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1. Introduction

The motivation for this work is the desire to compare two different
theories of defective crystals. The first theory was initiated by Davini[4]
in 1986 – in that theory a crystal state is defined by the prescription
of three smooth linearly independent lattice vector fields at each point
of a domain Ω ⊆ R

3. The focus of that theory is on objects which are
elastic invariants, like the Bürger’s vector and the dislocation density
tensor. Since elastic deformation does not change these objects, they
measure inelastic (or ‘plastic’) changes. The theory has developed to the
extent that there is a place in it for the analogue of kinematical mecha-
nisms that appear in phenomenological plasticity theories, specifically
changes of state which leave the elastic invariants unchanged, but which
are not elastic, represent slip in planes (for example) where the lattice
vector fields are constant. Davini and Parry [5],[6] call such changes
neutral deformations, and note in particular that it is necessary that
the dislocation density tensor be singular if neutral deformations are
to exist. Some variational problems which allow both for slip and for
elastic deformation have been studied, Davini and Parry [5],[6] and
Fonseca and Parry [9], but there is no detailed model which accounts
for the evolution of the elastic invariants, yet, in this theory.

The second theory is based on work by Noll [12] in the 1960s.
There the central assumption is that a relevant strain energy density
may be expressed as a function of deformation gradient (with respect to
some reference state) and reference position. (In fact, the discussion is
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in terms of general ‘response functions’). A first issue that is addressed
is whether or not the given strain energy density represents a ‘uniform
material’, where it is supposed that a material is uniform if there exists
a reference configuration such that the strain energy density, expressed
with respect to that reference configuration, is independent of position.
So if a material is uniform, and a strain energy density with respect to
some arbitrary reference configuration is given, then there is defined a
generally non-integrable change of configuration (to the uniform one),
and this can be thought of as prescribing a ‘frame’ (consisting of three
linearly independent vector fields). The frame is determined only to
within elements of the isotropy group of the strain energy density,
which adds complexity. However, the existence of a frame provides an
apparent point of contact between the two theories, and indeed there is
a correspondence between one of the main objects of this geometrical
theory, which is the torsion (of the connection defined by the frame),
and the dislocation density tensor (ddt.) which is the central elastic
invariant in Davini’s theory. There has been some progress in describing
the evolution of defects in the context of the geometrical theory, Epstein
and Maugin [8], Epstein and Elżanowski [7], though it is based on
geometrical ideas rather than on continuum mechanical balance laws.

To make some more detailed connection between the two theories,
we ask the following question: “Is there a notion of material symmetry
that is appropriate in Davini’s theory?” In the geometrical theory, if
w is the strain energy density of a uniform material, with respect to a
uniform reference, the material symmetry group is the set of all linear
transformations G such that

w(F ) = w(FG), for all F ∈M+
3×3, (1.1)

where M+
3×3 is the set of 3× 3 matrices with positive determinant, and

F represents a deformation gradient.
We will suppose

that, in Davini’s theory, there is defined an energy density function
w̃ = w̃ ({�a} ,S), where �1, �2, �3 are three linearly independent
vectors, {�a} denotes the set {�1, �2, �3}, and S is the ddt. Thus we
adopt, as a constitutive hypothesis, the idea that point values of the
frame and the ddt. are enough to determine the value of the energy at
a point. Also, and this is a main assumption, we suppose that there
is a crystal state Σ ≡ {�a(·), Ω; a = 1, 2, 3}, with corresponding ddt.
uniform (i.e. constant in Ω), such that w̃(·) is also constant. So

w̃ ({�a(x)} ,S) = w̃ ({�a(y)} ,S) , x,y ∈ Ω. (1.2)

Defining the matrix field L(·) by

L(x)ea = �a(x), a = 1, 2, 3, x ∈ Ω, (1.3)
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where e1, e2, e3 is a canonical basis of R
3, equation (1.2) may be put

in the form
w̃(L(x), S) = w̃(L(y), S), (1.4)

with some rather slight abuse of notation. Phrased in this way, the
state Σ is to define symmetry properties of w̃(·,S).

Reiterating, the assumption is that symmetries of the energy
density define a frame with given constant ddt., if one accepts the
smoothness of the frame and the connectedness of Ω. The issue that
we shall investigate in this paper is the following – to what extent is
this assumption compatible with the notion of symmetry that comes
from equation (1.1) (which is isomorphic to the usual formulation of
material symmetry in nonlinear elasticity theory)?

There is a
superficial resemblance between (1.1) and (1.4); indeed if one takes
w(·) = w̃(·,S), F = L(x), G = (L(x))−1L(y), then there would seem
to be a definite relationship if one could show that:

− there is an extension of w̃(·,S) from L(Ω) to all of M+
3×3 such that

the ‘analogue’ of (1.4) holds (this is imprecisely stated, here),

− range
y∈Ω

(L(x))−1L(y) is independent of x.

The method that we shall use to investigate this issue (or rather,
whether or not assumption (1.4) is viable) is based on the following:

(i) we focus on cases where ddt. is constant in Ω. This seems reasonable
under the constitutive hypothesis that w̃ is independent of gradients
of the ddt.. Then crystal state Σ = {L(·),Ω} has a Lie group
structure, Parry [13], so that there exists an (associative) Lie group
composition function ψ : Ω × Ω → Ω and the lattice vector fields
�1(·), �2(·), �3(·), or L(·), have a self similarity property which
corresponds to ‘right invariance’ with respect to the action of the
group,

�a (ψ (x,y)) = ∇1ψ(x,y)�a(x), a = 1, 2, 3, x,y ∈ Ω, (1.5)

where ∇1 denotes the gradient with respect to the first argument.
Note that (1.5) can also be written as

L (ψ (x,y)) = ∇1ψ(x,y)L(x), x,y ∈ Ω. (1.6)

(ii) The ddt. S is invariant under elastic deformation, and so elastic
deformation of a crystal state with constant S produces a crystal
state with constant S.
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(iii) It will turn out that, in all cases where S is singular, one can choose
a crystal state (with the given, constant, S) such that ψ is affine
with respect to its first argument. We shall presume that (1.4) holds
for the crystal state so defined, and then extend w̃(·,S) so that it
is defined over M+

3×3 and some analogue of (1.4) holds. (In fact we
partition M+

3×3 into disjoint sets such that equation (1.4) holds on
each set.)

(iv) Choosing ψ as above ensures that the crystal states so constructed
have a group property over and above the original Lie group
structure. This group property is what allows a direct comparison
with (1.1), and encourages us to say that the crystal states
constructed in this way provide the material symmetry groups for
w̃(·,S). These material symmetry groups depend on the ddt., in
general.

The material symmetry groups that emerge are continuous groups. If
one assumes that the function w̃(·,S) is also objective, then one can find
representations of w̃ in terms of certain combinations of LTL (LT = L
transposed), the analogue of the Green strain, in just the same way
as one finds that the strain energy depends on the principal invariants
of Green strain in classical nonlinear isotropic elasticity theory. But
in this case the representation depends on the ddt., since that tensor
determines the symmetry group. We find, for example, that for some
choices of S, the material can be regarded as transversely isotropic
(with distinguished axis determined by S), and we give examples of
explicit representations of the strain energy function in some other
cases where S is singular.

2. Further motivation based on discrete structure

The symmetry groups of perfect discrete crystals are thoroughly
investigated, by now. For a simple lattice K determined by a basis
e1, e2, e3,

K = {x : x = naea, n
a any integer, a = 1, 2, 3} , (2.1)

one may study the space groups, the point groups, the lattice groups,
and their various interrelationships. Similar problems of classification
occur in the case of discrete defective crystals that arise from a continu-
ous structure through an iteration process, see Parry[13], Cermelli and
Parry [3], though these problems are neither classical nor thoroughly
investigated (from the point of view of continuum mechanics). There,
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a ddt. S is prescribed, and a frame with given S is constructed in some
canonical fashion. A starting point x0 is chosen and a set of points
is determined by flow along each of the three vector fields for time 1
(and time −1). The procedure is repeated with each of the set of six
points so generated, and so on. In some cases the procedure determines
a discrete set of points, and any such discrete set of points turns out
to be a multilattice (i.e. a collection of congruent simple lattices). The
symmetry properties of this multilattice may be investigated, Cermelli
and Parry [3], Pitteri and Zanzotto [16]. The multilattice depends on
x0,S, and the starting values of the frame �a(x0) ≡ �a, a = 1, 2, 3,
denote it M(x0, {�a} ,S).

Now the canonical procedure that is used to construct the frame,
in cases that give multilattices, is the following; first follow a standard
procedure, Pontryagin [17], to find a frame with given S and �a(0) = ea.
Then select an affine elastic deformation, with gradient F , that maps
0 to x0 and has Fea = �a. Since elastic deformation preserves the
ddt., this particular elastic deformation produces a frame with ‘starting
point’ x0, �a(x0) = �a and ddt. S, moreover the iteration procedure
described above produces a multilattice M(x0, {�a},S).

The task is to describe symmetries ofM(x0, {�a},S), constructed
as above. First notice that Pontryagin’s frame satisfies the right
invariance condition (1.5), and that in cases we are interested in
∇1ψ(x,y) is independent of x so that (1.5) represents an affine
elastic deformation. That is, the frame is mapped to itself by elastic
deformations of the form

x→ ψ(x,y) ≡ ψ(0,y) + [∇1ψ (0,y)]x. (2.2)

Second it is a fact that the processes of iteration and elastic defor-
mation commute. Therefore, in particular, the multilattice generated
after elastic deformation of Pontryagin’s frame is the elastic image of
M(0, {ea},S), and by definition this multilattice is

M (ψ(0,y), [∇1ψ (0,y)]ea,S) ≡M
(
x̄0,

{
�̄a
}
,S)

if we put x̄0 ≡ ψ(0,y), �̄a ≡ [∇1ψ(0,y)] ea.
Now choose

x̄0 ≡ ψ(0,y) ∈M (0, {ea} ,S) . (2.3)

Then the iteration process, after elastic deformation (2.2), with y
given by (2.3), commences with a point of M (0, {ea} ,S) and em-
ploys Pontryagin’s frame by virtue of the right invariance condition.
Therefore,

M (0, {ea} ,S) =M
(
x̄0,

{
�̄a
}
,S) = x̄0 + [∇1ψ (0,y)]M (0, {ea} ,S)
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for all y such that (2.3) holds. But

M
(
x̄0,

{
�̄a
}
,S) = x̄0 +M

(
0,

{
�̄a
}
,S)

according to the canonical procedure. So

M (0, {ea} ,S) =M (0, {�a} ,S)
whenever �̄a = [∇1ψ (0,y)]ea and (2.3) holds.

Finally one imagines that the strain energy is determined by the
relative positions of the points in the multilattice, not on their absolute
positions relative to some coordinate system. So (2.2) suggests that we
should adopt

w̃ ({ea} ,S) = w̃
({
�̃a

}
,S

)
(2.4)

as a symmetry of the strain energy function, provided that

�̃a = �a (x̃0) , where x̃0 ∈M (0, {ea} ,S) . (2.5)

We take these remarks as a clear motivation for considering
relations of the form (1.2) in the continuous case, for (2.4) is just the
discrete version of that relation, where the domain of definition of the
lattice vectors, Ω, is taken as M (0, {ea} ,S).

3. Preliminaries

In Davini’s model, a crystal state Σ is defined by prescribing three
linearly independent lattice vector fields �1(·), �2(·), �3(·) throughout
a region Ω, so Σ ≡ {�a(·), Ω; a = 1, 2, 3}. We also choose to write

L(x)�a(0) = �a(x), a = 1, 2, 3, x ∈ Ω, (3.1)

on occasion. Let d1(·), d2(·), d3(·) be the duals of the lattice vector
fields, so

da(x)·�b(x) = δab, da(x)⊗�a(x) = id., a, b,= 1, 2, 3, x ∈ Ω. (3.2)

Also let n(·) be the determinant of the dual lattice vector fields,

n(x) = det {da(x)} = d1(x)·d2(x) ∧ d3(x), x ∈ Ω, (3.3)

and define D(·) by

D(x)da(0) = da(x), a = 1, 2, 3, x ∈ Ω. (3.4)

Then from (3.2),
DT (x)L(x) = I, x ∈ Ω (3.5)
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when T denotes the transposed matrix, and I is the 3× 3 identity.
The dislocation density tensor (ddt.), at a given point x ∈ Ω, is

the 3× 3 matrix which has components

Sab = ∇∧ da·db/n. (3.6)

Note that
∇∧ da = n Sab�b, (3.7)

by virtue of (3.2)2, so that

0 = ∇·(∇∧ da) = Sab∇·(n�b), (3.8)

in the case that S ≡ (Sab) is constant in Ω. This implies, Parry [13],
that

Sabwb = 0, (3.9)

where (wb) is the axial part of S;

wb ≡ 1
2εbrsSrs. (3.10)

In particular S is singular if it is not symmetric.
We remark at this point that, in the case that S is singular, the

domain Ω can be taken as all of R3 (cf. Theorem 3).
An elastic deformation y of lattice vector fields �a(·), defined over

Ω, produces lattice vector fields �̃a(·), defined over y(Ω), given by

�̃a (y (x)) = ∇y �a(x), x ∈ Ω. (3.11)

When (3.11) holds for some choice of the function y : Ω →
R

3 one says that crystal states Σ = {�a(·),Ω; a = 1, 2, 3}, Σ̃ ={
�̃a(·),y(Ω); a = 1, 2, 3

}
are elastically related to one another.

Now we reiterate that the focus of this paper will be on crystal
states when the ddt. is constant in Ω. The motivation for this is that
the strain energy depends on {�a} ,S alone – the idea is that the
pair {�a} , S determines a ‘local state’ which, in the absence of any
information about the gradients of the ddt., is thought to derive from
fields �a(·) with constant ddt. equal to the given value S, which take
the values {�a} at some relevant point x0, �a(x0) = �a, 1 = 1, 2, 3.

Now the fact that S is constant implies that, given vector fields
�a(·) with

�a(0) = ea, a = 1, 2, 3, (3.12)

(with ddt. constant, satisfying (3.9), (3.10)), the differential system

�a (ψ (x,u)) = ∇1ψ (x,u) �a(x), (3.13)
ψ(x,0) = ψ(x,0) = x, (3.14)

matsymmsty.tex; 5/04/2004; 15:57; p.7
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has a unique invertible solution ψ : Ω× Ω → Ω such that

ψ (u,ψ(v,w)) = ψ (ψ(u,v),w) , (3.15)

i.e. ψ is associative, and invertible in both arguments, Pontryagin [17].
Equation (3.13) expresses a self similarity property of vector fields �a(·)
with constant ddt.; if one fixes the parameter u in (3.13) and puts
y(·) = ψ(·,u), (3.13) asserts that crystal state {�a(·), Ω} is elastically
related to crystal state {�a(·), y(Ω)}, Ω ⊆ R

3. By allowing u to vary,
and noting that ψ is invertible, one sees that the lattice vector fields
in each neighbourhood of every point of Ω are elastically related to the
(same) lattice vector fields in some neighbourhood of every other point
in Ω.

Conditions (3.14) and (3.15) ensure that ψ defines a Lie group
composition function with the origin 0 acting as the identity element of
the group. In Lie group language, (3.13) expresses the right invariance
of the lattice vector fields with respect to multiplication (of x) by u,
on the right.

As a partial converse of this result (the existence of ψ), note that
if (3.13) holds, then the ddt. deriving from the fields �a(·) is necessarily
constant; for any ddt. is an elastic invariant and (3.13) then implies

S (ψ(x,u)) = S(x). (3.16)

This implies that S is constant as ψ is invertible. The following lemma
is a necessary slight generalization of the Pontryagin’s result, replacing
0 by an arbitrary point e, and relaxing condition (3.12).

LEMMA 1. Suppose that fields �′a(·) are given, with S ′ constant and
�′a(e) = �′a, for some e ∈ R

3. Then there exists a unique associative
group composition function ψ′ such that

�′a
(
ψ′ (x′,u′)) = ∇1ψ

′ (x′,u′) �′a(x′), (3.17)

ψ′ (x′, e
)

= ψ′ (e,x′) = x′. (3.18)

Proof

Define the matrix Γ = (γab) uniquely by �′a = γabeb. Define �b(·)
by �′a(x + e) = γab�b(x). Then the fields �a(·) satisfy �a(0) = ea,
and one calculates that S ′ = (det Γ)Γ−TSΓ−1, where S is the ddt.
corresponding to the fields �a(·). Therefore according to Pontryagin’s
result, there exists a group composition function ψ satisfying (3.13),
(3.14), (3.15) (for the fields �b(·) defined as above). Multiplying (3.13)
by γab gives

�′a (ψ(x,u) + e) = ∇1ψ(x,u)�
′
a(x+ e). (3.19)
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Put
ψ′(x+ e, y + e) ≡ ψ(x,y) + e, (3.20)

to deduce that (3.17) holds for this choice of ψ′, and use (3.14) and
(3.15) to show that (3.18) and the analogue of (3.15) also hold.

Finally argue by contradiction (reversing the above argument)
that this choice of ψ′ is uniquely determined. �

Remarks

− In Lemma 1, the point e ∈ R
3 acts as the group identity element,

so far as multiplication defined by ψ′ is concerned.

− The group composition function that appears in (3.17), (3.18) is
unchanged if the fields �′a(·) are replaced by fields γ′ab�

′
b(·), for any

nonsingular Γ′ ≡ (γ′ab).

− Recall that the structure constants of the Lie algebra correspond-
ing to the Lie group defined by ψ are Cijk, i, j, k = 1, 2, 3, when
Cijk = Aijk −Aikj and

Aijk ≡ ∂2ψi

∂xj∂uk
(0,0), (3.21)

(we refer to the case where e = 0). So

Cijk = εsjkεspqAipq. (3.22)

Also recall that if one calculates the Lie bracket, L3(·) say, of
the pair of right invariant vector fields �1(·) and �2(·), then
L3(·) is itself right invariant, with the same composition function.
Moreover,

L3(0) = [(�1·∇) �2 − (�2·∇) �1] (0) (3.23)

and a calculation shows that

L3i(0) = Cijk�1j(0)�2k(0), (3.24)

where Cijk is given by (3.22). Clearly one may write

L3(0) = C̃k12�k(0), (3.25)

for some constants C̃k12. From (3.24) and (3.25)

C̃k12�ki(0) = Cijk�1j(0)�2k(0), (3.26)

and in general, choosing C̃krs antisymmetric,

C̃krs�ki(0) = Cijk�rj(0)�sk(0). (3.27)
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One may abstract these calculations by noting that the Lie bracket
provides an
antisymmetric bilinear operation from pairs of right invariant
fields, to the vector space of right invariant fields. The right
invariant fields are determined by their values at the origin, so one
may introduce an antisymmetric bilinear mapping of R

3×R
3 → R

3

by
[�r, �s] = C̃krs�r, (3.28)

and the study of Lie algebras starts with (3.28).

Note that, if the composition function is given, then the values of
the constants C̃krs depend on initial values of the right invariant
fields chosen to act as a basis for the vector space of all such fields,
from (3.27).

− Take the scalar product of (3.25) with d�(0) to get

L3(0)·d�(0) = C̃�12, (3.29)

so that
Lk(0)·d�(0) = 1

2εkrsC̃�rs, (3.30)

in general. But from Parry and Šilhavý [14],

Lk·d� = S�k, (3.31)

so
S�k = 1

2εkrsC̃�rs, C̃�pq = εkpqS�k. (3.32)

Thus, equation (3.27) and (3.32) together provide a relation
between the ddt., the composition function, and the initial values
of the right invariant fields chosen to calculate the ddt..

− If S is the ddt. calculated from a given composition function, and
fields �a(·) are such that �a(0) = ea, a = 1, 2, 3, then it is clear
from the definition of ddt. that if the fields �a(·) are replaced by
fields �∗a(·) = γab�a(·), then the ddt. is changed to S∗ defined by

S∗ = (det Γ)Γ−TSΓ−1 (3.33)

where the matrix Γ has components (γab). This relation is easily
reconciled with (3.27) and (3.32).

matsymmsty.tex; 5/04/2004; 15:57; p.10



Material symmetry in a theory of continuouisly defective crystals 11

4. Sufficient condition

Here we introduce sufficient conditions, related to the assumption that

w̃ ({�a(x)} ,S) = w̃ ({�a(y), } ,S) , x,y,∈ Ω, (4.1)

which guarantee that one can then introduce a ‘material symmetry’
group in a fashion analogous to the continuum mechanics of simple
materials.

First write (4.1) as

w̃ (L(x),S) = w̃ (L(ψ),S) , (4.2)

recalling (1.3) and putting y ≡ ψ ≡ ψ(x,u). Then formally (thinking
of L(ψ), say, as a matrix irrespective of the point of application)

w̃ (L(x),S) = w̃
(
L(x)

(
L(x)−1L(ψ)

)
,S) . (4.3)

But from right invariance (1.6)

L(x)−1L(ψ) = L(x)−1 [∇1ψ(x,u)]L(x), (4.4)

and we are interested in the question of whether or not, for fixed x, the
set of matrices defined by

Fx =
{
H : H = ∇1ψ(x,u), u ∈ R

3
}
, (4.5)

is a group. For if Fx is a group, so is L(x)−1FxL(x). (Note that in
(4.5), Ω is taken equal to R

3, a fact that will be justified in Theorem 3
in the case that S is singular).

THEOREM 2. Let Fx be defined by (4.5). Then (i) Fx = Fy if L(x) =
L(y), and (ii) if Fx is independent of x, then Fx is a group.

Proof

(i) Let y = ψ(x,u), L(x) = L(y). Then ∇1ψ(x,y) = I from (1.6). By
differentiating (3.15) with respect to the first argument one obtains:

∇1ψ (ψ(v,w),z)∇1ψ(v,w) = ∇1ψ(v,ψ(w,z)). (4.6)

Putting v = x,w = u,∇1ψ(x,u) = I, this becomes

∇1ψ (ψ(x,u),w) = ∇1ψ(x,ψ(u,w)), (4.7)

that is
∇1ψ (y,w) = ∇1ψ(x,ψ(u,w)), (4.8)
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where y = ψ(x,u) determines u in terms of x and y. It is
convenient to use a different notation for the group multiplication
of two elements a, b: put ψ(a, b) = a·b, and also let a−1 be such
that ψ(a,a−1) = ψ(a−1,a) = 0. Then returning to (4.8), y = x·u,
so u = x−1· y and (4.8) reads

∇1ψ (y,w) = ∇1ψ
(
x, (x−1· y)·w)

. (4.9)

Now it is clear that (x−1· y)· w ranges over the group (R3) as
w takes all values in the group, and vice versa. This proves that
Fx = Fy .

(ii) Suppose that Fx = F0 for all x ∈ R
3. Then

∇1ψ (x,u) = ∇1ψ(0,p(x,u)), (4.10)

for some invertible p(x, ·).
To show that F0 is a group, it is sufficient to demonstrate that

∇1ψ (0,x) [∇1ψ(0,y)]
−1 = ∇1ψ(0,z), (4.11)

for some z = z(x,y). Putting v = 0 in (4.7),

∇1ψ(w, z)∇1ψ(0,w) = ∇1ψ(0,ψ(w,z)). (4.12)

Therefore, with v and ψ(w,z) = q fixed,

∇1ψ(0, q) [∇1ψ(0,w)]−1 = ∇1ψ(w,z)
= ∇1ψ(w,w

−1· q)
= ∇1ψ

(
0,p(w,w−1· q)) ,

(4.13)

using the alternative notation for group multiplication, and (4.10).
This proves (4.11) by appropriate renaming of variables. �
In the sequel, we shall investigate a more stringent condition than
Fx = F0, x ∈ R

3. We shall construct, in the case that S is singular,
composition functions ψ such that, for each u ∈ R

3,

∇1ψ(x,u) = ∇1ψ(0,u), x ∈ R
3. (4.14)

Since ∇1ψ(x,u) is to be independent of x, it follows that ψ is
affine in its first argument,

ψ(x,u) = u+ g(u)x (4.15)

for some function g(·) such that g(0) = I, using ψ(x,0) =
ψ(0,x) = x. Since ψ is to be associative, it follows that g(·) must
be such that

[w + g(w)v] + g(ψ(v,w))u = w + g(w) [v + g(v)u] . (4.16)
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Thus
g (ψ(v,w)) = g(w)g(v). (4.17)

(It follows that gT (·) provides a matrix representation of the rele-
vant Lie group). When (4.17) holds, the right invariance condition
(3.13) becomes

�a(ψ(x,u)) = g(u)�a(x). (4.18)

Note that, if u is regarded as fixed, this condition represents a
homogeneous elastic deformation of crystal state Σ = {�a(·),Ω}.
Note also that (4.18) and (1.3) imply that

L (ψ(x,u)) = g(u)L(x) (4.19)

where L(0) = I if �a(0) = ea, a = 1, 2, 3. So, in particular, in the
case that �a(0) = ea,

L(u) = g(u). (4.20)

Then (4.17) can be written as

L (ψ(v,w)) = L(w)L(v), (4.21)

which one may regard as a ‘multiplication law’ for the lattice vector
fields, in the case that ψ is affine is its first argument.

5. Elastic deformation, change of basis

We have seen in the previous section that, in order that certain crystal
states with constant ddt. have a particular group structure, so far as
(4.1) is concerned, it is sufficient that the corresponding composition
function be affine in its first argument. Now let ψ be the composition
function for a crystal state Σ ≡ {�a(·),Ω} with constant ddt. S. Let
Σ̃ ≡

{
�̃a(·),y(Ω)

}
be elastically related to Σ, with deformation y :

Ω → R
3. Then the composition function for Σ̃ is defined by

ψ̃ (y(x),y(u)) = y (ψ(x,u)) , x,u ∈ Ω (5.22)

Moreover the state Σ̃ has the same constant ddt. S. The flexibility
afforded by equation (5.22) will enable us to find a ψ̃ affine in its first
argument in the case that S is singular.

In fact we shall be more specific than this – our goal is to discuss
symmetries of the energy function w̃ ({�a(x)} ,S). So we shall construct
states Σ = {�a(·),Ω} which have the properties, given values �1, �2, �3 ∈
R

3, given S satisfying the (analogue of the) Jacobi identity, and given
e ∈ Ω;
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14 M. Elżanowski and G. Parry

1) �a(e) = �a, a = 1, 2, 3,

2) S is the ddt. for state Σ,

3) the corresponding ψ is affine in its first argument.

The crystal state so constructed will provide a group of symmetry
transformations Fe , independent of the choice of the point e by virtue
of property 3). That is, one has that

w̃ (L(x),S) = w̃
(
L(x)

(
L(x)−1FL(x)

)
,S) , F ∈ Fe . (5.23)

Notice that the pair {�a,S} determines a corresponding Lie
algebra structure. It will be productive to consider the classification of
three dimensional Lie algebras. Recall that if fields �a(·) are replaced by
fields γab�b(·), then the composition function is unchanged, but that the
ddt. is changed according to (3.21). By using the equivalence between
ddt. S and constants C̃�rs exhibited in (3.32), one sees that (3.33)(or
(3.27)) is equivalent to

C̃krsγki = Cijkγrjγsk, (5.24)

where C̃krs are calculated for state {γab�b(·),Ω} according to (3.25), and
Cijk is calculated directly from the composition function, according to
(3.21), (3.22). Each state {γab�b(·),Ω}, γ = (γab) non-singular, has the
same composition function as state {�a(·),Ω}.

Equation (5.24) defines an equivalence relation on constants
C̃krs satisfying the Jacobi identity. The space of those constants is
thereby partitioned into disjoint equivalence classes, elements of any
one equivalence class sharing a single composition function. So if one
can show that, for a particular choice of right invariant fields in a
particular equivalence class, that the corresponding ψ is affine in its
first argument, then one can find a choice of right invariant fields for
which ψ is affine in its first argument for each C̃krs in that equivalence
class.

Regarding Ckrs as the structure constants of a Lie algebra, so
[�r, �s] = Ckrs�k from (3.28), and replacing �r by �̃r = γrs�s, one sees
that

[
�̃r, �̃s

]
= C̃krs�̃k where C̃krs satisfies (5.24). Finding the disjoint

equivalence classes of (5.24) therefore amounts to classifying the three
dimensional Lie algebras with respect to the equivalence induced by
a change of basis. One may turn to Jacobson [11] for the relevant
classification (see also Belinfante [1], Capriz and Davini [2]).

So, following Jacobson [11] for the most part, we list the bracket
relationships (3.28), and the non zero components of Ckrs to within
the antisymmetry Ckrs = −Cksr, for some element of each equivalence
class defined by the relationship (5.24);
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(i) [�1, �2] = [�2, �3] = [�3, �1] = 0,

(ii) [�1, �2] = �3, [�2, �3] = [�3, �1] = 0; C312 = 1,

(iii) [�1, �2] = �1, [�1, �3] = [�2, �3] = 0; C112 = 1,

(iv) Jacobson shows that, for this equivalence class, there is a choice of
basis such that

[�1, �2] = 0, [�1, �3] = α�1 + β�2, [�2, �3] = γ�1 + δ�2,

where A =

(
α β
γ δ

)
is a non-singular matrix. He then notes that

there is a further change of basis such that A is replaced by
ρM−1AM , where ρ ∈ R is non zero, and M is a non singular 2× 2
matrix. Then he assumes that the relevant field is algebraically
closed, which we cannot do. But in our case A may be put into
rational canonical form by similarity transformation. So, A has
either zero or two real eigenvalues, in the first case {ν, Aν} is a
basis of R

2 for any ν ∈ R
2 and the action of A on this basis is

ν → Aν, Aν → A2ν = −aν+bAν, where a = detA, b = tr A and

b2 < 4a. Hence A may be represented as
(

0 −a
1 b

)
, with no further

simplification possible by choosing ρ appropriately. In the second
case there is at least one real eigenvector, call it ν, and let ν,θ be
linearly independent. Then Aν = kν, Aθ = �ν + mθ, for some

k, �,m ∈ R, and A may be represented as
(
k �
0 m

)
, with km �= 0.

Letting ρ = (km)1/2, A can be further simplified to
(
π �
0 π−1

)
,

(where π = (k/m)1/2). Therefore one has that, in this case, either

[�1, �2] = 0, [�1, �3] = −a�2, [�2, �3] = �1+b�2; C213 = −a, C123 = 1, C223 = b,

or

[�1, �2] = 0, [�1, �3] = π�1+��2, [�2, �3] = π−1�2; C113 = π, C213 = �, C223 = π−1.

(v) [�1, �2] = �3, [�2, �3] = ±�1, [�3, �1] = �2; C312 = 1, C123 =
±1, C231 = 1.

Finally, by using the relationship between the structure constants
and the ddt., one has the corresponding non zero values of (Sab) for an
element of each equivalence class;

(i) all elements zero,
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16 M. Elżanowski and G. Parry

(ii) S33 = 1,

(iii) S13 = 1,

(iv) S22 = a, S11 = 1, S21 = b, when b2 < 4a, or S12 = π−1, S22 =
�, S21 = π−1,

(v) S33 = 1, S11 = ±1, S22 = 1.

6. Affine composition function

Now we confine attention to cases where S is singular, and so dismiss
case (v) above from the considerations below. (The work in this paper
should be relevant for the treatment of the mechanics of neutral
deformations, where S is singular, in particular for the case where S is
constant.) The case where S is not singular is not considered.

Then, using the results from the previous section, by suitable
relabelling one can assume that S has the form

S =

⎛
⎝ ∗ ∗ 0

∗ 0
0 0 0

⎞
⎠ , (6.1)

when the symbol ∗ denotes a possibly non-zero element. This is all the
information we shall need from the previous section.

It will be relevant later on that if S is a 3 × 3 matrix with the
block structure (6.1), the matrix eS defined by

eS =
∑
j≥0

Sj/j!, (6.2)

has the block structure

eS =

⎛
⎝ ∗ ∗ 0

∗ 0
0 0 1

⎞
⎠ , (6.3)

We were led to the following theorem by brute force computation
of the composition function in cases where S is singular, e.g. if S =⎛
⎝ −1 0 0

0 α 0
0 0 0

⎞
⎠, α > 0, one can choose ψ(x,y) = y +R(y)x, where

R(y) =

⎛
⎝ cosh

√
αy3 − 1√

α
sinh

√
αy3 0

−√
α sinh

√
αy3 cosh

√
αy3 0

0 0 1

⎞
⎠ , (6.4)
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Material symmetry in a theory of continuouisly defective crystals 17

and the addition formulas for cosh(·) and sinh(·) give the required
multiplication law for R(·).

There is probably a deeper reason why the following result should
be true (the proof does not provide it).

THEOREM 3. Let (singular) S have the form (6.1), then one can
choose

ψ(x,y) = y + e−y3Cx, (6.5)

where C has components Cir ≡ εra3Sia.

Proof

One has to verify that ψ is a composition function, and one has to check
that the ddt. of corresponding right invariant fields is constant.

(a) First note that the third component of ψ(v,w) is v3+w3, as e−w3C

has the form (6.3). Then

ψ (ψ (u,v) ,w) = w + e−w3C
(
v + e−v3C

)
=

(
w + e−w3Cv

)
+ e−(w3+v3)Cu = ψ (u,ψ(v,w)) .

(6.6)
Also ψ(x,0) = ψ(0,x) = x.

(b) From (6.5), L(x) = e−x3C , so D(x) = ex3CT
. Therefore

da(x) = ex3CT
ea, dai =

(
ex3C

)
ai
, (6.7)

and if one writes D in components as (Dai) then Dai = dia. Now,
denoting differentiation with respect to x3 as a superposed dot,

Ḋ = CTD = DCT (6.8)

as CT and ex3CT
commute. Therefore

ḋia ≡ dia,3 = Cipdpa = dipCpa. (6.9)

Using these facts one calculates

(∇∧ da)k = εkrsdas,r = εk3sḋas = εk3sCapdps, (6.10)

so that

∇∧ da · db = εk3sdpsdbkCap = εk�sdbkδ3�dpsCap

= εk�sdbkd3�dpsCap = εb3pnCap
(6.11)

Therefore C must be such that

Sab = εb3pCap. (6.12)
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18 M. Elżanowski and G. Parry

Clearly the components Ca3 do not enter into relation (6.12), so we
may impose that Ca3 = 0. Then multiplying (6.12) by εb3k gives

εb3kSab = (δ33δkp − δ3pδk3)Cap = Cak − δk3Ca3

= Cak,
(6.13)

as stated. �

Remarks

− Equation (6.5) definesψ over R
3×R

3 from which one may generate
corresponding fields �a(·) over R

3. This shows that, when S is
singular, the fields �a(·) may be defined over R

3.

− The theorem implies that, independently of any constitutive
assumptions, crystal states deriving from right invariant fields
corresponding to composition function (6.5) have a particular
group structure. Indeed, the set of linear transformations that map
a frame at any given point to all other frames in the crystal state
is a group. Also, as proved earlier, this group is independent of the
point that is selected initially.

7. Material symmetry

In this section we attempt to relate assumption (4.1) to the ‘usual’
definition of material symmetry in continuum mechanics. We are
investigating the assumption that

w̃(L(ψ),S) = w̃(L(x),S), (7.1)

and have noted already that

L(ψ)L(x)−1 = ∇1ψ(x, y). (7.2)

Moreover, when ψ has the form (6.5), ∇1ψ(x ,y) = ∇1ψ(0, y) for all
x ∈ R

3, and the set of transformations of the form ∇1ψ(0, y) forms a
group F 0 .

However, once ψ is specified, and one supposes that L(0) = I
say, the range of the field L(·) is known and is not generally the whole of
M+

3×3. Therefore the construction outlined above needs to be modified
a little if one supposes that strain energy functions of interest w̃(·,S)
are defined over M+

3×3.
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Material symmetry in a theory of continuouisly defective crystals 19

− The objective, given L ∈M+
3×3, S satisfying the (analogue of) the

Jacobi identity, and a point e ∈ R
3, is to construct right invariant

fields with �̃a(e) = Lea and corresponding group composition
function affine, call it ψ̃. Then, bearing in mind Theorem 3, the
group Fe =

{
∇1ψ̃(e,y); y ∈ R

3
}

is a commutative group of linear
transformations. Finally we will investigate the assumption that

w(L,S) = w(F̄L,S), F̄ ∈ Fe , (7.3)

where S is the ddt. obtained from the right invariant fields.

So we propose the following general construction, which is
analogous but not identical to that in Section 2;

− Let ψ be defined by (6.5), and construct fields �a(·) with �a(0) =
ea. Define the elastic deformation y : R

3 → R
3 by

y(x) = Fx+ e (7.4)

where Fea = Lea. Let
{
�̃a(·), R

3
}

be the state elastically related

to
{
�a(·), R

3
}

by the deformation y, so

�̃a (y(x)) = F�a(x), �̃a(e) = F�a(0) = Fea = Lea. (7.5)

The composition function for this state is given by

ψ̃ (y(x),y(u)) = y (ψ(x,u)) , (7.6)

and one checks that y(0) = e acts as the group identity for this
composition function. Therefore the relevant symmetries of the
energy density are

Fe =
{
∇1ψ̃(e,y), y ∈ R

3
}

and
w(L,S) = w(F̃L,S), F̃ ∈ Fe . (7.7)

One calculates from (7.6) that

ψ̃(Fx+ e, Fu+ e) = F
(
u+ e−u3Cx

)
+ e

= (Fu+ e) + Fe−u3Cx,
(7.8)

so that
ψ̃ (x̃, ũ) = Fe−{F−1(ũ−e)}3C (

F−1 (x̃− e)) , (7.9)
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and
∇1ψ̃ (e, ũ) = Fe−{F−1(ũ−e)}3CF−1. (7.10)

Note that {F−1(ũ−e)}3 ranges over all of R
3, as ũ varies in R

3. Define
the commutative group

G =
{
g : g = etC , t ∈ R

}
. (7.11)

Then
Fe = FGF−1, (7.12)

and this is the group that we propose should be adopted in (7.3).
Note however that F = L (see after (7.4)). Therefore, condition (7.3)
becomes

w(L,S) = w(Lg,S) g ∈ G. (7.13)

In this form, L can be any element of M+
3×3, G is a fixed group

determined by the ddt., see (7.11), and equation (7.13) is entirely
analogous to the usual definition of material symmetry in nonlinear
elasticity theory – the only difference being that S enters as a
parameter, and that the symmetry group is determined by S. Thus
the ‘canonical state’ that has been constructed acts as ‘reference
configuration’, and the symmetries of that configuration (according to
our assumptions) ‘act on the right’ in the usual way.

Finally, there is one further issue to consider – we ask if there
is any elastic deformation which preserves the form of the canonical
states. For if there were a nontrivial elastic deformation such that the
expression for the composition function in the new coordinates were
unchanged by the deformation the construction that we have prescribed
would seem not to be well-defined. Therefore we ask if there is an elastic
deformation y such that

y
(
u+ e−u3Cx

)
= y(u) + e−y3(u)Cy(x), (7.14)

with
�a(0) = �a (y(0)) = ∇y(0)�a(0), a = 1, 2, 3, (7.15)

so that
∇y(0) = I. (7.16)

Putting x = 0 in (7.14) we get

y(0) = 0. (7.17)

Differentiating (7.14) with respect to x, putting x = 0, and using
(7.16),

∇y(u)e−u3c = e−y3(u)C∇y(0) = e−y3(u)C , (7.18)
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so
∇y(u) = e(u3−y3(u))C . (7.19)

In particular, (7.19) gives

(∇y(u))T e3 = ∇y3(u) = e(u3−y3(u))CT
e3 = e3, (7.20)

since e(u3−y3(u))CT has the block structure (6.3). So y3 = u3, using
(7.17), and (7.19) gives ∇y(u) = I. Therefore there is no non trivial
elastic deformation which leaves the form of the canonical state (or
composition function) invariant, and the construction that we have
proposed is well-defined.

8. Representations

Here we catalogue various representations of energy functions which
satisfy (7.13) and also a condition of objectivity, namely that

w(L,S) = w(RL,S), R orthogonal. (8.1)

Equation (8.1) implies that w(·,S) can be written as

w(L,S) = w′(C,S), C = LTL, (8.2)

and (7.13) then gives that

w′(C,S) = w′(gTCg,S), g ∈ G. (8.3)

Again, (8.3) is a restriction entirely analogous to material symmetry
restrictions imposed in nonlinear elasticity, the only difference being the
parameter S, and choice of group G. Note that G depends on S only
through the composition function ψ, and therefore that G depends only
on the equivalence classes of S that were catalogued above. Below we
give examples of the solution of (8.3) (for w′(·,S)) for some equivalence
classes with S singular.

(i) S = 0,ψ(x,y) = x+ y, ∇1ψ(0,x) = I, G = {I}.
In this case (8.3) gives no restrictions on w′(·,S). Note that the
usual discrete crystallographic groups derive from more information
than is presumed in this paper – that the crystal determined by
“initial values” �a, S = 0, is in fact a perfect lattice determined
by an equivalence class of basis vectors, amongst them the basis
{�1, �2, �3}, and that the corresponding response function depends
on the lattice, rather than on the basis chosen to describe it.
Cermelli and Parry [3] present a discussion of the relationship
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between symmetries deriving from a generalised change of basis
in (some) defective crystals, and the kind of symmetries that are
assumed in this paper (see also the ’further motivation’ section of
this paper).

(ii) S12 = 1, C =

⎛
⎝ 1 0 0

0 0 0
0 0 0

⎞
⎠, etC =

⎛
⎝ et · ·

· 1 ·
· · 1

⎞
⎠. So (7.13) gives, with

C = LTL =

⎛
⎝ A a b
a B c
b c C

⎞
⎠, that

w′(A,B,C, a, b, c) = w′(t2A,B,C, ta, tb, c).

With fixed B,C, c, changing A → 1
2 lnA, a → ln a, b → ln b,

putting w′(A,B,C, a, b, c, ) = w′′(12 lnA, ln a, ln b),

w′′(12 lnA, ln a, ln b) = w′′(12 lnA+ ln t, ln a+ ln t, ln b+ ln t)
= w′′(0, ln a− 1

2 lnA, ln b− 1
2 lnA)

= w′
(
1, B, C,

a√
A
,
b√
A
, c

)

and this is the general representation of the solution.

(iii) For example S11 = S22 = 1. C =

⎛
⎝ 0 −1 0

1 0 0
0 0 0

⎞
⎠ , etC =

⎛
⎝ cos t − sin t 0

sin t cos t 0
0 0 1

⎞
⎠ . So (7.13) gives that w is transversely isotropic

with distinguished axis e3, and one may read off the appropriate
representation from, say, Green and Adkins [10].

9. Summary

One may summarise the procedure above rather quickly, in hindsight,
and remark that the motivation for regarding the derived symmetry
properties as appropriate is analogous to that presented in section 2.

Thus the canonical procedure for constructing a state with
starting point e (acting as group identity), given values L0 of the frame
at the point e, and given ddt. S, is the following; define an elastic
deformation y with gradient F ≡ L0 by

y(x) = Fx+ e, so y(0) = e. (9.1)
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Elastic deformation of the frame L(x) ≡ ex3C , (cf. Theorem 3), gives a
frame L′(·) defined by

L′(Fx+ e) = Fex3C , or L′(y) = Fe{F
−1(y−e)}3C . (9.2)

So, equation (9.2) defines the general canonical state, whose symmetries
we have investigated in the body of the paper. The composition function
for state defined by L(·) is ψ(x,u) = u + eu3Cx, so by (7.6), the
composition function for state defined by L′(·) is

ψ′(x′,u′) = u′ + Fe{F
−1(u′−e)}3CF−1(x′ − e). (9.3)

Thus the symmetries of the state Σ′ defined by starting values e, L0,
and ddt. S, are of the form FetCF−1, where F ≡ L0.

The crucial point is this; that the state defined by the lattice
vectors (FetCF−1)L′(·) is a translation of the state defined by lattice
vectors L′(·), and this is the motivation for asserting that (7.7),
or equivalently (7.13), holds (since the energy density should be
independent of the translations of the canonical state). To see this,
define

L′′(x) = FetCF−1L′(x)
= FetCe{F−1(x−e)3}C ,

(9.4)

from (9.2)2. But this can be rearranged as

L′′(x) = Fe{F
−1(x̃−e}3C , when x̃ = x+ tFe3. (9.5)

So
L′′(x) = L′(x̃) = L′(x+ tFe3), (9.6)

i.e. the effect of the symmetry operation is to translate the fields which
define the canonical state. Moreover the set of symmetries that relate
to (7.7), {FetCF−1; t ∈ R}, is independent of the starting point e,
it depends only on L0 and S. When reformulated as (7.13), the set of
symmetries is {etC ; t ∈ R}, which depends only on S.
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