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Abstract

In the present comment, we emphasize the existence of a theorem on
the equivalence of a polarized medium with an electric charged system in
the dynamic case. This equivalence allows a consistent treatment of the
polarization problem for a macroscopic medium.

In [1], writing the expressions for the scalar and vector potentials, expressions valid only in
the case of statics,
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the authors note a puzzling question for students in an introductory class of electromagnetism
regarding the understanding of the equivalence of a polarized medium with charge and current
distributions in the dynamic case. As these equations are commented in [1] (equations (5) and
(6) from [1]), the contributions of a polarized medium to the field are established considering
the dipolar electric and magnetic moments of each volume element expressed in terms of the
polarization intensities P and M. These contributions are determined using the well-known
expressions of the electromagnetic potentials of point electric and magnetic dipoles in the
static case.

In the following, we point out the existence of the corresponding dynamic equations for
equations (1) and (2).

(1) First, we write the potentials of the electric and magnetic dipoles identified from the
expansions of the retarded potentials in the exterior of an electric charge distribution confined
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in a finite domain Dy. The expansion of the scalar potential is given by
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is the nth order electric multipole moment, ¢ is the total electric charge, O € Dy is the origin
of the coordinate system and ¢ty = t — r/c. For the vector potential, one has
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As is known [2, 3], using the equation

Ji(r', 1) = V' (x{j) + x;0p /01,
resulting from the continuity equation dp/dt + V - 3 = 0, one can write for the contribution
to the lowest order term in A;:
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with the density 7 vanishing on the surface 0D, and p; () identified from equation (3). The
n = 1 term in the A; expansion is given by —ay (uz;/r), where
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In the above calculation the relation V'x; = e is considered, e; being the orthogonal unit
vectors along the Cartesian axes. The integral of V' - (x;x/j) is zero because 7 = 0 on the
surface 0Dy. Therefore, we can write
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is the standard expression of the dipolar magnetic moment. Inserting equations (4) and (5) in
the expression of A, we obtain
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The first two terms in the right-hand side of equation (6) represent the dipolar electric and
magnetic contributions to the vector potential. From this result it is obvious that, together with
the dipolar magnetic moment 1, the contribution of the 4-polar electric moment of the given
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distribution must be considered [2, 3]. The general expression in terms of Cartesian tensors
for the expansion equation (6) is given in [4].

It is easy to identify the separate electric and magnetic dipolar contributions to the
electromagnetic potentials and so the potentials of the point electric and magnetic dipoles
placed at the origin O of the coordinate system:
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(2) At the point given by the vector 7, the contribution to the field of the polarized
medium localized in a domain D is obtained as a sum over all electric and magnetic dipolar
contributions of this medium: each volume element dV comes together with an electric dipolar
moment contribution P dV and a magnetic one M dV. The potentials are given by
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where R = r — v’ and T = t — R/c is the retarded time as a function of r and 7’. The
static expressions corresponding to equations (7) and (8) are found in equations (1) and (2),
respectively.

For simplicity, we consider all the properties varying continuously in the domain D,
but some parameters may present discontinuities across the boundary 0D. The integrand in
equation (7) can be expressed as
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Using the notation [df (', t') /8x[];=. for the retarded value of the derivative of f(r’, "), we
can write
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Using this result in equation (7), we obtain
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From the last equation, we can identify the expressions for the volume and surface macroscopic
polarization charge densities:
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We can identify the expressions of the volume macroscopic polarization current densities:
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and the surface polarization current density
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No matter how the macroscopic equations are introduced, their interpretation as Maxwell
equations in vacuum for the fields E and B associated with the bound charge and current
distributions (12) and (14), together with the ‘free’ charges and currents p and j is a direct
consequence of these equations. We point out that the mathematical identity which corresponds
to equation (2) in the dynamic case is the following?
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The relation implied in obtaining result equation (13) is, in fact, equation (16) with the integral
f P(r', 1)/ R d&*x’ added on both sides. Adding this term to equation (16) corresponds to the
correct introduction of the distributions of polarization charge and currents pp and 7, the part
represented by P ensuring the continuity equation dpp /3t +V - Jpol = 0. The term P addedto
the polarization current represents the medium polarization part of the Maxwell displacement
current. In conclusion, starting from the polarization charge and current distributions for
proving the two possible representations of the polarized medium contributions to the field, the
trick of adding the term P corresponds to the Maxwell’s hypothesis regarding the displacement
current. Note that the same artifice has to be imposed when requiring that potentials fulfil

(16)

! For expressing the curl operator using equation (10), it is useful to write V. x V = €;&ijkd;j Vk.
2 We thank an unknown referee for helping us to clarify this point.
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the Lorenz condition. The equivalence of the two methods is obvious if one keeps in mind
that the retarded potentials fulfil the Lorenz condition, as a consequence of the electric charge
continuity equation.

Finally, we point out that given the dipolar electric and magnetic distributions by the
domain functions

D — p(D,t) = / P(r,1)d’x, D —> m(D, 1) = / M@, 1) d3x/,
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these distributions are equivalent with the charge and current distributions given by
equation (14) and equation (15).

(3) The results from items (1) and (2) are useful for understanding the microscopic nature
of the macroscopic electric and magnetic polarizations of a medium. A complex microscopic
system, such as a molecule for example, may be represented as a confined electric charged
system in a domain D, centred on a point P,(r,). Let the averaging process be used for
obtaining the macroscopic parameters of a medium. The molecules contribute multipole
electric and magnetic moments, appearing in the multipole expansions of their microscopic
fields.In a simple model with electrical neutral molecules and r, time independent, the
microscopic densities are represented by the multipole series [2]
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In equation (17) and equation (18) the series expansions are given up to the 8-polar electric
terms and 4-polar magnetic ones®. The electric and magnetic moments of a molecule indexed
by a are represented by the tensor components p;, p;;, pijx and m;, m;;, respectively. The
general terms of the series are given in the literature [4]*. The microscopic densities Pmicro
and J picro can be written as
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where P icro and M icro are sums over all molecules and all orders of molecular polarization
moments resulting from equation (17) and equation (18). Therefore, equation (12) and
equation (14) for the volume densities are obtained from the averaged equation (19) with
P = (Ppicro), and M = (M o). Finally, from equation (17), equation (18) and
equation (19) it is obvious how the macroscopic dipolar polarization of a medium is generated
by all orders of molecular multipoles.

Starting from the microscopic field equations, the part P of the macroscopic displacement
current is a consequence of the Maxwell-Lorentz equations and of the multipole expansions

3 The 4-polar magnetic moment is defined by the components m;; = % fDo xi (1 x jr dx’.
4 Because the magnetism is inexplicable in classical physics (the Van Leeuwen theorem), in the above expressions
of microscopic densities, the quantum-averaged parameters must be considered.
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of the microscopic charge and current distributions. If a class of electrodynamics begins from
the microscopic Maxwell-Lorentz equations, then the student can understand some subtleties
of the averaging procedure used for obtaining the macroscopic Maxwell equations.
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