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Abstract
We show how some differential geometric structures associated with a concept
of a homogeneous space appear naturally in a kinematic model of continuously
distributed defects in an elastic crystal solid and discuss how one can use them to
describe defectiveness of such a continuum.
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1 Introduction
One of the fundamental questions of the kinematic model of defective elastic
crystals proposed by Davini (2) is to identify quantities which properly characterize
the defectiveness of a crystal and which can also be useful in phenomenological
approaches describing inelastic behavior of continuum bodies. Assuming that a
kinematic state of a continuous crystal is determined by three linearly independent
vector fields (a lattice) defined over an open region in R3, a non-commutativity of
pairs of these vector fields is considered a sign of a presence of defects. The said
vector fields are viewed as obtained from the underlaying discrete atomic structure
by some averaging process and are expected to be invariant under elastic deformations
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of a continuum. Respectively, the objects which characterize locally such a collection
of vector fields are also expected to be elastically invariant. One such object, which
can be viewed as a first-order measure of defectiveness at a point of a lattice, is the
dislocation density tensor (2) (Equation (21)).

When the dislocation density tensor is a constant function of position, thus defining a
uniformly defective state of a continuous crystal, the underlying space can be identified
with a Lie group acting on itself and the theory of Lie groups and algebras is used
to study such states (14). However, when the dislocation density tensor is a non-
trivial function of a material point, this identification is no longer available. That is,
even though the underlying space cannot be identified with a Lie group, there still
exists a Lie group (of dimension higher than 3) acting on R3 in a manner consistent
with the lattice vector fields (7). This allows us to equip R3 with a structure of a
differentiable homogeneous space and use the notion of a canonical linear connection
and, in particular, its curvature as a second-order measure of defectiveness of a crystal
state1.

Starting from a perspective of the uniformly defective states, we focus in our
presentation on states which are non-uniformly defective and, in particular, canonically
reductive (26), as other state are not fully amenable to this approach. After the first
section in which we present the general differential geometric framework associated
with non-uniformly defective states, we introduce in the second section the concept of
a lattice connection a torsion of which relates to the dislocation density tensor. In the
following section we discuss the concept of a lattice canonical connection available for
non-uniformly defective crystal states which are also reductive. In our last section we
introduce the concept of a canonically reductive state and show how a curvature of the
corresponding lattice canonical connection relates to the derivatives of the torsion of
the lattice connection. We conclude the paper by discussing two different examples of
continuous lattices, one which is canonically reductive and one which is not.

The work reported in this note is an extension and a continuation of our research
presented in (3), (5).

2 Geometric framework
As it was stated in the Introduction, we postulate that a kinematic state of a continuous
distribution of defects in a solid is defined by a lattice2, that is, n linearly independent
smooth vector fields l = {l1, . . . , ln} defined on an open subset U ⊂ Rn, where, in
most applications, n = 2, 33. We postulate that the vector fields l1, . . . , ln generate a
finite dimensional4 (complete) Lie subalgebra L of the algebra of all smooth vector
fields on U . We call this algebra the lattice algebra of the continuous lattice l. This,
in turn, implies the existence of an abstract Lie group G acting smoothly on the body
U on the left and such that its (left) Lie algebra g is isomorphic to the lattice algebra
L, (10). Let a smooth mapping

φ : G× U → U (1)

represent the said action of G on U satisfying a condition that

φ(g1g2, p) = φ(g1, φ(g2, p)) (2)
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for every p ∈ U and every pair g1, g2 ∈ G, where g1g2 denotes a group multiplication
in G. We postulate that the action φ is transitive on U implying that the orbit map

φp = φ(·, p) : G→ U, p ∈ U, (3)

is onto and that its tangent map

dφp : TG→ TU, (4)

where TG and TU denote the corresponding tangent spaces, establishes an
isomorphism between the (right) Lie algebra5 of G and the lattice algebra L, (13).

Select a point, say, p0 ∈ U . The isotropy group of the action φ at p0

G0 = {g ∈ G : φ(g, p0) = p0} (5)

is a closed subgroup of the group G. It depends, in general, on the choice of a point
p0 ∈ U . However, due to the transitivity of the action φ, the isotropy groups at different
points are conjugate to each other, thus, isomorphic.

Given an isotropy group G0 at a point p0 ∈ U , one can show that the underlying
space U is a homogeneous space, that is, it is diffeomorphically equivalent to the left
quotient G\G0. This equivalence is established by a map Φ : G\G0 → U such that

Φ(gG0) = φ(g, p0) (6)

where gG0 = {gh : h ∈ G0} denotes a (left) coset of the isotropy group G0 generated
by an element g ∈ G. Not only the quotient G\G0 is diffeomorphic to the space U but
the group G acts on it on the left mimicking the corresponding left action of φ on U .
Namely,

φ(g1,Φ(g2G0)) = φ(g1(φ(g2, p0)) = φ(g1g2, p0) = Φ((g1g2)G0). (7)

Moreover, looking at this construction from a different angle, we observe that the left
action φ of G on the space U defines a principle G0-bundle over U with the group
G as its total space, the isotropy group G0 as its structure group and the projection
π : G→ U such that π(g) = φ(g, p0). Indeed, the projection π is a differentiable
mapping and the isotropy group G0 acts freely on G on the right preserving individual
fibers, i.e., given h ∈ G0

π(gh) = φ(gh, p0) = φ(g, φ(h, p0)) = φ(g, p0) = π(g) (8)

for every g ∈ G and every h ∈ G0. Note that the fibers of the principle bundle π : G→
U are the cosets of the quotient G\G0.

In addition, it can be shown, (11) (see also (6)), that the bundle π : G→ U is
isomorphic to a subbundle of the bundle of linear frames on U . To this end, given
g ∈ G, consider a mapping φg : U → U such that φg(p) = φ(g, p) for every p ∈ U .
When g is an element of the isotropy group G0 at p0 the tangent map dp0φg : Tp0U →
Tp0U is a linear automorphism. Selecting a frame at p0, that is a linear isomorphism
u0 : Rn → Tp0U assigning coordinates to a vector in Tp0U , we are able to construct a
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group homomorphism λ : G0 → GL(n,R) such that

λ(h) = u−1
0 ◦ dp0φh ◦ u0, (9)

for any h ∈ G0. The mapping λ is known as a linear isotropy representation of G0 in
the general linear group of Rn (see e.g. (11)). Consequently, the collection of mappings

L(U,G0) = {dp0φg ◦ u0 : Rn → U : g ∈ G} (10)

is a reduction of the bundle of linear frames of U to the linear isotropy group
λ(G0) ⊂ GL(n,R). The mapping f : G→ L(U,G0) assigning to g ∈ G a linear
frame dp0φg ◦ u0 is a principle bundle isomorphism over the identity map on U ⊂ Rn.
In particular, for any g ∈ G and h ∈ G0

f(gh) = dp0φgh ◦ u0 = dp0φg ◦ u0 ◦ λ(h) = f(g)λ(h). (11)

Example 1. To illustrate how the geometric structures introduced so far appear in
a concrete situation let us consider, using the standard cartesian coordinate system in
R2, a two-dimensional lattice

l = {l1, l2} = {e1,−xe2} (12)

where the vectors e1, e2 denote the corresponding unit basis. As the bracket l3 =
[l1, l2] = −e2 and as [l1, l3] = [l2, l3] = 0 the given lattice generates a 3-dimensional
Lie algebra L = span{l1, l2, l3}. Elementary calculations show that the action of the
corresponding 3-parameter Lie groupG on U = {(x, y) ∈ R2 : x 6= 0} is given by the
mapping φ : G× U → U such that

φ((a, b, c), (x, y)) = (x+ a, y − (x+ a)b− c) (13)

where a triple (a, b, c) represents a group element and where (x, y) ∈ U . Enforcing the
requirement that the group G acts on the left, we obtain the group multiplication in G
as

(a, b, c)(a, b, c) = (a+ a, b+ b, c+ c− ab), (14)

for any two elements (a, b, c), (a, b, c) ∈ G.
A one-parameter isotropy group of the action φ at a point p0 = (x0, y0) ∈ U is

G0 = {(0, b,−x0b) : b ∈ R}. (15)

It is easy to see that the projection π((a, b, c)) = φ((a, b, c), (x0, y0)) is such that
π(G0) = (x0, y0). Finally, the linear isotropy representation (in the standard frame)
is given by

λ(h) =

(
1 0
−b 1

)
(16)

for every h ∈ G0. Note that the image

λ(G0) =

{(
1 0
−b 1

)
: b ∈ R

}
(17)

is indeed a subgroup of GL(2,R).
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3 Lattice connection
The fact that one can associate a specific homogeneous space with a continuous lattice
allows us to identify a set of (measurable) geometric characteristics which may be used
to describe defectiveness of a kinematic state of a continuum. Namely, given a lattice
l on U ⊂ Rn and the corresponding Lie group G acting on U , there exist (subject to
some additional assumptions) two linear connections the torsions and the curvatures of
which may be interpret as characterizing the defectiveness of a kinematic state.

First, given a lattice l = {l1, · · · , ln}, the linearly independent vector fields li,
i = 1, · · · , n, define on U a long-distant parallelism and a flat linear connection, called
a lattice connection, associated with it. Its Christoffel symbols Γijk, i, j, k = 1, · · · , n,
are

Γijk = −(lmj )−1 ∂l
i
m

∂xk
(18)

where the matrices lim, i,m = 1, · · · , n, represent coordinates of the vectors defining
the lattice in the standard coordinate system x1, . . . , xn on U (see e.g. (8)). Although
the curvature of a lattice connection vanishes its torsion

T ijk = Γi[jk], (19)

does not, in general, and it is often accepted (see Remark 1) as representing the
defectiveness of a given lattice l. Note that the components of a torsion of the lattice
connection can also be given in terms of the Lie brackets of the algebra L as

[lj , lk] = T ijkli (20)

where the summation convention over repeated indices is enforced.

Remark 1. The archetypical object associated with a defectiveness of a lattice in
dimension n = 3, (2), is the dislocation density tensor Sij defined in terms of the dual
lattice {η1, η2, η3} such that li · ηj = δij , where δij denotes the usual Kronecker delta.
That is, the components Sij of the dislocation density tensor are such that

n(p)Sij(p) = ∇∧ ηi(p) · ηj(p), i, j = 1, 2, 3, p ∈M, (21)

where n(p) denotes the lattice volume element (the determinant of the dual lattice)
and where the objects bi = ∇∧ ηi(p) are known in the material science literature
as the Burgers vectors representing a distortion of a lattice cased by a presence of
defects (12), (15). It can be shown, (4), that the dislocation density tensor Sij and the
torsion T ijk are related by

T ijk = εrjkS
ir (22)

where εrjk is the alternating tensor.

When investigating possible dislocated states and the lattices representing them one
may consider the following three scenarios.

(A) First, if the torsion of a (flat) lattice connection Γijk vanishes the connection is
trivial and the lattice vector fields li, i = 1, · · · , n defining the corresponding
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long-distance parallelism commute. The lattice l is holonomic and the lattice Lie
algebra L is abelian. Physically, the kinematic state the lattice l represents is
homogenoeus, that is, no defects are present and, in dimension 3, the dislocation
density tensor Sij vanishes identically. The group G the algebra L induces can
be identify, without loss of generality, with Rn acting on U by translations as
there exists always, at least locally, a coordinate system, say, x1, . . . , xn on U
such that l = { ∂

∂x1
, · · · , ∂

∂xn
}. In other words, the kinematic state the lattice l

represents is invariant under translations.
(B) Second, assume that the torsion of a lattice connection does not vanish but its

value is base point independent. This implies that the components of the torsion
tensor T ijk are simply the Lie algebra constants of the lattice algebra L and (in
dimension 3) the dislocation density tensor is constant. The Lie group G, still
viewed as Rn, acts on U in a non-trivial way. We say that such a kinematic
state is uniformly defective which means that open neighborhoods of different
material points are diffeomorphically equivalent. As such diffeomorphisms are
viewed as elastic deformations, (14), being uniformly defective means being
locally elastically related.

Example 2. Consider, using a cartesian coordinate system in R3, a lattice

l = {l1, l2, l3} = {e1, e2, xe1 + ye2 + e3} (23)

defined on U = {(x, y, z) ∈ R3 : x > 0, y > 0}. As [l1, l3] = l1, [l2, l3] = l2
and [l1, l2] = 0 the only non-zero torsion coefficients are T 1

13 = T 2
23 = 1.

The corresponding Burgers vectors are b1 = e2, b2 = −e1, b3 = 0 and the
dislocation density tensor

Sij =

 0 1 0
−1 0 0
0 0 0

 . (24)

(C) Finally, suppose that a lattice l is such that some components of the torsion T ijk
of the lattice connection Γijk are non-trivial functions of position6. The fact that
the torsion tensor is material point dependent implies that the lattice algebra L is
of a finite dimension7, saym, higher than the dimension of the base space U , and
the kinematic state l represents is said to be non-uniformly defective. The lattice
algebra L induces an m-parameter connected Lie group G acting on U in such
a way that the isotropy group G0 is non-trivial and of dimension m− n ≥ 1. As
the isotropy group is a Lie subgroup of the Lie group G its (left) Lie algebra g0
is a Lie subalgebra of the (left) Lie algebra g. Viewing g as a vector space of all
left-invariant vector fields on G, it can always be represented as a simple sum of
the isotropy algebra g0 and a vector space complement V ( g. In other words,

g = g0 ⊕V, (25)

for some vector subspace V of the algebra g viewed as a vector space. Note that
V is not uniquely defined and that, in general, it is not a Lie subalgebra of g.

In the next section we will look closer at possible characteristics of non-uniformly
defective states.
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4 Lattice canonical connection
Consider a lattice l = {l1, . . . , ln} representing a non-uniformly defective kinematic
state of a solid U . As we pointed our earlier, this means that its lattice algebra L is
of dimension higher than the dimension of U and that the corresponding Lie group G
acting on U on the left has a non-trivial isotropy group G0, or its conjugate, at any and
all points of U . This also means that the left Lie algebra g of G can be represented as
g = g0 ⊕V for some n-dimensional vector space V ⊂ g of left-invariant vector fields
on G. As the choice of a subspace V is not unique, we further assume that one can
select a space V such that the decomposition g0 ⊕V is reductive (11), that is,

[g0,V] ⊆ V. (26)

We should point out here that although given a subalgebra g0 ( g there is always a
vector space V ⊆ g such that g = g0 ⊕V, not every such decomposition is reductive.
In fact, given g there may not exists a vector complement V making the decomposition
g = g0 ⊕V reductive (16).

Every vector space complement V forms a horizontal distribution on the principle
bundle π : G→ U in the sense that it depends smoothly on G and the tangent map
dπ : TG→ TU is surjective with the subalgebra g0 as its kernel. However, only if
the decomposition g0 ⊕V is reductive, V defines a horizontal distribution of a left
invariant principle bundle connection on π : G→ U . Indeed, as we showed in (5), the
fact that [g0,V] ⊆ V implies that V is invariant under the right action of the isotropy
group (see also (17)). Such a left-invariant principle bundle connection is called a
canonical connection on the homogeneous space U ∼= G\G0

8.
As the bundles π : G→ U and L(U,G0) are isomorphic, the canonical connection

associated with the distribution g0 ⊕V induces a linear connection on U , called a
linear canonical connection (17), (11).

Theorem 1. Let l be continuous lattice defined on a body manifold U . Assume
that the corresponding homogenous space G\G0 admits a reductive decomposition
g = g0 ⊕V for some vector complement V ⊂ g, where G0 is an isotropy group of
the left action of G on U evaluated at p0 ∈ U . Then, relative to the choice of the frame
u0 : Rn → Tp0U , the torsion and curvature of the corresponding (left-invariant) linear
canonical connection are given at p0 by

(a) T̂ (X,Y ) = −[X,Y ]V,
(b) R̂(X,Y )Z = −[[X,Y ]g0

, Z]

for any left-invariant vector field X,Y, Z ∈ V, where [·, ·]V and [·, ·]g0 denote,
respectively, V and g0 components of the Lie algebra bracket in g. In addition, both
tensors are left-invariant, thus covariantly constant.

Remark 2. It seems appropriate now to make a few comments regarding the
existence of a linear canonical connection induced by a lattice l.

First, we would like to point out that although the concept of a linear canonical
connection was introduced in the context of a non-uniformly defective continuous
lattice, it existence is also guaranteed when the lattice is uniformly defective. That
is, when a lattice l represents a uniformly defective kinematic state, its lattice Lie
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algebra L is of the same dimension as the body U and the corresponding isotropy
group is trivial. This implies that any horizontal distribution V is identical to the left
Lie algebra of the group G. The linear canonical connection is unique and equal to the
lattice connection thus providing no addition geometric characteristics of the lattice l.

However, when a lattice frame l represents truly non-uniformly defective state, the
existence of a linear canonical connection cannot be guaranteed a priori. Indeed, as
we pointed out earlier, given a continuous lattice and the corresponding lattice algebra
L, the induced homogenous space G/G0 may or may not be reductive. If it is not
reductive, the concept of a linear canonical connection is not well defined. But, even
if it is reductive the choice of the corresponding vector complement V may not be
unique as there may exist a number of different vector subspaces V of g such that the
[g0,V] ⊆ V thus, inducing different linear canonical connections. Although all such
connections characterize in some ways the underlying defective crystal structure not
all seem to provide useful geometric characteristics of it, the issue which we will be
discussing in the remainder of this paper.

Example 3. Let us revisit once again Example 1. Using equation (14) defining the
group multiplication in G we obtain that the left Lie algebra

g = span{v1, v2, v3} = span{g1,g2 − ag3,g3} (27)

and that the left-invariant vector field generating the isotropy algebra g0 is

v0 = g2 − (x0 + a)g3. (28)

Selecting the space V = span{v1, v3}, we obtain a reductive decomposition g =
g0 ⊕V as [v1, v0] = −v3 ∈ V and [v3, v0] = 0. However, the corresponding linear
canonical connection is trivial as due to the fact that V is an abelian subalgebra of
g both curvature and torsion vanish. We shall discuss other choices of V in the next
section.

5 Curvature of a non-uniformly defective state
Given a continuous lattice l representing a non-uniformly defective state, as signified
by a non-constant torsion T ijk of its lattice connection, it is only natural to determine
if there exists any relation between this characteristic of a lattice and the form of
the torsion and curvature tensors of the corresponding linear canonical connection
(Theorem 1), if it exists. To this end, given a lattice l, defined by the vector fields
li, i = 1, . . . , n let w1, . . . , wn denote right-invariant vector fields on G such that

dgφp0(wi) = li, i = 1, . . . , n. (29)

As the tangent mapping dgφp0 (4) is of a maximum rank and as the vector fields
l1, . . . , ln are linearly independent, the right-invariant vector fields w1, . . . , wn always
exist and are linearly independent. Let v1, . . . , vn be the equivalent set of left-invariant
vector fields on G, that is, a set of the elements of the algebra g such that

vi = di(wi), i = 1, . . . , n (30)
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where i is the inverse map on the group G. It is easy to show, (13), that

[vi, vj ] = −[wi, wj ], [vi, wj ] = 0, i, j = 1, . . . , n. (31)

Define a canonical vector space Vc = span{v1, . . . , vn}. It is clear that Vc is a vector
subspace of the Lie algebra g and that g = g0 ⊕Vc as the isotropy subalgebra g0 is
the kernel of the projection dπ : TG→ TU . Assume that the lattice l is such that
the decomposition g = g0 ⊕Vc is reductive, a property which cannot be guaranteed
in general. We shall call the corresponding linear connection on L(G0, u) the lattice
canonical connection9 of a continuous lattice l.

The coefficients of the torsion tensor of the lattice canonical connection (in the frame
v1, . . . , vn) are the smooth functions −T̂ ijk : U → R, i, j, k = 1, . . . , n, such that

T̂ ijkvi = [vj , vk]Vc , (32)

where [·, ·]Vc
denotes a Vc component of the Lie bracket of the algebra g and where the

minus sign is selected for convenience. Respectively, the coefficients of the curvature
tensor of the lattice canonical connection are the smooth functions −R̂ijkl : U → R
such that

R̂ijklvi = [[vj , vk]g0
, vl] (33)

where [·, ·]g0
is a g0 component of the Lie bracket in g.

Theorem 1 and the relation (31) allow us to conclude how the torsion T̂ ijk and T ijk
relata.

Corollary 1. Assume that the continuous lattice l = {l1, . . . , ln} admits a lattice
canonical connection corresponding to a reductive decomposition g0 ⊕Vc. Then, the
torsion coefficients of the lattice canonical connection in the equivalent frame vi,
i = 1, . . . , n are identical to the torsion coefficients of the lattice connection Γijk (18),
that is,

T̂ ijk = −T ijk(p0). (34)

Furthermore, consider the Jacobi identity of the Lie algebra g applied to the
canonical (left-invariant) vector fields vi ∈ Vc (30), namely

[[vj , vk], vl] + [[vk, vl], vj ] + [[vl, vj ], vk] = 0, j, k, l = 1, . . . , n. (35)

Invoking the reductive decomposition g = g0 ⊕Vc and the definition of a torsion
and a curvature of a linear canonical connection (32), (33) we obtain that, for example,

[[vj , vk], vl] = [[vj , vk]V, vl] + [[vj , vk]g0
, vl] (36)

= [T̂ ijkvi, vl] + R̂mjklvm

= T̂ ijk[vi, vl] + R̂mjklvm

= T̂ ijk[vi, vl]V + T̂ ijk[vi, vl]g0
+ R̂mjklvm

= T̂ ijkT̂
p
ilvp + T̂ ijk[vi, vl]g0 + R̂mjklvm.

The other two terms of the Jacobi identity can be represented the same way. Adding
all three terms and realizing that the sum of all g0-terms vanishes, we obtain a set of n
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equations for the coefficient of the Vc-part of the identity.

T̂ ijkT̂
m
il + T̂ rklT̂

m
rj + T̂ plj T̂

m
pk + R̂mjkl + R̂mklj + R̂mljk = 0, m = 1, . . . , n. (37)

Subsequently, Corollary 1 implies that

R̂mjkl + R̂mklj + R̂mljk = −[T ijkT
m
il + T rklT

m
rj + T pljT

m
pk](p0). (38)

Looking back at the lattice l = {l1, . . . , ln} and the Jacobi identity of the algebra L
we have

[[lj , lk], ll] + [[lk, ll], lj ] + [[ll, lj ], lk] (39)

= [T ajkla, ll] + [T bkllb, lj ] + [T clj lc, lk]

= T ajk,lla + T ajk[la, ll] + T bkl,j lb + T bkl[lb, lj ] + T clj,klc + T clj [lc, lk]

= T ajk,lla + T ajkT
d
alld + T bkl,j lb + T bklT

e
bj le + T clj,klc + T cljT

f
cklf = 0

where a comma denote a directional derivative in the direction of a specific vector field.
Comparing this with the equation (38) we are finally able to show how the curvature of
a lattice canonical connection (33) relates to the derivatives of the torsion tensor T ijk of
the lattice connection (18).

Corollary 2. Suppose a continuous lattice l = {l1, . . . , ln} admits a lattice canonical
connection corresponding to a reductive (canonical) decomposition g0 ⊕Vc. Then, the
curvature coefficients of the lattice canonical connection in the frame vi, i = 1, . . . , n
are ”almost” identical to the directional derivatives of the torsion coefficients of the
lattice connection (18) as

R̂mjkl + R̂mklj + R̂mljk = [Tmjk,l + Tmkl,j + Tmlj,k](p0). (40)

Realize that although the vanishing of the directional derivatives of the torsion T ijk
forces the curvature R̂ijkl to vanish by construction, the reverse is not necessarily true.
Indeed, when the canonical decomposition g0 ⊕Vc is a semi-direct product of Lie
subalgebras, the curvature of the canonical linear connection vanishes as Vc is an ideal
in g, despite the fact that the coefficients T ijk may still be position dependent.

Example 4. Consider a defective kinematic state ofU = {(x, y, z) ∈ R3 : xy 6= 0}
defined by a lattice l given by three linearly independent smooth vector fields li : U →
R3, i = 1, 2, 3, such that

l1 = e1, l2 = e2 − ye1, l 3 = xe1 + ye2 + e3 (41)

where we use the standard Cartesian coordinate system in R3 and where the vectors
ei, i = 1, 2, 3, denote the corresponding standard basis. The vector fields li, i = 1, 2, 3,
form a four-dimensional lattice algebra L. Indeed, calculating Lie brackets of the given
vector fields we obtain that

[l1, l2] = 0, [l1, l3] = l1, [l2, l3] = e2 = l4 (42)
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while
[l1, l4] = 0, [l2, l4] = l1, [l3, l4] = −l4. (43)

This also shows that the only non-vanishing components of the torsion of the lattice
connection induced by the frame {l1, l2, l3} are

T 1
13 = T 2

23 = 1, T 1
23 = y. (44)

Each generator lj , j = 1, . . . , 4, of the lattice algebra L induces a one-parameter
group of (smooth) transformations of U superposition of which provides a (left)
action (1) of a four-parameter group G = {(a, b, c, d) : a, b, c, d ∈ R} such that

φ((a, b, c, d), (x, y, z)) =
(
(x+ a− yb)ed, (y + b+ c)ed, z + d

)
(45)

where the group multiplication in G takes the form

gg =
(
a+ ae−d − b(b+ c), b+ b, (b+ c)e−d + c− b, d+ d

)
(46)

for any pair g, g ∈ G.
Selecting a point p0 = (x0, y0, z0) ∈ U , the isotropy group of the action φ at p0 is a

one-parameter subgroup G0 of G such that

G0 = {(y0b, b,−b, 0) : b ∈ R}. (47)

Viewing the group multiplication in G as the action of a group on itself, we can
determine the left- and the right-invariant vector fields onG by considering two tangent
maps: deLg : TeG→ TgG and deRg : TeG→ TgG where Lg and Rg represent the
left and, respectively, the right translation of G by an element g ∈ G. Thus, the
multiplication rule in G implies that

deLg =


1 −b −b −a
0 1 0 0
0 0 1 −(b+ c)
0 0 0 1

 (48)

and

deRg =


e−d −(b+ c) 0 0
0 1 0 0
0 e−d − 1 e−d 0
0 0 0 1

 , (49)

where e = (0, 0, 0, 0) is a unit element. This shows that the space of all left-invariant
vector fields on G is spanned by

v1 =g1, v2 = −bg1 + g2, (50)
v3 =− bg1 + g3, v4 = −ag1 − (b+ c)g3 + g4

while the space of all right-invariant vector fields on G is spanned by

w1 =e−dg1, w2 = −(b+ c)g1 + g2 + (e−d − 1)g3, (51)

w3 =e−dg3, w4 = g4
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where g1, . . . ,g4 denote the standard basis on G. It is easy to check that they
are isomorphic Lie algebras and that they are isomorphic to the lattice algebra L.
Moreover, one can show that the basis {v1, v2, v3, v4} is equivalent (via the inverse
map in G) to the right-invariant basis {w1, w2, w3, w4}.

Consider the orbit map φp0 : G→ U . Its tangent map dgφp0 : TgG→ Tφp0
(g)U

establishes an isomorphism between the right Lie algebra of G and the lattice algebra
L. Indeed, given the group action (45)

dgφp0 =

ed −y0ed 0 (x0 + a− y0b)ed
0 ed ed (y0 + b+ c)ed

0 0 0 1

 . (52)

Thus,

dgφp0


e−d −(b+ c) 0 0
0 1 0 0
0 e−d − 1 e−d 0
0 0 0 1

 =

1 −y 0 x
0 1 1 y
0 0 0 1

 (53)

where (x, y, z) = φ(g, p0) =
(
(x0 + a− y0b)ed, (y0 + b+ c)ed, z0 + d

)
.

This shows that the vector space Vc = span{v1,v2,v4} is indeed a canonical vec-
tor complement to the isotropy Lie subalgebra g0 = span{v0} = span{(y0, 1,−1, 0)}
in g. Moreover, the decomposition g0 ⊕Vc is reductive as

[v0,v1] = 0, [v0,v2] = −v1, [v0,v4] = −y0v1. (54)

Hence the lattice canonical connection exists. Relabeling the spanning set of Vc and
calculating the relevant Lie brackets we obtain that the torsion T̂ ijk has only three non-
zero components

T̂ 1
13 = T̂ 2

23 = −1 and T̂ 1
23 = −y0 (55)

while the most curvature coefficients R̂ijkl vanish except

R̂1
232 = −1 and R̂1

233 = −y0. (56)

Example 5. In our final example we revisit (Example 1) the lattice

l = {l1, l2} = {e1,−xe2} . (57)

The left Lie algebra g of the group G induced by l is spanned by

v1 = g1,v2 = g2 − ag3,v3 = g3 (58)

while its right algebra is generated by

w1 = g1 − bg3,w2 = g2,w3 = g3. (59)

Knowing that the tangent to the orbit map at a point p0 ∈ U evaluated at the identity
of G is

deφp0 =

(
1 0 0
0 x0 −1

)
(60)
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it should be easy to see that the corresponding canonical vector space Vc =
span{v1,v2} and that g = g0 ⊕Vc where the isotropy algebra g0 = span{v0} =
span{g2 − (a+ x0)g3}. Unfortunately, it should also be easy to see that such a
decomposition is not reductive as

[v1,v0] = −g3 /∈ Vc. (61)

Notes

1. A curvature is often associated with a presence of disclinations (18).
2. In other publications on this topic we use also a term lattice frame.
3. Our presentation is mathematically correct in any finite dimension n.
4. Note that not every lattice l defines a finite dimensional Lie algebra L. For example, a tree

trunk dislocation, defined on R2 − {0} by unit vector fields ∂
∂r

, 1
r
∂
∂θ

associated with the
polar coordinate system r, θ, induces, as it is easy to check, an infinitely dimensional Lie
algebra of vector fields, (9).

5. The left and right Lie algebras of any Lie group G are isomorphic. The isomorphism is
established by the inverse map i : G→ G, i.e., i(g) = g−1, where g ∈ G.

6. Looking back at the lattice l from Example 1, we can easily show that the only non-zero
torsion coefficient is T 2

12 = 1
x

. Viewing this lattice as immersed in R3, that is considering a
lattice

l = {l1, l2, l3} = {e1,−xe2, e3} (62)

one can show that the only non-vanishing component of the dislocation density tensor is
S23 = − 1

x
.

7. As we pointed out earlier not every lattice l induces a finite dimensional Lie algebra L. Thus,
by assuming that it does we restrict the choice of the kinematic states we are able to analyze
using this approach.

8. Note that the assumption that the homogeneous space admits a reductive decomposition is
essential for the existence of a canonical connection as there are non-reductive homogeneous
spaces which do not admit any invariant affine connection (1). On the other hand, every
reductive homogeneous space admits a (left-invariant) canonical connection (17).

9. This approach was first proposed in (3).
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