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Abstract. A model of the anelastic evolution law of a two-dimensional defective
solid crystal body is proposed. Assuming that the material body is made of triclinic
crystals and that the evolution process does not alter the basic material symmetry
group we postulate that the evolution is driven by the present state of the density of
the distribution of defects. We show that a linear relation between the inhomogeneity
velocity gradient and the torsion tensor is rich enough to model such phenomena as
relaxation of defects and dislocation pile-up.
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1. Introduction

The theory of continuous distributions of dislocations in its various
formulations results always in a mathematical description of distribu-
tions of inhomogeneities in terms of differential-geometric objects. An
open question, however, is the formulation of constitutive laws that
govern the possible time evolution of such geometric structures so as
to represent a variety of important physical phenomena involving the
massive motion of defects. The driving force behind these phenomena
can perhaps be best explained in terms of configurational forces such
as those represented by the Eshelby tensor. Nevertheless, it is quite
possible to conceive of an evolutionary process that is driven by the
dislocation pattern itself in its natural tendency to eliminate residual
stresses or, even if these stresses are absent, to achieve a defect-free
structure over time. These processes can be enhanced, for example, by
raising the temperature of the body so as to increase the probability
of the atoms in overcoming potential barriers. On the other hand, a
dislocation pattern may lead in the opposite direction, in the sense
that a dislocation pile-up may arise naturally out of an initially smooth
distribution of defects. These typically nonlinear phenomena are in
∗
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need of a general theoretical framework consistent with the differential-
geometric apparatus mentioned above. The purpose of this paper is to
show how a relatively simple model, valid for solids endowed with only
a discrete material symmetry group and already possibly devoid of
residual stress, can explain, among other phenomena, the appearance
of dislocation pile-ups. The proposed evolution law consists of assuming
nothing more that a linear relation between the inhomogeneity velocity
gradient and the instantaneous value of the torsion of the (unique)
material connection. That such a simple law can account for nonlinear
phenomena is an encouraging sign of the power of the theory of continu-
ous distributions of inhomogeneities, which is just beginning to be fully
tapped. A possible extension of the theory would include the modelling
of the release of residual stresses present in an isotropic solid. In this
case, the dislocation density can be completely characterized by the
curvature tensor of an appropriately defined Riemannian connection.
The theory would be necessarily more involved than the one presented
in this paper not only because the curvature tensor is of higher order
than a torsion, but also because the evolution would involve a coupling
with the solution of the equilibrium boundary-value problem at each
instant. It is mainly for reasons of simplicity that we have limited the
presentation to the solid crystal case.

2. Uniformity

Let B denote an open, possibly unbounded, region in R3. We shall view
it as a deformable continuum in a reference configuration. A deforma-
tion of the body B is an embedding χ : B → R3. Its tangent map
evaluated at the material point X ∈ B is called the deformation gradi-
ent at X, and it will be denoted by F(X). In fact, due to the canonical
identification of a tangent space of R3 with the Euclidean vector space
E3 we recognize the deformation gradient as an automorphism of E3,
and drop the explicit dependence of F on the material point X.

In pure elasticity the density of the stored energy per unit reference
volume is given by a function W (F; X) where, as mentioned earlier, F is
the gradient of the deformation from the reference configuration to the
current configuration evaluated at X. Adopting a three dimensional
vector space V as a reference crystal (an archetype material point)
we say that the body B is materially uniform whenever there exist
smoothly distributed (throughout the body) uniformity maps P(X)
from the reference crystal V to the tangent space of the reference
configuration at X, and a real-valued function Ŵ such that
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W (F; X) = Ŵ (FP(X)) (1)

for all deformation gradients F and any material point X, (Truesdell
and Noll, 1965); see also (Elżanowski, Epstein and Śniatycki, 1990).
Given a basis Eα (α = 1, 2, 3) in the reference crystal V and a (right-
handed) coordinate system eI (I = 1, 2, 3) in R3 the mappings P(X)
induce in the reference configuration a field of bases

fβ(X) ≡ P I
β (X)eI . (2)

called a uniform reference. The uniform frame at X is related to the
uniform frame at Y by the linear isomorphism

P(X; Y ) ≡ P(X)P−1(Y ) (3)

called a material isomorphism from Y to X. Note that the choice of
the basis Eα in the reference crystal, although arbitrary, has no effect
on the choice of maps P(X; Y ).

A uniform reference (a moving frame) fβ is not, in general, induced
by any coordinate system on the body B even if considered only in
some neighborhood of a material point. However, if for every material
point X there exists such a coordinate neighborhood (albeit different
at different points) the body is called locally homogeneous, (Wang,
1967), (Wang and Truesdell, 1973). By an appropriate change of rev-
erence configuration, the uniformity maps P(X) can then be chosen as
independent of X in each such neighborhood. This in turn implies that
the parallelism induced on B by such a material reference fβ is locally
trivial. The material connection associated with such a parallelism is
torsion-free, where a material connection of the mathematical theory
of inhomogeneities is a connection generated by any (homogeneous or
not) uniform reference, (Noll, 1967). Note that any material connection
is locally integrable, i.e., its curvature tensor vanishes locally, as uni-
form references are induced from the reference crystal by the smoothly
distributed (throughout the body) mappings P(X).

For a solid crystal point the material symmetry group is finite. In
particular, the triclinic crystal is a solid crystal with the trivial symme-
try group (there are no symmetries other than the identity, say I)1. A
material body made of solid crystals has a unique material connection.
This is in contrast with the case when the material symmetry group is
continuous, e.g., in an isotropic solid.

1 One may also allow −I to be a symmetry of a triclinic solid (Truesdell and Noll,
1965).
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In this paper we shall only consider uniform material bodies made of
triclinic crystals and such that there exists a global reference configura-
tion in which all material isomorphisms P(X;Y ) are proper rotations,
i.e., the uniform reference corresponds to contorted aelotropy, (Noll,
1967) or, equivalently, a state of constant strain, (Epstein, 1987). This
can be realized if, for example, there exists a global stress-free reference,
and the reference crystal is assumed stress-free. Other states of stress
are also possible. Indeed, one can show that in a 2-dimensional solid
crystal body the state of stress compatible with a state of constant
strain is hydrostatic, (Epstein, 1987).

In other words, if the body is in a state of constant strain, and if
a (right-handed) orthonormal basis eI (I = 1, 2, 3) defines a Cartesian
coordinate system on R3 then

fβ(Z) = QI
β(Z)eI , (4)

where all QI
β(Z) are proper orthogonal tensors. The Christoffel symbols

of the second kind of the unique (constant strain) material connection
are given in the Cartesian coordinate system by

ΓI
KJ(Z) = −QI

α,J(Z)Qα
K(Z) (5)

where ”comma” indicates partial differentiation. When the body is lo-
cally homogeneous, and the rotations QI

β(Z) are locally material point
independent, the Christoffel symbols of the material connection vanish.

3. Evolution Law

Consider a uniform solid crystal body. In the realm of pure elasticity
the given uniform reference remains unchanged. In other words, there
are no processes of elastic deformations which may change the exist-
ing structure. However, anelastic processes involve usually mechanisms
which modify the distribution of material inhomogeneities. This can be
modelled by allowing the uniform reference to change in time. As the
uniform reference fα evolves, and assuming that the evolution does not
alter the symmetry group, its time derivative yields

ḟβ = Ṗ I
βeI = Ṗ I

β (P−1)γ
I fγ = Lγ

βfγ , (6)

as implied by relation (2). Here, Lγ
β represent the components of the

inhomogeneity velocity gradient (Epstein and Maugin, 1996)

L ≡ P−1Ṗ, (7)
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which measures the temporal rate of change of uniform references pulled
back to the reference crystal. Note that for the triclinic crystal body in
a state of constant strain

Lγ
β = Q̇I

βQγ
I (8)

are components of a skew-symmetric matrix, as implied by (4).
Given a particular uniform reference of an arbitrary uniform mate-

rial body the torsion

T I
KJ ≡ ΓI

KJ − ΓI
JK (9)

of the induced material connection is an indicator of whether or not
the body is homogeneous. Indeed, if the torsion vanishes the induced
material parallelism is trivial and the body is homogeneous. On the
other hand, if the torsion of a particular material connection does not
vanish the corresponding uniform reference is not integrale. The body
may still be homogeneous as there may exist another uniform reference,
obtained by the action of the material symmetry group, inducing a flat
material connection. In the triclinic crystal case, however, as we pointed
out earlier, the material connection is unique. The torsion of such a
material connection is not only an indicator of inhomogeneity but, it
may be considered a true measure of the density of the distribution of
inhomogeneities.

We, therefore, postulate that regardless of the state of stress the
distribution (density) of inhomogeneities is the driving force behind
the intrinsic anelastic evolution of these inhomogeneities. According to
this idea we suggest an evolution law of the form:

Ṗ(X, t) = f(T(X, t),P(X, t)) (10)

where T is the torsion tensor of the instantaneous intrinsic material
connection (as generated by the current uniformity maps P), and where
f is assumed not to depend explicitly on X because of the assumed
uniformity of the evolving body.2 Note that (10), although particularly
appealing in the triclinic crystal case, may as well be applicable in other
situations with possible extra equivariance conditions.

Formulating an evolution law is a difficult constitutive modelling
process. However, for such a law to describe a true evolution it must
satisfy the principle of covariance (Epstein and Maugin, 1996). That
is, it must be independent of any particular reference configuration
chosen. If λ : R3 → R3 is a diffeomorphism representing a change of

2 Realize that the function f may be made to depend also on some other
parameters like temperature, stress, etc.
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reference configuration and H denotes its gradient at a material point
the corresponding uniformity maps R and P are related by

R = HP. (11)

As we want our evolution law to describe a particular physical situation
in a manner independent from a reference configuration and, since λ is
time independent

Ṙ = HṖ. (12)

This implies that

f(HTH−1H−1,HP) = Hf(T,P) (13)

for all non-singular tensors H. Note that as the torsion T is a vector-
valued two-form the notation HTH−1H−1 is a shorthand for the pull-
back transformation whose coordinate representation takes the form

T̂ I
JK = (H−1)I

ATA
BCHB

J HC
K . (14)

In particular, let us select (with some abuse of notation) H = P−1 and
define

fv(T) ≡ f(P−1TPP, I). (15)

Hence,
Ṗ = Pfv(T) = Pf(Tv, I), (16)

where
Tv ≡ P−1TPP (17)

can be recognized as a density of the distribution of inhomogeneities
(torsion tensor) seen from the perspective of the reference crystal.
The evolution equation (16) can now be rewritten in terms of the
inhomogeneity velocity gradient as follows:

L(P) = fv(T). (18)

It is not difficult to see that this form of the evolution law is completely
invariant.

In particular, we may restrict the form of the evolution law by
supposing a linear relation such that

L(P) = CTv, (19)

where C is a fifth order tensor of material constants. In other words
the evolution law is given in component form by

(P−1)α
I Ṗ

I
β = Cα σλ

βρ (P−1)ρ
MPN

σ PK
λ TM

NK . (20)
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According to the principle of actual evolution (Epstein and Maugin,
1996) a process described by such an evolution law is truly evolutive
only if the inhomogeneity velocity gradient L is outside of the Lie
algebra of the material symmetry group of the reference crystal. In the
case of a material body made of triclinic crystals, when the material
symmetry group is finite, this principle implies that every non-trivial
evolution, i.e., Lγ

β 6= 0, represents a true evolution.

4. The two-dimensional case

For the sake of specificity and to illustrate the range of phenomena
within the scope of this approach, we consider now a class of problems
for which the uniform reference is independent at all times of, say,
the third Cartesian coordinate. In doing so, we render the evolution
problem two dimensional and gain the added computational simplicity
afforded by the explicit representation of the rotation by means of a
single angular parameter.

Adopting an orthonormal basis in V and a Cartesian coordinate
system x, y, z in the fixed reference configuration, the assumption that
at all times t and at all points the uniform reference represents a state
of constant strain results in the following matrix representation of the
uniformity maps P:

[P] =




cos θ(x, y, t) sin θ(x, y, t) 0
− sin θ(x, y, t) cos θ(x, y, t) 0

0 0 1


 , (21)

where θ = θ(x, y, t) measures, say, the counterclockwise rotation be-
tween the x-axis and the vector f1. The non-vanishing Christoffel sym-
bols of of the second kind of the induced material connection ΓI

KJ can
now be calculated directly from (5) as

Γ1
21 = −Γ2

11 = θ,x (22)

Γ1
22 = −Γ2

12 = θ,y (23)

whence the non-vanishing torsion components are:

T 1
12 = −T 1

21 = −θ,x (24)

T 2
12 = −T 2

21 = −θ,y . (25)

Similarly, the non-vanishing components of the inhomogeneity velocity
gradient at the reference crystal are
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L1
2 = −L2

1 = θ,t . (26)

The most general evolution law (20) results (after some calculation
effort) in the single quasi-linear partial differential equation

θ,t +(a cos θ − b sin θ)θ,x +(a sin θ + b cos θ)θ,y = 0, (27)

where a and b are, respectively, the material constants 2C1 12
21 and

2C1 12
22 . These are the only two material constants left due to the

skew-symmetry of the torsion tensor and the form of the uniformity
maps (21).

We may further simplify the form of the evolution equation (27) by
writing it as a single nonlinear balance law for the new variable β

β,t +c(sinβ),x−c(cosβ),y = 0, (28)

where β ≡ θ + θ0, c = 1√
a2+b2

, and where θ0 is such that tan θ0 = b
a .

The characteristic strips (Duff, 1956) of this equation are solutions
of the following system of ordinary differential equations:

dt

ds
= 1, (29)

dx

ds
= c cosβ, (30)

dy

ds
= −c sinβ, (31)

dβ

ds
= 0, (32)

dβ,t
ds

= −cβ,t [β,x sinβ + β,y cosβ] , (33)

dβ,x
ds

= −cβ,x [β,x sinβ + β,y cosβ] , (34)

dβ,y
ds

= −cβ,y [β,x sinβ + β,y cosβ] , (35)

As it is well known, the quasi-linearity of the single partial differ-
ential equation has several important consequences. Firstly, for given
initial conditions x(0), y(0), t(0) and β(x(0), y(0), 0), the first four
equations can be solved independently from the last three. A line
x(s), y(s), t(s) thus obtained is called a characteristic curve or simply
a characteristic. Equation (32) implies that β is constant along each
characteristic. Moreover, the parameter s, according to (29), can be
identified with time t, except for an arbitrary additive constant. Finally,
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the constancy of β implies that along a characteristic the right-hand
sides of equations (30) and (31) are constant, and therefore that the
characteristics are actually straight lines. The values of the material
constants, together with the initial condition, determine whether or not
the characteristics will tend to converge (intersect) or diverge. In the
former case, we will observe the creation of dislocation pile-ups, while
the latter is a representation of the tendency of the dislocations to dissi-
pate after the passage of a long enough time. Indeed, the general Cauchy
problem for such a balance law has, as it is well known (Dafermos,
2000), no smooth global solution even for smooth compactly supported
initial condition. A solution stays temporarily smooth but eventually
develops singularities. The blow-up of a smooth solution, which in the
context of our model we identify with a dislocation pile-up, occurs when
the spatial gradient of β becomes unbounded. In a one-dimensional
case, given any particular initial distribution of inhomogeneities, it
is rather elementary to determine, as shown in (Elżanowski and Ep-
stein, 2002), such propagation characteristics as the blow-up time, the
speed of propagation (Rankine-Hugoniot condition), and the propa-
gation condition for the amplitude of the pile-up. Moreover, looking
at the Rankine-Hugoniot condition for the evolution equation (28),
whether planar or one-dimensional, it is easy to realize a possibility
of the occurrence of a stationary pile-up, i.e., a singular pattern of
inhomogeneities which will not propagate.

5. Examples

For the sake of being even more specific and to be able to illustrate
better any of the above mentioned types of evolutions let us restrict
further our analysis to the one-dimensional case by assuming that the
uniform references depend only on one Cartesian coordinate, say y.
This renders the evolution equation particularly simple, namely:

β,t +cβ,y sinβ = 0. (36)

The general Cauchy problem for such a balance law has, as it is well
known, no smooth global solution even for smooth compactly supported
initial condition. A solution stays temporarily smooth but eventually
develops singularities. The blow-up of a smooth solution, which in the
context of our model we identify with the dislocation pile-up, occurs
when β,y becomes unbounded. It is easy to show by integrating along
characteristics that this is possible provided

cβ′0 cosβ0(y) < 0 (37)
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at some y ∈ R, where β0(y) ≡ β(y, 0) and where k(y) ≡ c cosβ0(y)
is obviously constant along the characteristics. The actual breaking of
a continuous solution will be observed at the critical time

tc ≡ min
y

−1
cβ′0(y) cos β0(y)

. (38)

Such a singularity, once developed, will propagate, as implied by the
Rankine-Hugoniot condition, with the speed

υ = c
[cosβ]

[β]
(39)

along the shock-curve y = Γ(s), where d
dsΓ(s) = υ(y(s), s). The evo-

lution of the amplitude [β] of such a shock is given by the propagation
condition

˜[β] = c

(
[cosβ]

[β]
[β,y ] + [β,y sinβ]

)
, (40)

where [f(β)] ≡ f(β+) − f(β−) denotes the jump of the quantity f

across the shock-curve Γ, and where ˜[β] indicates differentiation along
Γ. Using the method of singular surfaces the propagation of such a
singularity can be further analyzed by developing the infinite system
of iterated compatibility conditions and solving it numerically.

To show the relation between the form of the initial condition and
the choice of the material constants a and b we briefly discuss here
some one-dimensional evolution initial-value problems.

(i) Suppose that a = b = 1 and let β0(y) = arctan y. As β0,y > 0 the
condition (37) is never satisfied proving that no pile-up of dislocation
will ever occur. A simple analysis of characteristics shows, in fact, that
the solution θ(y) tends asymptotically to −π

4 at every y ∈ R.
(ii) Let β0(y) = − arctan y and let us keep the same material con-

stants. This initial condition, in contrast to the previous one, will
develop, as easily attested by (37), into a shock. In fact, investigating
the arrangement of characteristics and calculating the critical blow-up
time (38) one arrives at the conclusion that the two shocks travelling in
opposite directions (one front-shock and one back-shock) will develop
at the same time tc =

√
2

2 .
(iii) Suppose a = b = 1 and select a symmetric (about y = 0)

initial condition, e.g., β0(y) = π
2 sech y. An elementary analysis of

characteristics shows that this solution will blow-up in finite time into
a front shock. Changing the material constants to a = −b = −1 but
keeping the initial condition unchanged will make very little difference.
Indeed, rewriting the evolution equation for the new material constants
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as β,t +
√

2
2 β,y cosβ = 0 one can easily conclude that the new solution

also blows up in finite time. However, a different part of the initial
condition contributes now to the pile-up, slowing down its occurrence
and propagation considerably.

(iv) As the last example we consider the spherically symmetric
planar problem. In other words, we seek solutions to the evolution
equation (28) such that it is invariant at all times t ≥ 0 with respect
to rotations about the origin. Rewriting equation (28) in the polar
coordinates (%, ψ) we obtain

β,t +cβ,% sin(β − ψ)− c

%
β,ψ cos(β − ψ) = 0, (41)

where β = β(%, ψ, t). The solution β is truly rotationally invariant
provided

(β − ψ),ψ = 0. (42)

Hence,
β(%, ψ, t) = ψ + F (%, t), (43)

where
F,t +cF,% sinF − c

%
cosF = 0. (44)

What we have now is a one-dimensional balance law with the source.
The characteristic curves are no longer straight lines and the solution F
is no longer constant along characteristics. The initial value problem is
well posed only locally in time. As in the case of a conservation law the
solution of (44) generally stays smooth only up to some critical time
at which a singularity develops. Moreover, the source term may even
cause the singular solution to become unbounded in finite time and, if
dissipative enough, it may prevent all together the breaking of some
relatively weak waves. Note also that for the source term of (44) plays
a prominent role close to the origin while it is negligible very far away
from the center. Indeed, the proximity of defects increases the density
of defects which, in turn, as expected, influences their evolution in a
more significant way.
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