

with dielectric constant of e2. Following Refs. 30–32 anda)Electronic mail: hodjat.hajian@gmail.com.
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starting from the Maxwell’s equations for TM waves, the

electric field components ExðzÞ and EzðzÞ obey

dEx

dz
¼
�q2

j Ez

b
;

dðejEzÞ
dz

¼ �bejEx; Hy ¼
��0ejxEz

b
; (1)

where Eðr; tÞ ¼ 1
2

iExx̂ þ Ezẑf gexp½iðxt� bxÞ� þ c:c: (the

two electric field components are p=2 out of phase),

q2
j ¼ b2 � ejk

2
0, k0 ¼ x=c is the free space wave vector, and

b is the SP wave number. Besides, ej (j¼ 1,2,3) is the dielec-

tric permittivity of the layers and it is, for the isotropic nonli-

nearity considered here, assumed to be of the Kerr-type (i.e.,

ej ¼ enl
j ¼ el

j þ ajjEj2 (j¼ 3 [for the “structure aA”], j¼ 1,3

[for the “structure bA”]), and j¼ 1 [for the “structure cS”]),

where aj is the nonlinear coefficient.

First, we consider the asymmetric graphene PPWG

structure [“structure aA”] for which only the substrate is a

nonlinear medium (enl
3 ¼ el

3 þ a3jEj2) and the cladding is a

linear one (e1 ¼ el
1). Considering ExðzÞ for the linear regions

as

ExðzÞ ¼
ED

2
x
expð�q1½z�D=2�Þ z� D=2

A1expðq2zÞ þB1expð�q2zÞ �D=2� z< D=2

8<
:

9=
;;
(2)

where ED
2
x ¼ Exðz ¼ D=2Þ, A1 ¼ e�q2D=2

2
½1þ q2D1=e2�ED

2
x,

B1 ¼ eq2D=2

2
½1� q2D1=e2�ED

2
x, and D1 ¼ rup

g =ði�0xÞ � el
1=q1.

Note that the boundary conditions for TM polarization at z ¼
D=2 [Refs. 41–43]

eD
2

þ

ðiqD
2

þÞ2
dEx

dz

����
z¼D

2

þ
�

eD
2

�

ðiqD
2

�Þ2
dEx

dz

����
z¼D

2

�
¼ rgðxÞ

i�0x
Ex

����
z¼D

2

; (3a)

Exjz¼D
2

þ ¼ Exjz¼D
2

� ; (3b)

have already been fulfilled. Moreover, in this paper, the opti-

cal conductivity of the graphene plates, for frequencies

x� ðk�F; s�1Þ, at temperature T, is chosen as rg ¼ rintra
g

þ rinter
g , where41,42

rintra
g ¼ e2

4�h

i

2p
16kBT

�hX
ln 2cosh

l
2kBT

� �� �( )
; (4a)

¼ e2

4�h

i

2p
8l
�hX
ðl� kBTÞ; (4b)

and

rinter
g ¼ e2

4�h
0:5þ 1

p
arctan

�hX� 2l
2kBT

� ��

� i

2p
ln

ð�hXþ 2lÞ2

ð�hX� 2lÞ2 þ ð2kBTÞ2
�
: (5)

Here, X ¼ xþ is�1, e is the charge of an electron, s is the

electron relaxation time, k is the wave vector, kF is the

Fermi velocity of electrons in graphene, kB is the

Boltzmann constant, and l is the chemical potential deter-

mined by the electron concentration, which can be con-

trolled by gating. Applying the boundary conditions at

z ¼ �D=2 yields

dEx

dz

����
z¼�D

2

�
¼

q2
3;�D

2

�

enl
3;�D

2

�
D2E�D

2
x;

¼ �
q2

3;�D
2

�

b
E�D

2

�
z; (6)

and the last line follows from Eq. (1), E�D
2

�
z ¼ Ezðz ¼ �D

2

�Þ,
E�D

2
x ¼ Exðz ¼ �D=2Þ, q3;�D

2

� ¼ q3jz¼�D
2

� , enl
3;�D

2

� ¼ enl
3 jz¼�D

2

�

¼ el
3 þ a3E2

�D
2

; and D2 ¼ rdown
g =ði�0xÞ þ e2

q2

�
q2D1

e2
coshðq2DÞ�sinhðq2DÞ

�q2D1
e2

sinhðq2DÞþcoshðq2DÞ
. In addition, rup

g and rdown
g , calculated

from Eqs. (4) and (5), denote the optical conductivity of gra-

phene sheets placed at z ¼ D=2 and z ¼ �D=2, respectively,

and could be tuned through their respective chemical poten-

tial lup
g and ldown

g . Equation (6) yields simply

E�D
2
x ¼ �

enl
3;�D

2

�

bD2

E�D
2

�
z: (7)

Using Eqs. (1) and (7) and the first integral obtained in Eq.

(6) of Ref. 30, one can obtain another relation between E�D
2
x

and E�D
2

�
z as follows

a3

2
E4
�D

2
x þ ðk

2
0D

2
2 þ el

3ÞE2
�D

2
x

þD2bE�D
2
xE�D

2

�
z �

a3

2
E4
�D

2

�
z ¼ 0: (8)

Furthermore, using Eq. (7) together with the relation E2
�D

2

¼
E2
�D

2
x
þ E2

�D
2

�
z

results in

FIG. 1. The panels represent side view of the graphene PPWG, the thick

black lines placed at z ¼ 6D=2 and separated by a linear medium of width

D with dielectric constant of e2. In the “structures aA and bA,” shown in

panels (a) and (b), the graphene PPWG is asymmetrically on one and two

sides bounded by the Kerr-type nonlinear media, respectively. Panel (c)

shows the “structure cS” in which the graphene PPWG is symmetrically

bounded by the Kerr-type nonlinear media. Moreover, “A” (“S”) label refers

to asymmetric (symmetric) structure, respectively.
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E2
�D

2
x ¼ X1; E2

�D
2

�
z ¼

bD2

enl
3;�D

2

�

 !2

X1;

E�D
2
xE�D

2

�
z ¼ �

�
bD2

enl
3;�D

2

�

�
X1; (9)

where X1 ¼ E2
�D

2

=½1þ ðbD2=enl
3;�D

2

�Þ2�. Combining Eqs. (8)

and (9), the exact dispersion relation for the SPs supported

by the “structure aA,” named as “aA SPs,” is finally obtainedffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
enl

3;�D
2

�

�
a3

2
E2
�D

2
þ el

3

�s

q3;�D
2

�
¼D2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ

a3E2
�D

2

b2

2enl
3;�D

2

� � q2
3;�D

2

�

vuut ;

ðaA SPsÞ: (10)

Letting a3 ! 0, Eq. (10) reduces to the well-known disper-

sion relation of TM SPs (named as “A SPs”) of the typical

asymmetric graphene PPWG17,19–22

tanhðq2DÞ ¼ � C1 þ C3

1þ C1C3

ðA SPsÞ; (11)

where C1 ¼ q2

e2
½el

1=ql
1 þ irup

g =ð�0xÞ� and C3 ¼ q2

e2
½el

3=ql
3

þ irdown
g =ð�0xÞ�.
Next, we consider the second asymmetric graphene

PPWG structure in which both the substrate (enl
3 ) and clad-

ding (enl
1 ¼ el

1 þ a1jEj2) are nonlinear media [“structure bA,”

shown in Fig. 1(b)]. In this case, the solution for ExðzÞ in the

linear region can be considered as

ExðzÞ ¼ A2 expðq2zÞ þ B2 expð�q2zÞ; �D=2 � z � D=2

(12)

with A2 ¼
E�D

2
x
�eq2DED

2
x

e�q2D=2�e3q2D=2, B2 ¼
ED

2
x
�eq2DE�D

2
x

e�q2D=2�e3q2D=2. Applying the

boundary conditions at z ¼ þD=2, we have

dEx

dz

����
z¼D

2

þ
¼ �

q2

1;D
2

þ

enl
1;D

2

þ
D4aED

2
x;

¼ �
q2

1;D
2

þ

b
ED

2

þ
z; (13)

where the last line follows from Eq. (1), ED
2

þ
z¼Ezðz¼D

2

þÞ,
q

1;D
2

þ ¼q1jz¼D
2

þ , enl
1;D

2

þ ¼ enl
1 jz¼D

2

þ ¼ el
1þa1E2

D
2

, D4a¼rup
g =ði�0xÞ

�e2D3a=q2, D3a¼ 2eq2D=2M�C1

C2
, C1¼ e�q2D=2þe3q2D=2, C2¼

e�q2D=2 �e3q2D=2, and M¼E�D
2
x=ED

2
x. Equation (13) yields

ED
2
x ¼ þ

enl
1;D

2

þ

bD4a
ED

2

þ
z: (14)

Using Eqs. (1) and (14), and the first integral,30 in this case,

we have another relation between ED
2
x and ED

2

þ
z as follows

a1

2
E4

D
2
x þ ðk

2
0D

2
4a þ el

1ÞE2
D
2
x � D4abED

2
xED

2

þ
z �

a1

2
E4

D
2

þ
z
¼ 0:

(15)

Besides, using Eq. (14) together with the relation E2
D
2

¼ E2
D
2
x

þE2
D
2

þ
z
, the following relations can be obtained

E2
D
2
x ¼ X2; E2

D
2

þ
z
¼
�

bD4a

enl
1;D

2

þ

�2

X2;

ED
2
xED

2

þ
z ¼ þ

�
bD4a

enl
1;D

2

þ

�
X2; (16)

where X2 ¼ E2
D
2

=½1þ ðbD4a=enl
1;D

2

þÞ2�. Combining Eqs. (15)

and (16), we arrive at

Da1

q
1;D

2

þ
¼ D4aDa2; (17)

where Da1 ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
enl

1;D
2

þða1

2
E2

D
2

þ el
1Þ

q
and Da2

¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ a1E2

D
2

b2=ð2enl
1;D

2

þ � q2

1;D
2

þ

q
Þ. In addition, applying the

boundary conditions at z ¼ �D=2 and following similar pro-

cedures for arriving at Eq. (10), the below relation is obtained

Db1

q3;�D
2

�
¼ D4bDb2; (18)

where Db1 ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
enl

3;�D
2

�ða3

2
E2
�D

2

þ el
3Þ

q
, Db2

¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ a3E2

�D
2

b2=ð2enl
3;�D

2

� � q2
3;�D

2

�

q
Þ, D4b ¼ rdown

g =ði�0xÞ

þ e2D3b=q2, and D3b ¼ �2eq2D=2M�1þC1

C2
. Finally, eliminating M

between Eqs. (17) and (18), the exact dispersion relation for

“bA SPs,” supported by the “structure bA,” is obtained

FaFb ¼ �4 expðq2DÞ ðbA SPsÞ: (19)

Here, Fa ¼ �q2EaC2

e2
þ C1, Ea ¼ Da1=ðDa2q

1;D
2

þÞ þ irup
g =ð�0xÞ,

Fb ¼ q2EbC2

e2
� C1, and Eb¼Db1=ðDb2q3;�D

2

�Þþ irdown
g =ð�0xÞ.

It is worth noting that letting ða1;a3Þ!0, the above equation

also reduces to Eq. (11).

Finally, we consider the symmetric graphene PPWG

structure in which both the substrate and cladding are

the same nonlinear medium ðenl
1 Þ [“structure cS”]. In this case,

the odd and even solutions for ExðzÞ in the linear region are

ExðzÞ ¼
EþD

2
xsinhðq2zÞ=sinhðq2D=2Þ ðoddÞ

EþD
2
xcoshðq2zÞ=coshðq2D=2Þ ðevenÞ

8<
:

9=
;

� D=2 � z � D=2: (20)

Applying the boundary conditions at z ¼ D=2 and follow-

ing similar procedures leading to Eq. (17), we arrive at the

exact odd dispersion relation for “cS SPs” of the “cS

structure”ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
enl

1;D
2

þ
a1

2
E2

D
2
þ el

1

� �s

q
1;D

2

þ
¼D5

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ

a1E2
D
2

b2

2enl
1;D

2

þ � q2

1;D
2

þ

vuut ;

ðcS SPs;Ex oddÞ; (21)
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where D5¼rup
g =ði�0xÞ�e2 cothðq2D=2Þ=q2 and rup

g ¼rdown
g .

Besides, substituting D6 for D5 in Eq. (21), the exact even

dispersion relation of “cS SPs” can be obtained

[D6¼rup
g =ði�0xÞ�e2 tanhðq2D=2Þ=q2]. Furthermore, when

a1!0, we reduce back to the well-known dispersion rela-

tions of TM SPs of the typical symmetric graphene

PPWG19,22

cothðq2D=2Þ ¼
�C1 ðEx oddÞ

� 1

C1

ðEx evenÞ

8><
>:

9>=
>;ðS SPsÞ: (22)

It is worth noting that letting rup;down
g ! 0 in Eqs. (10),

(19), and (21), the exact dispersion relations of TM waves

(SPs) guided by a thin dielectric film (thin metal film)

bounded by nonlinear media can also be obtained. Note that

in the above formulation, we have not taken into account the

nonlinear optical response of the graphene layer, which can

be significant (see, e.g., Refs. 44 and 45). We have limited

ourselves to the same restrictions as applied in several previ-

ous works [Refs. 17 and 19–22], which had considered only

the linear graphene response in the form “rlin
g E” for the sur-

face currents. This will be justified in our following numeri-

cal studies as long as the optical frequency is not too low

(e.g., f to be above �1 THz) for a certain given field strength

of the wave. For example, we have performed a comparative

study of the nonlinear optical conductivity for graphene

given in Ref. 38 with the nonlinear permittivity for the Kerr

medium used in our present study in Sec. III assuming the

later is largely non-dispersive within the frequency range of

our study.30–32 For a given field strength of �106 V=m, we

have found that the graphene nonlinear response is insignifi-

cant compared to that of the Kerr medium for frequencies

above �0:6 THz.

III. RESULTS AND DISCUSSION

To investigate effect of the substrate and cladding nonli-

nearity on the SPs supported by the graphene PPWG, we focus

on the following parameters: a3 ¼ 6:4� 10�12m2=V2,30–32

unless otherwise stated, el
3 ¼ 7:84 (for aA structure).33,36 For

“bA structure,” a1 ¼ 3� 6:4� 10�12m2=V2, unless otherwise

stated, el
1 ¼ 2:25 and, for the symmetric cS structure, enl

1 ¼ enl
3 .

Dielectric constant (e2) and width (D) of the graphene PPWG

core medium are also taken to be 4 and 10 nm.21 Moreover,

s¼ 1:35� 10�13s,18 T ¼ 300 K, lup ¼ 0:2 eV, ldown ¼ 0:3 eV

(for “aA and bA structures”’), lup ¼ ldown ¼ 0:2 eV (for “cS

Structure”) are used for computing the optical conductivity

of graphene. We also assume an electric field intensity of

E2
6D6=2 ¼ 0:683� 1012V2=m2 [Ref. 32] at the interfaces of

graphene and the nonlinear media. Moreover, it has to be noted

that for results presented here, 2p=ReðbÞ, 1=2ImðbÞ, and

1=ReðqjÞ are the wave length (kSP), PL, and the LL of the SPs,

respectively. Therefore, we examine the localization and propa-

gation characteristics of the SPs by considering the ratios LL/D
and PL=kSP. The PL=kSP indicates losses of the SPs and is an

estimate of how many wavelengths can a SP propagate before

it loses most of its energy. Since the SPs of a graphene PPWG

are highly propagating in terahertz frequencies,17–19,21,22 the

numerical results of this paper are presented in this range.

Besides, we also focus only on highly localized SPs, i.e., SPs

with LL=D< 100. Consequently, the calculations are done in

frequencies lower than the optical phonon loss threshold,

fOph 	 0:2 eV [Ref. 18], and the effects of absorption losses due

to the optical phonons are neglected. Moreover, it is worth not-

ing that in investigating SPs in a lossy medium, the wave num-

ber is complex (b¼ b0 þ ib00) and as a result qj ¼ q0jþ iq00j . In

the case of graphene and graphene PPWG, b00 is small and con-

sequently qj 	 q0j. Therefore, the other point should be noticed

here is that by applying the condition q0j > 0 in calculating the

SPs, only the bound modes are considered.19

Fig. 2 represents the normalized propagation and local-

ization length of the SPs of the aA and bA [panels (a) and

(b)] and cS structures [panels (c) and (d)] with and without

nonlinear contribution from the substrate and cladding. It is

clear from panels (a) and (c) that the presence of the nonlin-

ear substrate and cladding has no considerable effect on the

propagation length of the SPs (actually there is almost no dif-

ference between the PL of SPs with and without nonlinear

media). However, as clearly shown in panels (b) and (d),

their nonlinear contribution noticeably improves the SPs

localization of the upper branch. To obtain a concise insight

into the mentioned decrease in the LL of the upper branch

SPs, we focus on the SPs at a typical f ¼ 6 THz frequency.

At this frequency, the normalized localization length (propa-

gation length) of A, aA, and bA Sps are 41.92 (0.4043),

39.53 (0.4043), and 27.36 (0.3995), respectively. Moreover,

those of S and cS SPs are, respectively, 23.25 (0.3931) and

19.42 (0.3927). Therefore, for the considered structures here,

we can conclude that (i) the SPs of the symmetric structure

with and without the nonlinear contribution are noticeably

more localized (insignificantly less propagating) than those

of the asymmetric ones; (ii) for both symmetric and asym-

metric structures, the presence of self-focusing nonlinear

materials (a > 0) as the substrate and the cladding leads to a

decrease in localization length of the upper branch SPs for

f > 4 THz [see upper branches in panels (b) and (d)].

The nonlinear part in the dielectric permittivity of the sub-

strate and cladding media depends on both light intensity and

the nonlinear coefficient. Therefore, considering the effect of

changes in ajE
2
6D=2 on the propagation and localization charac-

teristics of the SPs is also an important issue. Fig. 3 shows the

dependence of PL and LL of the aA, bA, and cS SPs on

changes in the nonlinear part of the dielectric permittivity, at

f ¼ 6 THz (the typical above-mentioned frequency). It is

obvious from this figure that changes in ajE
2
6D=2 significantly

affects the SPs propagation and localization length. And, for

specific values of ajE
2
6D=2, SPs with considerable larger

(smaller) propagation length (localization length), defined as

optimized SPs, can be supported by the considered structures

[note that the specific values, shown with red arrows, are

a3E2
�D=2 ¼ �5:221 in panel (a), a1E2

þD=2 ¼ �1:497 in panel

(b), a3E2
�D=2 ¼ �5:216 in panel (c), and a1E2

þD=2 ¼ �5:171 in

panel (d)], respectively. Therefore, by comparing these panels,

we can conclude that when a3E2
�D=2 ¼ �5:221, the “aA

structure” is capable of supporting the optimized SP [for the

optimized SP, PL=kSP ¼ 0:5551, and LL=D ¼ 8:833. The nor-

malized PL and LL of this mode have simultaneously largest
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FIG. 2. Panels (a) and (b) depict normalized propagation (PL=kSP) and localization (LL/D) length of A (aj ! 0), aA and bA SPs, respectively. Panels (c) and

(d) represent those of S (a1 ! 0) and cS SPs.

FIG. 3. Dependence of normalized propagation and localization length of aA [panel (a)], bA [panels (b) and (c)], and cS [panel (d)] SPs on changes in

ajE
2
6D6=2 at f ¼ 6 THz.
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and smallest values, respectively, among those shown in Figs. 2

and 3 at f ¼ 6 THz]. To obtain insight into the problem, Fig. 4

is plotted. This figure shows propagation and localization char-

acteristics of aA SPs when a3E2
�D=2 ¼ �5:221. Note that to

make a better comparison, aA, bA, and cS SPs depicted in Fig.

2 (when a1;3E2
6D=2 ¼ 8:991; 2:997), are also shown in this fig-

ure. It is clear from panel (a)[(b)] of Fig. 4 that when

a3E2
�D=2 ¼ �5:221, aA SPs with considerably larger (smaller)

propagation length (localization length), for f > 4 THz, can be

supported by the graphene PPWG [e.g., in this case, at

f ¼ 6 THz, the propagation (localization) length of the opti-

mized SP is increased (decreased) by 41.2% (62%), as com-

pared with those of the typical S SP]. As a result, by using an

appropriate defocusing nonlinear material (a < 0) as a substrate

in the “aA structure,” it is possible to improve propagation and

localization characteristics of the SPs supported by a graphene

PPWG. We also investigate terahertz bA SPs when a1E2
þD=2 ¼

�1:149 and/or a3E2
�D=2 ¼ �5:216 [red arrows in Figs. 3(b)

and 3(c), respectively] and cS SPs when a1E2
6D=2 ¼ �5:171

[red arrow in Fig. 3(d)]. We shall skip the details and only men-

tion the result. It is found that although the nonlinear

contribution of the substrate and cladding with a negative non-

linear coefficient always increase the localization of the SPs of

the structures shown in Fig. 1, the optimized SPs can only be

supported by the “aA structure.” Consequently, in contrast to a

single layer graphene on a nonlinear substrate,36 by choosing

an appropriate defocusing material as a substrate, for

f > 4 THz, it is possible to enhance both propagation and

localization of the terahertz surface plasmons of a graphene

PPWG, which is asymmetric on one side bounded by nonlinear

media.

IV. CONCLUSION

In conclusion, we have obtained exact dispersion rela-

tions for the TM surface plasmons of a graphene parallel

plate waveguide, which is either asymmetrically (on one or

both sides) or symmetrically bounded by Kerr-type nonlinear

media. Following previous reports on TM SPs of the similar

metallic structures,30–32 the exact dispersion relations have

been obtained analytically without detailed knowledge of the

field distributions in the nonlinear media. Moreover, the

characteristics of highly propagating terahertz SPs supported

by these structures are also investigated. It was shown that,

similar to a single layer graphene on Kerr-type nonlinear

substrate,36 if self-focusing nonlinear materials are chosen as

the surrounding media of the graphene PPWG, the SPs local-

ization length decreases, while their propagation length

remains the same. However, when an appropriate defocusing

material is chosen as a substrate in the asymmetric structure

in which the cladding is a linear material, optimized SPs can

be supported for frequencies larger than 4 THz (The opti-

mized SPs have considerable larger PL and smaller LL than

those of a typical graphene PPWG). These results can be

useful for modeling high performance plasmonic devices

based on graphene PPWG structures. Finally, in order to go

beyond the limitation of the values for the field strength and

frequency used in the present study, it will be worthwhile for

a future effort to re-analyze this nonlinear waveguide prob-

lem accounting for the nonlinear optical conductivity of

graphene.38
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