Material uniformity and the concept of the stress
space

Serge Preston and Marekzahowski

Abstract The notion of the stress space, introduced by Schaefer [14], and further
developed by Kiner [7] in the context of materials free of defects, is revisited. The
comparison between the Geometric Theory of Material Inhomogeneities and the
Stress Space approach is discussed. It is shown how to exténeéi& approach to

the case of the material body with inhomogeneities (defects).

1 Introduction

The work presented in this note is a continuation of the earlier work by Ciatcio

al [3]. Its main objective is to investigate the relation between the Geometric Theory
of Material Inhomogeneities (Epstein and&howski [4], Wang and Truesdell [16])

and the description of the continuous distribution of defects based on the concepts
of the intermediate configuration and the stress space (Bilby [2Jn&wr [6], [7],

Lee [9], Stojanovic [15]).

We are particularly interested in describing effectively the residual stresses as-
sociated with the presence of material inhomogeneities (defects). To this end, we
employ the Bilby-Kbner-Lee multiplicative decomposition of the deformation gra-
dient (and the concept of the intermediate configuration) as well as the notions of
the stress and strain spaces of Schaefer [14] arichétr[7]. Using the language
of modern Differential Geometry we show that the multiplicative decomposition of
the deformation gradient, exemplifying the elasto-plastic material behavior, leads
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to the introduction of the uniformity tensor which plays the role similar to that of
the material isomorphism of the Geometric Theory of Material Inhomogeneities.
When discussing the role of the uniformity tensor, and its uniqueness, we show the
importance of the concept of the intermediate configuration.

In employing the notion of the stress space we follovdier’s idea (see Kr
ner [7]) of the non-holonomic transformation between the spaces of strain and
stress. This allows us to introduce the residual stress metric, the Ricci tensor of
which is interpreted as the residual stress tensor. The said non-holonomic transfor-
mation, known as the residual stress function, represents a constitutive law relating
the residual stress to the material strain of the intermediate configuration of the inho-
mogeneous material body. We show how to reconcile the introduction of the residual
stress function with the existence of the uniformity tensor.

The paper has the following layout. In the next section we introduce the basic
notions of Continuum Mechanics and the Geometric Theory of Material Inhomo-
geneities. In Section 3 we discuss the BilbysKer-Lee multiplicative decompo-
sition of the deformation gradient introducing the concept of the uniformity tensor
and the notion of the material strain. In Section 4 the construction of the stress space
is presented. The paper is concluded by a couple of examples in Section 5.

2 Hyperelastic unifomity

We start by reviewing some basic concepts of Continuum Mechanics and the Ge-
ometric Theory of Material Inhomogeneities restricting our presentation to hypere-
lastic materials only.

2.1 Configurations and the Cauchy metric

In Continuum Mechanics thmaterial body is usually represented by a connected
3-dimensional smooth oriented manifold with a piece-wise smooth boundary
dM. However, as the issues discussed in this paper are of the local nature only,
it is sufficient to consideM as a connected, open domainRA with coordinates
{X'}, 1 = 1,2 3. We assume that thehysical spaceour body is placed in is the
3-dimensional Euclidean vector spdg&equipped with the (flat) Euclidean metric
h. Given a global Cartesian coordinate syst{ad}, i =1,2,3,inES de facto al-
lowing us to identifyE® with R3, the metrich takes the fornhj;dXdx where the
standard summation convention is enforcec:ohfiguration of the bodyM, often
called itsplacement is an (differentiable) embedding: M — R3. Its deformation
gradient at a pointX € M is a linear isomorphism from the tangent spag® into
the tangent spack, x,R3. Namely,

F(X) = ¢.(X): TxM — T¢(X)R3, (1)
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whereg, denotes the tangent map@fThe deformation gradient at a material point,
sayY € M, is represented (in the given coordinates systemdMandE?) by the
non-singular matrix of partial derivatives ¢f that is,

() = 220 = 0} 1), @

whereg' (X1, X2,X3) =X, i = 1,2,3. The material equivalence of the special metric
h, relative to the placement the body is at, is the righ€auchy-Green defor-
mation tensor C obtained by the pull-back of the Euclidean metrito the body
manifoldM. That is,

C=¢"h, 3)

where ¢* denotes the pull-back map. The mat@y = hij¢f, ¢JJ evaluated at the
point X is the coordinate representation of the terGor

2.2 Material uniformity

Recall, that the material is calldg/perelasticif its constitutive response is com-
pletely determined by a single scalar-valued function,Wayalled theelastic en-
ergy density (per unit reference volumeg!). We assume thaw is a function of a
material point and the deformation gradient at this point, thaWis; W(X, F(X)).

The material bod is considerediniform if it is made of the same material at
all points. In mathematical terms, this means that for any pair of material points, say
X andY, there exists a linear isomorphism, referred to asagerial isomorphism

KX : TxM — TvM, 4)
between the corresponding tangent spaces such that
W(Y,F(Y))KX do(Y) =W(X,F(Y)KX)dvo(X) (5)

holds for all possible deformation gradienﬁt,swhereK}{* denotes the pullback of a
3-form by the mappindky. Equivalently, the material body is considered uniform,
if there exist material isomorphisms

P : TiyM — Tx M, (6)

called theimplants, from a fixed pointXs € M to every pointX € M such that
KY =PRo Pgl and the equation (5) holds. The said fixed pgntan be arbitrarily
chosen. In fact, it is often convenient to think about its tangent sjigdé as a

1 Although we do not explicitly utilize here the concept of the reference configuration, we assume
that assigning coordinates to the body manifdldc R3 is equivalent to selecting its reference
configuration; see Epstein andzBhowski [4].
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standing alone vector spatewith the orthogonal framde}, i = 1,2,3, and its
own metric being the the Euclidean (flat) methiat the origin.

Having the implant$ available we can “pull-back” the Euclidean volume ele-
ment of thearchetypeV to the material manifolé. Indeed, let

vp(X) =P H(e1/ex N e) (7)
and letJp : M — R be a real-valued function such that
vp(X) = Ip(X)vo(X) (8)

ateveryX € M. LetGL(V) be the group of all linear automorphism of the archetype
V and define a real-valued functidv: M x GL(V) — R by

W(X,A) = 1 XOW(X, AR, (9)

for all X € M and anyA € GL(V). It should now be easy to see that the uniformity
condition (5) is equivalent to

~ -~

W(X,A) =W(Y,A) (10)

for all A € GL(V) and any pair of material point$ andY. In other words, the ma-
terial bodyM is uniform if its archetypical energy densityfunctionW is material

point independent. Consequently, the strain energy density function of the uniform
material bodyM is such that

~

W(X,F(X)) = I (X)W(F(X)Px) (11)

for any (non-singular) deformation gradiefitand some archetypical energy func-
tion W obeying the relation (10). For the clarity and the simplicity of our presenta-
tion we assume here that that archetypical enévdyas the trivial isotropy groufp

2.3 Material connections

It is normally assumed that the material isomorphisms, consequently the implants,
are locally smoothly distributed dvl. This implies that the materially uniform body
M can be equipped with the (locally smooth) global mataridform frame field

d

py(X) =P (@) =P o5

| =1,2,3. (12)

2 Note, that if the isotropy group oV is nontrivial the material implantB are not necessar-
ily uniquely defined. Indeed, suppose that the archetypical energy funbtibas a continuous
isotropy group, says C GL(V). Then, given an implan®, G is also an implant as long as
G € G, Epstein and Edanowski [4].
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The material isomorphismi€, or equivalently the material implan, establish a
long distance parallelism dvl asKy (p;(X)) = p;(Y), j = 1,2,3. Such a parallelism
defines amaterial connection sayw, the curvature of which vanishes identically.
Indeed, as evident from the definition of the global uniform frame field (12), the
corresponding parallel transport is curve independent. The torsion of the connection
o provides the measure of the non-integrability of the material frame fiigld =
1,2,3. This, in turn, is accepted as a “measure” of the lomal-homogeneityof
the given material body. More precisely, the hyperelastic bddyas defined by
the strain energy density functiaM, is considered localljpomogeneousprovided
there exist® a material connectiom such that its torsion vanishes identically.

As we have mentioned earlier, the implant maps induce the uniform material
frame field (12). They also induce the correspondimiform material metric g
defined by the pull-back of the Euclidean metric of the archetype. That is,

g= P)Zl*h (13)

or
an = (RO (B h5hee (14)

in the corresponding local coordinate systems. The availability of the ngettiows
one to consider the corresponding Levi-Civita connectignthat is the connection
in which the material frame field,, | =1, 2,3, is parallel angj-orthonormal. It can
be shown that the curvature of the connectignis defined by the torsion of the
material connectiom, Wang and Truesdell [16].

3 The multiplicative decomposition of the deformation gradient

In this section we will look at the uniformity and the homogeneity of a material body
from a somewhat different perspective, that is, using the concept of an intermedi-
ate configuration. To this end, suppose that we are given the materiahbaaya
configurationg : M — R3. Its deformation gradierf can be viewed as a two-point
tensor field orM, i.e., the tangent bundle mapping : TM — TR3 over the base
mapping (configuration : M — R3. Let

F = F°FP (15)

be the Bilby-Kibner-Lee multiplicative decompositioBKL-decomposition, in
short) of the deformation gradient wheFé is understood as the elastic part of

3 |f the isotropy groupG of the archetypical energy functiaN is nontrivial and continuous, dif-
ferent material parallelisms, and different material connections are possible, all gauged by the
isotropy groupG. However, if the isotropy grouf is discrete the corresponding material connec-
tion is unique, as implied by the local smoothness of the distribution of implants. In this instance
and, in particular, when the gro@is trivial, the torsion ofw may be considered the true measure

of the local non-homogeneity, Epstein and&iowski [4].
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the deformation gradient whilgP is its inelastic (plastic) component (see for ex-
ample Bilby [2], Kidner [6] and Lee [9]). Assume, that every time the deformation
gradient of a material configuration is availgblge have means of identifying its
BKL-decomposition. Interpreting the relation (15) as the composition of (tangent)
bundle maps it is only natural (at least from the mathematical stand point) to con-
sider theintermediate configuration ¢ : M — R? as the base map for the bundle
mapFP. Indeed, ifFeAande are to represent bundle maps one is required to intro-
duce a configuratiott, which we assume to be a (differential) embedding, such that
the composition

Y=¢o¢ " (16)
is well defined and the bundle mag$andFP are based ovey anda, as illustrated
by the following diagram

™ To(M) . To(M)

L
— o) —— sm)

Thus, given the material poitt € M, FP(X) € T , R® while Fe(9(X)) € Ty R

Realize that despite the fact that the deformation gradiésthe tangent map of its
base mapping (configuratiog) the elements of the BKL-decomposition (15) are,
in general, nonintegrable. That is, the inelastic pdrts not necessarily the tangent
map of the intermediate configuratibf and the elastic paf® is not the gradient
of its base mapy. Still, both elements of the BKL-decomposition, viewed as the
bundle maps, are based over the corresponding basedaamby. All that implies
that there exists a tangent bundle niapTM — TM, over the identity map o,
such that

FP=¢,0D (17)

and R
Fe=¢,0(¢,0D) L. (18)

We shall call the tensdd the uniformity tensor. Note thatD, when evaluated at a
material point, sa, is effectively the implant map (6). Indeed, given the material
point X € M the BKL-decomposition can be presented, using the language of the
Geometric Theory of Material InhomogeneitiesFéis= FP; andFP = P 1, where

P« denotes the corresponding material isomorphism from the fixed material point
Xo (or the archetyp®) to X; see for example Maugin and Epstein [12]. Invoking

4 The strain tensor may be a better measure of the deformation, see Remark 1

5 It is often argued that the (inelastic) intermediate configuraﬁoils defined uniquely by the
material and the history of the deformation leading to the current configurati®ee Lee and
Agah-Tehrani [10] where the relaxation (unloading) of the material to the intermediate configura-
tion is discussed.
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the Euclidean parallelism iR3, which allows us to view’ as a map fronTyxM to
itself with P, = 1, we can equate the uniformity tendd¢X) with P, .

It seems that the BKL-decomposition of the deformation gradteartd the inter-
mediate configuration define completeRthe uniformity structure of the material.
Note however that given the deformation gradierits BKL-decomposition is not
necessarily uniquely defined. Indeed, replace the configuratiaith ¢ = o ¢,
wherep is a diffeomorphism of the physical spag (or simply a change of its co-
ordinate system). Then, the plastic part of the deformation gradient corresponding
to the new intermediate configuratigns given by

Fg =B, oFP (19)

subsequently changing the form of the elastic part. The teDsigrnot affected,
however, by such a change of the intermediate configuration. On the other hand, if
the intermediate configuratighgets replaced by o o, wherea can be interpreted,
using the language of the Geometric Theory of Material Inhomogeneities, as the
change of the archetype’, then all the elements of the BKL-decomposition do
change. Indeed, the new uniformity tensor

Do =0, toDoa, (20)
and the new inelastic part of the deformation gradient is
FP =FPoa,. (21)

Once the uniformity tensdD is available the uniform material metrg; (13), can
be represented as

Okm = DI(D‘IEII h|J. (22)

The metricg is, in general, not flat. Hence, the corresponding material Levi-Civita
connectionwg has non-vanishing curvature. On the other hand, the vanishing of the
curvature tensor, séyg, of the connectionog, or equivalently its Ricci tensdrcg,
implies the flatness of the metni Kobayashi and Nomizu [5]. The flatness of the
material metric should be viewed as the indication of the local material homogene-
ity. In fact, when the metrig is flat, one is allowed to select the uniformity tensor

D as the identity rendering the choice of the intermediate configuratiarbitrary

and the BKL-decomposition integrable.

Remark 1 The commonly used measure of the deformation of a material body, par-
ticularly well suited for the theory of the small deformations, is$h@in tensor

1 1
E=3in(h 1C):§h Yc—h) (23)

6 See also Cianciet al.[3].
7 See Epstein and Eanowski [4] for the discussion of this point.
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comparing the metric of the deformed statand the metric of the undeformed (ref-
erence) state, Marsden and Hughes [11]. Utilizing this measure of the deformation
theinelastic strain of the BKL-decomposition takes the form

EP — %m(h*lD(A:DT) =~ %h*l(D?:DT —h) (24)
where 1 1
ER =3 In(h~*C) = érrl(?: —h) (25)

is its integrable par' denotes the transpose, and the coordinate representation of
the Cauchy-Green tensor of the intermediate configur&lien¢*h is given by

Ciy = hij 0 9. (26)
In this framework thanaterial strain

EM_ %m(h—thDT) ~ %h—l(DhDT —h) (27)

may be viewed as a measure of inhomogeneity of a material.

4 The stress space

We are now ready to present the construction of the stress space of Stojanovic [15]
and Kioner [7] modified to encompass inhomogeneous materials. First, let us as-
sume that the linear isomorphism

F:T'M = TM, (28)

relating the covariant and contravariant tensor fields on the body mamfpid
giverf. We shall call the isomorphisr§ the residual stress functionand use it
to pull back the kinematic objects, such as deformation or strain, from the tangent
spacel M to the cotangent bundlE*M, establishing this way thstress spaceln
particular, let

0 =5%"h (29)

be theresidual stress metricon T*M corresponding to the intrinsic (flat) Euclidean
metrich of the body manifoldM. Although the metrid is flat, the stress metrié

is, in general, not flat, unless the isomorphigns holonomic. Denote bwy the
Levi-Civita connection of the metri@ and letRy be its Riemannian curvature ten-
sor. Finally, letRcy be the corresponding Ricci tensor a@ig its scalar curvature.
Following Kroner’s lead, let us postulate that thesidual stressmeasured at the

8 This should be viewed as an additional constitutive postulate we will try to reconcile later with
the previously made assumptions leading to the introduction of the uniformity tBnsor
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intermediate (unloaded) configurati«fnis represented by the Ricci tendgcg of
the Levi-Civita connectiomwy. If, in addition, we assume that the isomorphigris
such that the Levi-Civita connectiamg has constant scalar curvatifg, then the
first Bianchi identity JgRg = 0, whereldy denotes the covaraint derivative of the
connectiond) implies, as often postulated in the literature (seénér [7], Mino-
gawa [13], Stojanovic [15]), that the residual stresses are self-equilibrated, that is,
that

divgRcy =0 (30)

where diy denotes the covariant divergence.

Remark 2The Einstein tensor

&6, (31)

Eg =Rcyg — 2

rather than the Ricci tensétcy, is the geometric object which in dimension 3 is
always the covariant divergence free, Besse [1]. However, in dimension 2, as the
Einstein tensor is identically zero, the Ricci tensor becomes its natural substitute. It
is not self-equilibrated but the vanishing of its covariant divergence is equivalent, as
we mentioned earlier, to postulating that the scalar curvaigrés constant.

Having the residual stress defined by the Ricci tefi®ey, we are now in the
position to look again at the constitutive assumption (28) that there exists a linear
transformation relating the material tangent and cotangent spaces. But first, viewing
the material strain as the natural counter part of the residual stress, let us postulate
that

EM= %S*ch. (32)

For this definition to be consistent with the earlier definition of the material strain
tensor (27) the material metrg; as given by the equation (22), must obey the fol-
lowing relation:

g=hexp([E™) = hexp(.Rcy). (33)

In other words, postulating the above relation (32), between the residual stress and
the material strain, we de facto assume that given the intermediate configuration
and the uniformity tensdD there exists an isomorphisghsuch that

In(DD"h~1) = §.Rce (34)

wheref® = §*h. Conversely, given the constitutive isomorphi§rthe stress metric

6 defines the stress space and the uniformity teBsi@ given (up to an isometry

of the metrich) by the equation (34). The relation (32), between the Ricci (residual
stress) tensdRc and the material strain tensif, plays the role of the Hooke's law

of the linear elasticity. When presented in coordinates, it takes the form

EMy = M Raun (35)
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where the tenscﬁf“K"S'J\‘ may be viewed as an (inelastic) analog of the material mod-
ula. Following this line of thought, we may want to replace the constitutive isomor-
phismgJ by a more general linear isomorphisfrbetween the bundles of covariant
(0,2)-tensors on the tangent and cotangent spaces of the body mavifthdleed,
given the isomorphism

T :S(T'M) — S(TM), (36)

whereS,(-) denotes the bundle of covariant symmetfic2)-tensors, the stress met-
ric 8 = Y ~h and the material strain
E™cL = Xii Ray, (37)
while the uniformity tensob is such that
In(DDTh~1) = YRc. (38)

Note that the existence of the isomorphighnimplies the existence of the isomor-
phismg as its base map.

5 Examples

We present here two simple examples of the stress space and the objects associated
with it.

Example 1Einstein metric
Consider a test case when the stress métigthe Einstein metric in dimension 3,
that is, when

RCo — %e. (39)

In such a stress space the uniform material mejrihe uniformity tensoD, and
the material straifc™ are given by:

g=e7h,
Rg
D=es h, (40)
Re
E"=es h
Example 2Isotropic material
Consider the material isomorphisinsuch that the tensor
A 1
Kt = - ————h;h*t + —gKal. 41
13 @ o)™ +2“ 0 (41)

It can be interpreted as the inverse elasticity tensor of an isotropic material with the
inhomogeneous Lame constaatandu, Landau and Lifshitz [8]. The correspond-
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ing residual stress metrig is conformally equivalent to the metrg that is, given

a material poiniX

8(X)=T"th(X) = 3K?x)h, (42)

whereK(X) = u(X) + %)L(X) is the inhomogeneous bulk module. The Levi-Civita
connection o® has the Christoffel symbols given by

I3 =8N+ 8Ny —h'Shy Ng (43)

whereN(X) = —% In(3K(X)). Hence, the Ricci tens@cy is represented by a ma-
trix with coordinates:

Ract = N — 3NN+ [|[dN]|? — AN]hg, (44)

Besse [1]. This, in turn, implies that the material strain (37) has the following rep-
resentation:

A 1
E™y = —M%Ghu + wRQ\L (45)

One may view this relation as the residual stress analog of the (linear) Hooke’s law
for an isotropic material.

References

1. Besse, A.: Einstein Manifolds. Springer Verlag, Berlin (1987)

2. Bilby, B.A., Gardner, L.R.T. and Stroh, A.N.: Continuous distribution of dislocations and the
theory of plasticity. In: Proc. XIth ICTAM, Vol. VIII, pp. 35-44. Presses de I'Universite de
Bruxelles (1957)

3. Ciancio, V., Dolfin, M., Francaviglia, M. and Preston, S.: Uniform Materials and the Mul-
tiplicative Decomposition of the Deformation Gradient in Finite Elastoplasticity, J. Non-
Equilbrium Thermodyn.33, 199-234 (2008)

4. Epstein, M., Etanowski, M.: Material Inhomogeneitites and their Evolution. Springer-Verlag,
Berlin (2007)

5. Kobayashi, S., Nomizu, K.: Foundations of Differential Geometry. Wiley, New York (1963)

6. Kroner, E.: Kontinuumstheorie der Versetzungen und Eigenspannungen. Springer-Verlag,
Berlin (1958)

7. Kroner, E.: Stress Space and Strain Space in Continuum Mechanics, Phys. Stat. $4¥,(B),
39-44 (1987)

8. Landau, L.D., Lifshitz, E.M.: Elasticity Theory. Pergamon Press, Oxford (1986)

9. Lee, E.: Elastic-plastic deformation at finite strain, ASME Trans. J. Appl. MBéh1-6
(1969)

10. Lee, E., Agah-Tehrani, A.: The fusion of physical and continuum-mechanical concepts in the
formulation of constitutive relations for elastic-plastic materials. In: Non-Classical Contin-
uum Mechanics, Eds. Knops, R., Lacey, A., pp.244—259, Cambridge University Press, Cam-
bridge (1987)

11. Marsden, J., Hughes, T.: Mathematical Foundations of Elasticity. Dover, New York (1983)

12. Maugin, G., Epstein, M.: Geometrical material structure of elastoplasticity, International J. of
Plasticity14, 90-115 (1998)



100 Serge Preston and Marekz&howski

13. Minogawa, S.: On the stress functions in elastodynamics, Acta Mechadjca09-217
(1976)

14. Schaefer, H.:Die Spannungsfunktionen des dreidimensionalen Kontinuums und des elastis-
chen Korpers, Z. angew. Math. MecB3, 356-362, (1953)

15. Stojanovic, R.: Equilibrium conditions for internal stresses in non-euclidian continua and
stress space, Int. J. Engng. Ski323-327 (1963)

16. Wang, C-C., Truesdell, C.: Introduction to Rational Elasticity. Noordhoff, Leyden (1973)



