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Abstract 

 In the propagation of an electron through a 1D asymmetric complex potential, it is known 

that while the conventional Green function reciprocity symmetry will ensure transmission to be 

symmetric between a “left-incident” and a “right-incident” beam, no such symmetry exists for 

the case of reflection.  Here we derive generalized reciprocity relations for both the amplitude 

and phase of the reflected waves as constraints on the left and right incident beams, in complete 

analogy to what was established in optics.  We further provide illustrations of these relations via 

direct analytical calculations in the case of a real potential, and via numerical studies in the case 

of a complex potential.   
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Introduction 

 The elementary problem of propagation of a quantum particle in a 1D potential is of 

fundamental interest from the beginning of quantum mechanics, with the prediction of the 

intriguing phenomenon of quantum tunneling which has found numerous applications in the 

literature [1].  Over the years, the study of this problem has been extended to potentials of 

various forms which can be complex [2, 3] and can serve as models for inelastic scattering with 

absorption of the particle to take place.   For the general case when the potential is allowed to be 

asymmetric and complex, one interesting issue is about the possible reciprocal symmetry in the 

transmission and reflection of the particle with reference to a left-incident and a right-incident 

beam [4].   

 Consider an arbitrary potential as shown in Fig. 1.  It is known that the transmission and 

reflection coefficients are identical whether the particle is incident from the left or from the right 

side in the case of real (non absorptive) potentials.  In the case of a complex potential with 

absorption, one still has the same transmission for both the left- and right- incidence but the 

reflection coefficients will be in general different for particles incident from different sides of the 

potential [5, 6].   It thus appears that unless there is absorption, it is not possible to probe the 

asymmetry of a real potential via simple 1D scattering experiments by having different incident 

beams interacting with the potential [5, 7]. 

 It is the purpose of our present work to point out that, by examining the various 

generalized reciprocity relations among the transmission and reflection waves, one can have both 

the transmitted and reflected waves related to each other in a definite way even in the presence of 

absorption, and that asymmetry can still be revealed in the case of real non-absorptive potentials.  

We shall first establish that, in complete analogy with the results established in optics, the two 
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beams incident from opposite sides of the potential will have the same transmission amplitudes 

and phases, while those corresponding to the reflected beam will be different in general, except 

for the case of real potentials when the coefficient of reflection (amplitude modulus square) will 

be the same.  We shall limit ourselves to localized potentials so that the incident particle with a 

real energy ( 0)E >  will propagate as a free particle beyond a certain finite extent of spatial 

region. 

Generalized Reciprocity Relations 

 In two studies on the reciprocity theorem in optics as applied to the propagation of light 

through a 1D stratified system composed of different materials,  Agarwal and coworkers have 

derived certain generalized reciprocal relations between the reflected and transmitted light waves 

from identical beams incident from the two (left and right) sides of the medium [8, 9].  In 

particular, they have shown that while the transmitted fields are always identical from either side 

of the stratified system, the reflected fields will in general be different in both their amplitudes 

and phases.  In the following, we shall first establish the analogous results for the matter waves 

in quantum mechanics, and shall then provide some illustrations from direct calculations of these 

waves. 

 Assuming the potential is localized within a region 1 2x x x≤ ≤  with the potential   

0V =  for   1 2 and x x x x< > ,  let us consider two electrons of wave functions 1 2 and ψ ψ  and 

identical energy E  being incident from the left and right, respectively, as indicated as in Fig. 1 (a).  

The stationary Schrodinger equation and the asymptotic form for these waves (i.e. waves outside 

the potential zone) can thus be expressed as follows: 

  
2

2
2 2

21 0,   d V mEk k
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Thus, applying (1) to 1ψ and its conjugate to 2ψ , one can easily establish the following integral 

relations (for a complex potential): 
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− −
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where ' d
dx
ψψ ≡ , and we have assumed 1x L<  and 2x L< .   Note that for 1 2ψ ψ ψ= ≡  , Eq. (4) 

leads back to the following well-known 1D “optical theorem” [2]: 

  
2

2 ( ) ( )  Im
L

L

kj L j L Vdx
mE

ψ
−

− − = ∫
 ,     (5) 

where  ( )j x  is the probability current density.  Using the results in (2) and (3) into (4), it is 

straightforward to arrive at the following result relating the various reflection and transmission 

amplitudes: 

  * * *
1t 2 1r 2 1 2 Im 0

L

r t L

k Vdx
E

ψ ψ ψ ψ ψ ψ
−

+ − =∫ .    (6) 

Now if we apply (1) to both 1ψ and 2ψ , and using the results in (2) and (3), we can derive a much 

simpler relation between the various incident and transmission amplitudes as follows: 
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   1 2 1 2 0t i i tψ ψ ψ ψ− = .      (7) 

By setting both incident amplitudes to be unity (i.e. 1 2 1i iψ ψ= = ), (7) leads back to the 

guaranteed reciprocal symmetry for transmission which is of general validity: 

   1 2t tψ ψ=  ,       (8) 

and the generalized relation between the reflection amplitudes in (6) can then be rewritten in a 

slightly different form as follows: 

  
*

*2r 1r
1 2*

2t 1t 1t 2

 Im 0
L

L
t

k Vdx
E

ψ ψ ψ ψ
ψ ψ ψ ψ −

   
+ − =   

   
∫ .   (9) 

The results in (8) and (9) are the general constraints we seek to derive and are in complete 

analogy to those obtained in optics by Agarwal and coworkers [8], with Eq. (9) showing that the 

reflection coefficients (i.e. 2
nrψ , n=1,2) are in general different for the left and right incidence in 

the presence of absorption, i.e.  Im 0V ≠ , a result also well-known in optics (with the dielectric 

function playing the role of the potential). 

 However, in the case of a real asymmetric potential, Eq. (9) reduces to: 

  
*

1r 2r

1t 2t

 ψ ψ
ψ ψ
   

= −   
   

,                (10) 

which, together with (8), leads to the well-known result that both the transmission and reflection 

coefficients are identical for the left and right incidence in the case of a real asymmetric potential 

[5].  Thus it appears that the asymmetric nature of any real 1D potential cannot be revealed via 

simple left-versus-right incidence experiment as “protected” by reciprocal symmetry. 

 Note that all the amplitudes in Eqs. (8) – (10) are in general complex.  By writing these in 

the form of a real amplitude and a phase factor:  ie φψ ψ= , Eq. (8) shows that both the real 
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amplitudes and phases are identical for the transmitted waves of either the left or the right 

incidence case.  However, Eq. (9) implies that the corresponding relations will in general be 

rather complicated for the reflected waves.  Nevertheless, in the case of real potentials,  Eqs. (8) 

and (10) lead in a straightforward way to the following results: 

  1 2 r rψ ψ= ,        (11) 

and 

  1 22 t r rφ φ φ π= + − .       (12) 

While the result in (11) reconfirms the identical reflection coefficients in the two cases of 

incidence from different sides, that in (12) shows that the phases of the two reflected waves will 

in general be different --- a result completely analogous to that obtained in Ref. [9] for  

propagation of optical waves [10].  This result then enables one to identify any asymmetry for a 

real potential by monitoring any possible deviation from  / 2π  in the phase difference between 

the reflected and the transmitted wave. 

Illustrations 

 In this section, we provide some illustrations of the above general results via direct 

calculations of the 1D scattering from an asymmetric potential.  For simplicity, we shall re-label 

the amplitudes rψ by R and tψ by T , and shall divide into two cases: 

(I) 

 Consider the left-incidence case on a real arbitrary potential confined within 

Case of real potential 

0 x a≤ ≤  (i.e. 1 20,  inx x a= = Fig. 1(a)), where the wave in the region of the potential is 

represented by some well-behaved real functions ( ) and ( )u x w x , respectively, i.e. the 

wavefunction in the potential zone is of the form: V Au Bwψ = + , and the solutions outside 
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the potential are all plane waves.  Thus, matching the continuity of the wavefunctions and 

their derivatives at each of the two boundaries, we finally obtain the following complex 

amplitudes for the reflection and transmission waves [11]: 

  ( ) ( )
( ) ( )

0 0
1

0 0

a a

a a

p p i q r
R

p p i q r
− − −

=
+ − +

,      (13) 

 

  
( ) ( )1
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2
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T
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=
+ − +

,      (14) 

 where 0 0,  ,  , and a ap p q r  are all real quantities defined as follows: 
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.     (15) 

 For the right-incidence case as illustrated in Fig. 1(b), one can show in a similar way that  

the corresponding complex amplitudes are given as follows [7]: 

  ( ) ( )
( ) ( )

0 0
2

0 0

a a
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R

p p i q r
− − −

=
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,      (16) 

  
( ) ( )2

0 0

2
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Thus (16) and (17) show that 1 2T T= , confirming the result in (8); whereas the results in (14) 

and (16) lead to 

  ( )
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0 01 1
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where we have used (14) and (17) in the last step.  The result in (18) thus reconfirms the 

result derived in Eq. (10).  Furthermore, by expressing the various complex amplitudes as 

follows: 

  

1

2 2

1 1

2 2 1

1 2

r

r r

t

i

i i

i

R R e

R R e R e

T T T e

φ

φ φ
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=
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= = 

,      (19) 

       Eq. (18) leads to the following phase relation : 

 ( )1 2 2
1 2   2r r ti i
r r te eφ φ φ φ φ π φ+ = − ⇒ + = +  ,     (20) 

which reproduces the result given in Eq. (12). 

(II)  

Here we perform numerical analysis for a simple asymmetrical potential. In this case, 

while the results from Eqs. (13) to (17) are still valid, those in (18) and (20) are no longer 

correct since 

Case of complex potential 

0 0,  ,  , and a ap p q r  are now of complex values for the wavefunctions 

( ) and ( )u x w x  are in general complex.  Under this situation, as the general results in the 

previous section imply, we shall still have reciprocal symmetry for transmission but not for 

reflection.  Instead, the general result in Eq. (9) will set constraints on the reflection 

amplitudes from the left and right incidence, respectively.  To illustrate the validity of  Eq. 

(9), we shall perform some numerical studies of certain specific complex potentials in this 

section. 

Since reciprocity must hold for any symmetric potential, we shall study the simplest 

potential for which asymmetry of reflection may arise by referring to the two-step potential 

barrier as indicated in Fig. 1(b).  This simple asymmetric potential is of significant interest 
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and has been investigated in the literature for both application [12] and fundamental studies 

[13].   

For simplicity, we shall measure the energy of the electron in units of 2( / 2 )m so 

that 2E k= . Also, let potentials V1 and V2 be complex (with positive real and imaginary 

parts), constant, distinct, and of equal width (a) along the x direction. Then within their 

respective domains, the solution to (1) is: 

1 1

1

2 2

2

1 1

2 2

ik x ik x
V

ik x ik x
V

A e B e

A e B e

ψ

ψ

−

−

= + 


= + 
      (21)  

The boundary conditions applied to the left-incidence case lead to the following relations 

among the wave amplitudes: 

1 1

1 1

2 2

2 2

1 1 1

1 1 1 1

1 1 2 2

1 1 1 2 2 2

1 2 2

1 2 2 2

( ) ( )

( ) ( )
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ikT e ik A e B e

−−
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−
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+ = +
− = − 
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− = − 
= +


= − 

.     (22) 

Since we make no assumption about reciprocity for the system, the analogous set of 

equations for the right-incidence must also be solved independently (with 1 2 1 2,  R R T T→ → ). 

Applying  Eq. (9) to this case, we have: 

*
* 1 *2 1

1 2 1 2
2 1

( ) Im
V

R R kTT Vdx
T T

ψ ψ−   
+ =   

   
∫ .      (23)   

Once all the coefficients in (22) have been determined, we may plot the left- and right-hand 

sides of the above equation as function of the incident energy (E = k2). The results in Figs. 2 

and 3 numerically demonstrate the validity of both the real and imaginary parts of (23) for 
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several different potentials.  Figs. 2 and 3 are generated by fixing the real parts of each 

potential step (Re V1 = 1,Re V2 = 2) and plotting the left- and right-hand sides of (23) for 

several values of the potentials’ imaginary parts.  In addition, the validity of the phase 

relation in Eq. (12) is also demonstrated in Fig.4 for real potentials by setting the imaginary 

parts to zero. 

 We would like to further comment on the degree of deviation from reciprocity symmetry 

from the results in Figs. 2 and 3.  First we note that the line y = 0 in both these figures 

represent the case of reciprocal symmetry: any deviation from this implies the breakdown of 

such symmetry.  It is clear that within certain limits of the magnitude of the potential’s 

imaginary part, one indeed can see that greater values in this magnitude leads to greater 

deviations from reciprocity symmetry.  However, a monotonic trend does not exist since the 

quantities plotted in the y-coordinates change sign.  Nevertheless, one thing seems quite clear 

which is that for sufficiently low energies, the absolute value of the deviation from 

reciprocity symmetry does increase with the magnitude of the imaginary part of the potential, 

while for very high energy such deviation becomes insignificant. 

Discussion and Conclusion 

 We have in this work studied the reciprocity symmetry of the 1D scattering problem in 

quantum mechanics for an arbitrary potential (complex and asymmetric).  By establishing 

some generalized relations for the amplitudes and phases between the left-incident and right-

incident electron waves,  we have shown that even in the most general case of a complex 

asymmetric potential, the reflected waves from the two cases of incidence are intimately 

related.  Furthermore, in the case of an arbitrary real potential, one can still distinguish the 

two reflected waves via monitoring the phases in each of them.  This provides a possibility of 
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probing an asymmetric non-absorbing potential via interference experiments from beams 

incident on different sides of the potential. 

 One also concludes from this study that the transmission symmetry is very strong: it 

remains valid (both for the amplitude and phase of the two beams) even in the most general 

case with an asymmetric complex potential [5, 6].  Whereas this strong reciprocal symmetry 

is also well-known in optics, recent developments in plasmonics and metamaterials have 

revealed the possibility of breakdown of this symmetry with the propagation of light through 

these materials [14].  It thus poses an interesting and challenging task for future study to 

explore similar breakdown of transmission reciprocal symmetry in the propagation of matter 

waves in quantum mechanics.   
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Figure  Captions 

1.  (a)  Geometry of an arbitrary potential. 

(b)  A two-step complex potential with positive real and imaginary parts. 

2. Demonstration of the validity of the real part of Eq. (23):  the curves are results from the 

LHS of (23) while the dots are obtained from the RHS of (23). 

3. Demonstration of the validity of the imaginary part of Eq. (23):  the curves are results 

from the LHS of (23) while the dots are obtained from the RHS of (23). 

4. Demonstration of the validity of the phase relation in (12) for real potentials. 
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Figure 2 
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Figure 3 
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