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Abstract.
In the present comment we emphasize the existence of a theorem on the equivalence

of a polarized medium with an electric charged system in the dynamic case. This
equivalence allows a consistent treatment of the polarization problem for a macroscopic
medium.

In [1], writing the expressions for the scalar and vector potentials, expressions valid only

in the case of statics,

Φ(r) =
1

4πε0

∫
P (r′) · (r − r′)

|r − r′|3 d3x′ =
1

4πε0

∫ −∇′ · P (r′)

|r − r′| d3x′ , (1)

and

A(r) =
µ0

4π

∫ M(r′) × (r − r′)

|r − r′|3 d3x′ =
µ0

4π

∫ ∇′ × M(r′)

|r − r′| d3x′ , (2)

the authors note a puzzling question for students in an introductory class of

electromagnetism regarding the understanding of the equivalence of a polarized medium

with charge and current distributions in the dynamic case. As these equations are

commented in [1] (equations (5) and (6) from [1]), the contributions of a polarized

medium to the field are established considering the dipolar electric and magnetic

moments of each volume element expressed in terms of the polarization intensities P

and M . These contributions are determined using the well known expressions of the

electromagnetic potentials of point electric and magnetic dipoles in the static case.

In the following we point out the existence of corresponding dynamic equations for

the equations (1) and (2).

1) Firstly, we write the potentials of the electric and magnetic dipoles identified

from the expansions of the retarded potentials in the exterior of an electric charge

distribution confined in a finite domain D0. The expansion of the scalar potential is

given by

4πε0Φ(r, t) =
∑

n≥0

(−1)n

n!
∂i1 . . . ∂in

[
pi1 ... in(t0)

r

]

=
q

r
− ∇

[
p(t0)

r

]
+

1

2
∂i∂j

[
pij(t0)

r

]
+ . . . , (3)
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where

pi1 ... in(t) =
∫

D0

x′
i1 . . . x′

in ρ(r′, t)d3x′ ,

is the n-th order electric multipole moment, q is the total electric charge, O ∈ D0 is the

origin of coordinate system and t0 = t − r/c. For the vector potential, one has:

4π

µ0
Ai(r, t) =

∑

n≥0

(−1)n

n!
∂i1 . . . ∂in

[
µi1 ... in i(t0)

r

]
,

µi1...in i(t) =
∫

D0

x′
i1

. . . x′
in ji(r

′, t)d3x′ .

As it is known, [2, 3], using the equation

ji(r
′, t) = ∇′(x′

i j) + x′
i∂ρ/∂t ,

resulting from the continuity equation ∂ρ/∂t + ∇ · j = 0, one can write for the

contribution to the lowest order term in Ai:

µi(t) =
∫

D0

[∇′(x′
ij) + x′

i

∂ρ

∂t
]d3x′ =

∮

D0

x′
ij · dS ′ +

d

dt

∫

D0

x′
iρ(r′, t)d3x′ = ṗi(t) , (4)

with the density j vanishing on the surface ∂D0 and pi(t) identified from equation (3).

The n = 1 term in the Ai expansion is given by −∂k(µki/r), where

µki =
∫

D0

x′
k ji d

3x′ =
∫

D0

[x′
k ∇′ · (x′

ij) + x′
kx

′
i

∂ρ

∂t
]d3x′

=
∫

D0

∇′ · (x′
kx

′
ij)d3x′ −

∫

D0

x′
ij · ∇′x′

kd
3x′ +

∫

D0

x′
kx

′
i

∂ρ

∂t
d3x′ = −

∫

D0

x′
ijkd

3x′ + ṗki

= −
∫

D0

(x′
ijk − x′

kji)d
3x′ −

∫

D0

x′
kjid

3x′ + ṗki = −εikl

∫

D0

(r′ × j)ld
3x′ − µki + ṗki .

In the above calculation the relation ∇′x′
k = ek is considered, ek being the orthogonal

unit vectors along the cartesian axes. The integral of ∇′(x′
kx

′
ij) is zero because j = 0

on the surface ∂D0. Therefore, we can write

µki(t) = −εiklml(t) +
1

2
ṗki(t) , (5)

where

m(t) =
1

2

∫

D0

r′ × j(r′, t)d3x′

is the standard expression of the dipolar magnetic moment. Inserting the equations (4)

and (5) in the expression of A, we obtain

4π

µ0
A(r, t) =

ṗ(t0)

r
+ ∇ ×

[
m(t0)

r

]
− 1

2
ei∂k

[
ṗki(t0)

r

]
+ . . . . (6)

The first two terms in the right-hand side of equation (6) represent the dipolar electric

and magnetic contributions to the vector potential. From this result it is obvious that,
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together with the dipolar magnetic moment m, the contribution of the 4-polar electric

moment of the given distribution must be considered [2, 3]. The general expression in

terms of cartesian tensors for the expansion (6) is given in [4].

It is easy to identify the separate electric and magnetic dipolar contributions to

the electromagnetic potentials and so, the potentials of the point electric and magnetic

dipoles placed in the origin O of the coordinate system:

Φp(r, t) = − 1

4πε0
∇ ·

[
p(t0)

r

]
=

1

4πε0

[
r · p(t0)

r3
+

r · ṗ(t0)

cr2

]
, Ap(r, t) =

µ0

4π

ṗ(t0)

r

Φm(r, t) = 0, Am(r, t) =
µ0

4π
∇ ×

[
m(t0)

r

]
=

µ0

4π

[
m(t0) × r

r3
+

ṁ(t0) × r

cr2

]
.

2) In the point given by the vector r, the contribution to the field of the polarized

medium localized in a domain D is obtained as a sum over all electric and magnetic

dipolar contributions of this medium: each volume element dV contributes with the

electric dipolar moment P dV and a magnetic one M dV . The potentials are given by

Φ(r, t) = − 1

4πε0

∫

D

∇P (r′, τ)

R
d3x′ , (7)

and

A(r, t) =
µ0

4π

∫

D

∇ × M(r′, τ)

R
d3x′ +

µ0

4π

∫

D

Ṗ (r′, τ)

R
d3x′ , (8)

where R = r − r′ and τ = t − R/c is the retarded time as a function of r and r′. The

static expressions corresponding to equations (7) and (8) are found in equations (1) and

(2), respectively.

For simplicity, we consider all the properties varying continuously in the domain

D, but some parameters may present discontinuities across the boundary ∂D.

The integrant in equation (7) can be expressed as

∇P (r′, τ)

R
= P (r′, τ) · ∇ 1

R
− Ṗ (r′, τ) · ∇R

cR
= −P (r′, τ) · ∇′ 1

R
+

Ṗ (r′, τ) · ∇′R

cR
. (9)

Using the notation [∂f(r′, t′)/∂x′
i]t′=τ for the retarded value of the derivative of f(r′, t′),

we can write[
∂

∂x′
i

f(r′, t′)

]

t′=τ

=
∂

∂x′
i

f(r′, τ) +
1

c
ḟ(r′, τ)

∂R

∂x′
i

, (10)

and, particularly,

Ṗ (r′, τ) · ∇′R

cR
=

[∇′ · P (r′, t′)]t′=τ

R
− ∇′ · P (r′, τ)

R
.

Equation (9) becomes

∇P (r′, τ)

R
= − P (r′, τ) · ∇′ 1

R
+

[∇′P (r′, t′)]t′=τ

R
− ∇′ · P (r′, τ)

R

=
[∇′ · P (r′, t′)]t′=τ

R
− ∇′P (r′, τ)

R
.
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Using this result in equation (7), we obtain

Φ(r, t) =
1

4πε0

∫

D

−[∇′ · P (r′, t′)]t′=τ

R
d3x′ +

1

4πε0

∮

∂D

P (r′, τ) · dS′

R
. (11)

From the last equation, we can identify the expressions of the volume and surface

macroscopic polarization charge densities:

ρP (r, t) = −∇ · P (r, t), σp(r, t) = −n · P (r, t) , (12)

n being the normal on the boundary ∂D in the point r.

In equation (8) we have

∇ × M(r′, τ)

R
= (∇ 1

R
) × M(r′, τ) +

∇ × M(r′, τ)

R

= − (∇′ 1

R
) × M(r′, τ) +

(∇′R) × Ṁ(r′, τ)

cR
.

Using equation (10) for expresing the term (∇′R)Ṁ(r′, τ)/cR, we obtain ‡

∇ × M(r′, τ)

R
=

[∇′ × M(r′, t′)]t′=τ

R
− ∇′ × M(r′, τ)

R
,

such that the equation (8) can be written in the following form

A(r, t) =
µ0

4π




∫

D

[∇′ × M(r′, t′)]t′=τ

R
d3x′ +

∮

∂D

M(r′, τ) × n

R
dS ′




+
µ0

4π

∫

D

Ṗ (r′, τ)

R
d3x′ . (13)

We can identify the expressions of the volume macroscopic polarization current densities:

jpol = jM + jP : jM (r, t) = ∇ × M(r, t), jP =
∂P (r, t)

∂t
, (14)

and the surface polarization current density

kM(r, t) = M(r, t) × n . (15)

No matter how the macroscopic equations are introduced, their interpretation as

Maxwell equations in vacuum for the fields E and B associated with the bound charge

and current distributions (12) and (14), together with the “free” charges and currents

ρ and j is a direct consequence of these equations.

We point out that the mathematical identity which corresponds to equation (2) in

the dynamic case is the following §
∫

[∇′ × M(r′, t′)]t′=τ

R
d3x′ =

∫
∇ × M (r, τ)

R
d3x′ . (16)

The relation implied in obtaining the result (13) is, in fact, the equation (16) with the

integral
∫

Ṗ (r′, τ)/Rd3x′ added on both hand sides. Adding this term to equation

‡ For expressing the curl operator using equation (10), it is usefull writing ∇ × V = eiεijk∂jVk .
§ We thank an unknown referee for helping us to clarify this point.
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(16) corresponds to the correct introduction of the distributions of polarization charge

and currents ρP and jpol, the part represented by Ṗ ensuring the continuity equation

∂ρP /∂t + ∇ · jpol = 0. The term Ṗ added to the polarization current represents the

medium polarization part of the Maxwell displacement current. In conclusion, starting

from the polarization charge and current distributions for proving the two possible

representations of the polarized medium contributions to the field, the trick of adding

the term Ṗ corresponds to the Maxwell’s hypothesis regarding the displacement current.

Note that the same artifice has to be imposed when requiring that potentials fulfil the

Lorenz condition. The equivalance of the two methods is obvious if one keeps in mind

that the retarded potentials fulfil the Lorenz condition, as a consequence of the electric

charge continuity equation.

Finally, we point out that given the dipolar electric and magnetic distributions by

the domain functions

D −→ p(D, t) =
∫

D

P (r, t)d3x′, D −→ m(D, t) =
∫

D

M(r, t)d3x′ ,

these distributions are equivalent with the charge and current distributions given by

equations (14) and (15).

3) The results from items 1) and 2) are useful for understanding the microscopic

nature of the macroscopic electric and magnetic polarizations of a medium. A complex

microscopic system, as a molecule for example, may be represented as a confined

electric charged system in a domain Da centered on a point Pa(ra). Let the averaging

process be used for obtaining the macroscopic parameters of a medium. The molecules

contribute by the multipole electric and magnetic moments which appear in the

multipole expansions of their microscopic fields. In a simple model with electrical

neutral molecules and ra time independent, the microscopic densities are represented

by the multipole series [2]

ρmicro =
∑

a

ρ(a), jmicro =
∑

a

j(a) ,

where [2, 4]

ρ(a)(r, t) = −∂i

{
[p

(a)
i (t) − 1

2
p

(a)
ik (t)∂k +

1

6
p

(a)
ijk(t)∂j∂k + . . . ]δ(r − ra)

}
(17)

and

j
(a)
i (r, t) = εikl∂k

{
[m

(a)
l (t) − 1

2
m

(a)
qk (t)∂q + . . . ]δ(r − ra)

}

+
∂

∂t

{
[p

(a)
i (t) − 1

2
p

(a)
ik (t)∂k +

1

6
p

(a)
ijk(t)∂j∂k . . . ]δ(r − ra)

}
. (18)

In equations (17) and (18) the series expansions are given up to the 8-polar electric terms

and 4-polar magnetic ones ‖. The electric and magnetic moments of a molecule indexed

‖ The 4-polar magnetic moment is defined by the components mik = 2
3

∫
D0

xi(r′ × j)kd3x′.
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by a are represented by the tensor components pi, pij, pijk and mi, mij, respectively.

The general terms of the series are given in literature [4]¶.

The microscopic densities ρmicro and jmicro can be written as

ρmicro = −∇ · P micro , jmicro = ∇ × Mmicro +
∂

∂t
P micro , (19)

where P micro and Mmicro are sums over all molecules and all orders of molecular

polarization moments resulting from equations (17) and (18). Therefore, the equations

(12) and (14) for the volume densities are obtained from the averaged equations (19)

with P = 〈P micro 〉, and M = 〈Mmicro 〉. Finally, from equations (17), (18) and (19)

it is obvious how the macroscopic dipolar polarization of a medium is generated by all

orders molecular multipoles.

Starting from the microscopic field equations, the part Ṗ of the macroscopic

displacement current is a consequence of the Maxwell-Lorentz equations and of the

multipole expansions of the microscopic charge and current distributions.

If a class of electrodynamics begins from the microscopic Maxwell-Lorentz

equations, then the student can understand some subtleties of the averaging procedure

used for obtaining the macroscopic Maxwell equations.
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¶ Because the magnetism is inexplicable in classical physics (the Van Leeuwen theorem), in the above
expressions of microscopic densities, the quantum averaged parameters must be considered.
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