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Abstract 

 
The original “theoretical discovery” of electromagnetic waves by Maxwell is analyzed 

and presented in modern notations. In light of Maxwell’s well-known prophetic dedication to the 

concept of the vector potential, it is interesting to reveal his derivation of the wave equation for 

this potential without the application of any gauge condition. This is to contrast with typical 

approaches students learn from standard textbooks for the derivation of the wave equation in 

various forms. It is in our opinion that intuition and insight, rather than logical deduction, must 

have played a more significant role in Maxwell’s original discovery, as is not uncommon with 

discoveries made by the pioneers in science. 
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Introduction 

 

Physics is an experimental science. This is undisputable in the sense that, just like with 

any discipline in natural science, a discovery must be ultimately substantiated by experimental 

verification. Moreover, in the history of Physics, one can find examples of extremely important 

discoveries which were first made completely from theoretical studies, and then lead 

subsequently not only to beautiful experimental confirmations, but also to a large variety of 

significant applications going far beyond the imagination of the theorist(s) who first contributed 

to that particular discovery. These include, for example, the discovery of antimatter, mass-

energy equivalence, curved space-time,…leading to the applications like Positron Emission 

Tomography (PET), nuclear energy, Global Positioning System (GPS),…etc. Nevertheless, few 

people would have disagreed, among these “theoretical discoveries”, that of the electromagnetic 

waves propagating at the speed of light made by Maxwell [1, 2] would rank one of the most 

dramatic, fundamental, and significant achievement for all time. Without the knowledge of 

electromagnetic (EM) waves, many of our daily-life applications ranging from microwave oven 

to wireless internet would not have been possible.  

It is thus a meaningful task to review the original discovery of Maxwell and learn how 

such a brilliant theoretical discovery was made during the latter part of the nineteen century. 

While it is well-known that the existence of EM waves must be a gauge-independent 

phenomenon and therefore is best substantiated via the wave equations for the fields, Maxwell 

had actually derived these equations for both the fields and the potentials (mainly the magnetic 

field and the vector potential) already in his very original work in 1864 [1].  We shall hence 

contrast Maxwell’s original work with those found in most modern EM textbooks [3] which are 

based exclusively on the Lorenz gauge condition [4] on the electromagnetic potentials.  In fact, 

the original paper of Lorenz [4] came two years after that by Maxwell [1], and Maxwell could 
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not have referred to it in his original discovery of EM waves, although it had then become 

available when his Treatise [2] was published. 

For completeness, we shall begin with a brief resume of the textbook derivation of the 

various EM wave equations and then move on to explain how Maxwell obtained the wave 

equation for the vector potential without the Lorenz condition. 

Textbook derivation of EM wave equations 

 

Let us first display the full set of electromagnetic equations in vacuum in modern 

notations and in Gaussian unit system: 
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The sourceless pair then enables us to introduce the scalar and vector potentials with 
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The various wave equations can then be derived in the following two cases: 

Case (i): regions with no source 

 
For ρ = 0 and 0J  , Eqs. (1)-(4) lead straightforwardly to the following d’Alembertian 

(wave) equations for the fields 
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But as for the potentials, the equations obtained from Eqs. (1), (4), (5), (6) take more 

complicated forms as follows:  
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Now if we impose the following Lorenz gauge condition:  
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Eqs. (9) and (10) immediately lead to the following wave equations for the potentials:  
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Eqs. (7), (8), (12), (13) constitute the complete set of sourceless EM wave equations in vacuum. 

Case (ii): regions with source 

 
In the case with ρ ≠ 0 and 0J   , Eqs. (1) – (4) will imply modifications to the wave equations 

and (5) and (6) now take a more complicated form with the introduction of appropriate effective  

source currents as follows [4]:   
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Correspondingly, Eqs. (9) and (10) now take the following modified forms:  
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Again, under the Lorenz gauge condition Eq. (11), Eqs. (16) and (17) lead to the well-known 

wave equations for the potentials with source:  
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A few comments are in order. First of all, the existence of EM waves, of course, must be a 

gauge-independent phenomenon. Thus, the wave equations for the fields, Eqs. (7), (8), (14), (15) 

are of course valid for any gauge. However, those for the potentials, i.e. Eqs. (12), (13), (18), 

(19), are valid only under the Lorenz gauge condition Eq. (11). This is not a problem within 

classical electrodynamics if one regards only the fields to be physically realistic and uniquely 

measureable for a given source. Nevertheless, as is well-known, Maxwell had all the time  

regarded the vector potential as fundamental by describing it as the electromagnetic momentum 

in his formulation of EM theory [1, 2, 5]; and had derived and given significance to both the 

wave equations for the magnetic field and the vector potential in his pioneering work [1].  Hence 

the following intriguing question arises: how could Maxwell have derived Eq. (13) without the 

gauge condition of Lorenz, whose work only appeared two years after that of Maxwell?  In fact, 

while Maxwell was for sure fully aware of the gauge freedom of his theory, he would not have 

formulated a wave equation for the vector potential by giving up the gauge freedom of such an 

equation even if the Lorenz gauge condition was available to him. We shall provide a brief 
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digress of the original reasoning of Maxwell in his derivation of Eq. (13) in modern 

terminology, and then comment on it. 

Maxwell’s discovery of EM waves 

 

First we note that Maxwell had only considered the sourceless wave equations with  

0J  .  In his original paper on the dynamic theory of EM [1], he had essentially taken the curl 

of the result in the above Eq. (10) and obtained first the wave equation for the magnetic field in 

Eq. (8). This is straightforward since the two operators,   and   , commute with each 

other.  Note that Maxwell’s original derivation of Eq. (8) can be made more apparent doing this 

way, though it has been regarded as rather subtle in some previous works in the literature [6].   

Following this, he then went on to derive a similar equation for the vector potential, and we 

shall follow his Treatise (Volume 2, Chapter 20, Article 783) [2] to present this derivation.  

Essentially, Maxwell had obtained in his Eq. (6) in Article 783 the equivalent of our above 

result in Eq. (17). Rather than imposing the Lorenz condition in Eq. (11) whose justification is 

based on the relative arbitrariness of the potentials (as long as they give the same fields), 

Maxwell had regarded the potentials real and physical and would not have “imposed arbitrary 

conditions” to be satisfied by them. Instead, he carried out the following steps starting from Eq. 

(17) to arrive at the wave equation: 

 
Step (i)   Taking the divergence of (17) and arrive at:  
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      Note that Maxwell’s definition of the Laplacian operator for this derivation in 

 

      [2] is in opposite sign compared to the one often used nowadays [see Article  

 

    616, Eq. (3)].  Note also that Eq.(20) is equivalent to Eq. (8) of Article 783 in 

 

              Maxwell’s Treatise [2]. 
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Step (ii)   Assume no free current, 0J  :   

 

 

Hence 2  , the free charge density, will be constant in time if there 

  

 

is no flow of charges.  Eq. (20) then leads to:  
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Step (iii)  Leaving out each of the terms A  and  2 t   , for periodic disturbances: 

    Maxwell’s argument is that since (21) implies A is at the most linear in   

    time and ∇2φ is constant in time, one can safely leave each of them out for

    oscillatory wave motions.. 

Obviously, steps (ii) and (iii) are not justified since if one applies consistently the result for 2

from Eq. (16) into Eq. (20), one simply recovers the equation of continuity which implies a 

constant ρ for 0J  .  Nevertheless, Maxwell was at that time highly motivated to replace the 

Newtonian “action-at-a-distance” via realistic propagation of interaction through an elastic 

medium (aether), and was “driven” to arrive at a second degree differential equation for such 

oscillatory motion for both the field and the potential which he regarded as physically real and 

fundamental.  Furthermore, the derivation presented in [1] appeared slightly different from 

that in [2] (the above three steps), as the condition 0A   was explicitly stated in [1] which 

sometimes misled people to conclude that Maxwell had derived the wave equations in the 

Coulomb rather than in the Lorenz gauge [7].   It is clear that Maxwell had not applied any 

gauge condition in [2] as explained above, nor in [1] as is evident from reading Section (99) 

of the original paper in which Maxwell had treated the left-over terms from the “Coulomb-

gauged” vector potential.  In fact, the approaches in both [1] and [2] are equivalent to each 

other.  All Maxwell was trying to do is to mathematically demonstrate how the wave equation 
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for the vector potential can be obtained from his electrodynamic equations without ever 

imposing extra constraints for the potential to satisfy. 

 
Conclusion 

 

 We have thus clarified that no gauge condition was applied in the original derivation of 

the wave equation for the vector potential by Maxwell, in contrary to the modern approach 

which can be found in most textbooks.  Although his mathematical steps were not all justified, 

we owe Maxwell his great intuition which enabled him to draw so many extremely significant 

conclusions from his wave equations. These include, for example, the plane wave solution 

with unique transverse polarizations for the fields; the unification of optics and 

electromagnetism; …etc. Teachers should be inspired to pass on knowledge to the younger 

generations not just based on well-formulated modern textbook derivations, but to lead them 

to appreciate that in many first-hand scientific discovery, intuition and insight are often more 

significant than pure logical (mathematical) derivations in such a process.
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