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Abstract. A model of a self driven evolution law of a defective anelastic continuum

is presented. Two-dimensional examples are discussed and the role of the Clausius-

Duhem inequality in imposing constitutive restrictions is investigated.

1. Introduction

When a material body undergoes a process of anelastic deformation the preexisting

pattern of inhomogeneities (defects, dislocations, etc.) gets modified. Such a process

is often trigged by a force (stress) applied at the boundary but it may also be caused by

the inhomogeneities themselves - or the internal stresses accompanying them - without

any external intervention. That is, the material may prefer either to relive internal

stresses by removing the inhomogeneities all together or it may just want to attain

a different, more ”favorable”, and more stable, configuration of inhomogeneities [9].

Such spontaneous processes, and we shall call them a self-driven evolution, are often

observed when a state is catalytically enhanced by an external field e.g., a temperature

field. One may also consider such self-driven processes as an approximation of real

processes triggered by a small change in boundary conditions.

In this paper, which is, in fact, a continuation and an extension of the previously

published work [5], we present a linear model of a self-driven anelastic evolution of

inhomogeneities law of a defective solid crystal body. Assuming that the material

body is made of triclinic crystals (has no macroscopic symmetries) and that the

evolution process does not alter these material symmetries, we discuss the situation

when the temporal evolution of the distribution of inhomogeneities is driven primarily

by the instantaneous density of inhomogeneities as represented by the torsion of the

unique material connection. Some preliminary results along these lines were published

already in [12].
1
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As we deal here with dissipative processes, we feel that it is necessary to discuss

also, however briefly, the thermodynamic context of these processes, in particular,

the role of the Clausius-Duhem inequality. Indeed, when investigating the contorted

aelotropy case [5], where only constant strain states [3] were allowed to participate,

and no internal stresses were present, there was no need to look at the thermodynamic

constraints. Now, as the choice of the distribution of inhomogeneities is such that

residual stresses may be present such analysis seems to be necessary. Postulating,

as we did in [5], that the evolution law, at least in principle, is independent of the

Eshelby stress [7] and depends only on the torsion of the unique material connection,

we consider the planar case only. We show subsequently that in dimension 2 the

torsion tensor can be presented in terms of the Eshelby stress tensor and its deriva-

tives. Re-writing the thermodynamic residual inequality in terms of the divergence

of the Eshelby stress allows us to discuss the role of the Clausius-Duhem inequality

in imposing constitutive restriction and/or selecting admissible processes.

2. Geometry of a uniform material body

We assume that the material body B is a continuum having the structure of a

smooth (real) differentiable manifold. We also assume that B is orientable, simply

connected and boundary-less. For the clarity and simplicity of this presentation, and

without much loss of generality, we postulate that B can be covered by a global

coordinate chart φ0 : B → R3 called the reference configuration. Such a configuration

endows the body B with the coordinate system, say, (X1, X2, X3) and the induced

flat matric g = φ∗0h where φ∗0 denotes the pull-back of the mapping φ0, and where h

is the Euclidean matric of the ambient physical space R3.

The mechanical properties of a simple (elastic) material body B are fully character-

ized by the density of the stored energy function per unit reference volume W(F,X)

where F denotes the gradient of the deformation φ◦φ−1
0 : R3 → R3 from the reference

configuration φ0(B) to the current configuration φ(B) and where X ∈ φ0(B). Pos-

tulating that the material body is materially uniform [15], that is that all points are

made of the same material, implies that there exist smoothly distributed throughout

the body manifold B uniformity maps P (X) [1] from a vector space V - known in

the literature [6] as an archetype of a material point - to the tangent space of the
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reference configuration, and a real-valued function Ŵ such that

W(F, X) = J−1
P Ŵ(FP (X)) (2.1)

for all deformation gradients F and any material point X, where JP denotes the

Jacobian of the mapping P .

Given a basis ei, i = 1, 2, 3, in the reference crystal V , the uniformity maps can be

represented as

P (X)(ei) = pI
i (X)

∂

∂XI
(2.2)

where ∂
∂XI denotes a frame on the manifold B as induced by the reference config-

uration, and where pI
i (X) take value in the special linear group SL(n,R). In fact,

pI
i (X) ∂

∂XI can also be viewed as a section of the bundle of linear frames of B [1]. Such

a section induces a global parallelism on B known as the material parallelism[1] [15].

The material connection associated with such a parallelism is given by the Lie algebra

sl(n, R)-valued 1-form

ΓI
K ≡ ΓI

JKdXJ (2.3)

the Christoffel symbols of which are

ΓI
JK = − ∂pI

i

∂XJ
pi

K . (2.4)

In general, neither the uniformity maps nor the corresponding material connection

are uniquely defined due to the presence of the non-trivial material symmetry group

(the isotropy of the strain energy W) [2]. However, as we consider here only material

bodies made of triclinic crystals, the symmetry group is trivial and the material

connection becomes unique. It has zero curvature but its torsion

T I
JK =

1

2
(ΓI

KJ − ΓI
JK) (2.5)

does not necessarily vanish. It has been recognized [5], but only in the triclinic

case, that the torsion of the material connection can be taken as the true measure of

the density of the distribution of inhomogeneities. That is, if the torsion vanishes the

material body is considered homogeneous as the distribution (2.2) is locally integrable,

i.e., it is generated by a finite configuration, and the identity (2.1) is trivially satisfied

by P ≡ id.
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The uniformity maps P define, in addition to the unique material connection ΓI
K ,

the unique material metric ĥ (see [4]) such that

ĥIJ = hijp
i
Ip

j
J (2.6)

in material coordinates. The material connection induced by material parallelism,

although not Riemanian, is metric. Therefore, the Christoffel symbols of the Levi-

Civita connection of the material metric ĥ take the form [13]

Γ̂I
JK = ΓI

JK −KI
JK (2.7)

where

KI
JK = T I

JK − ĥIL(ĥJNTN
KL + ĥKNTN

JL). (2.8)

We point out here that this duality of possible ways of describing geometrically the

inhomogeneities proves to be particularly useful when investigating the isotropic ma-

terial [15]. In this paper, we will not be investigating the modeling of the evolution

of inhomogeneities in such material bodies. However, some development along these

lines have already been presented in [4] when the curvature of the induced material

metric was used to model the evolution of inhomogeneities.

3. Law of evolution

The mechanical properties of the uniform material body, when considered in the

realm of purely elastic deformations, are adequately characterized by the density of

the stored energy function W , where the torsion of the material connection (or the

curvature of the material metric [4]) measure the density of the distribution of inho-

mogeneities. However, once inelastic processes are allowed to participate the stored

energy function alone does not fully describe the mechanical state of a material point.

Indeed, inelastic processes involve mechanisms which, in general, change the mechan-

ical properties of the material point by modifying the distribution of inhomogeneities.

In mathematical terms this means that during the inelastic evolution the uniform ref-

erence (2.2) evolves causing both the material connection and its torsion to change.

We postulate here, as we proposed in previous works [5], [12], when describing the

self-evolution of inhomogeneities, that regardless of the state of stress the density of

inhomogeneities is the driving force behind the intrinsic (inelastic) evolution of these
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inhomogeneities. In other words, assuming that internal stresses are either not present

or simply negligible we postulate that the evolution of inhomogeneities is governed

by the law
dP

dt
(X, t) = f(T (X, t), P (X, t)) (3.1)

where T is the torsion o the instantaneous material connection generated by the cur-

rent uniformity map P , and where f is assumed as smooth as needed and independent

of the material point. Invoking the principle of covariance [6], that is, assuming that

the physical law must be independent of any particular reference configuration, one

can show [5], [6] that the relation (3.1) reduces to

dP

dt
(X, t) = P (X, t)f(W (X, t), I), (3.2)

or equivalently, that it takes the form

L(P (X, t)) = f(W (X, t), I) (3.3)

where

L ≡ P−1dP

dt
(3.4)

is called the inhomogeneity velocity gradient [6] and where W denotes the pull-back,

by the uniformity maps P , of the torsion tensor T to the reference crystal V . We

further restrict our considerations by imposing a linear law of evolution such that

L(P ) = CW (3.5)

where C is a fifth order tensor of material constants. In components, the evolution

law (3.5) takes the form

Li
j = pi

I ṗ
I
j = Ci kl

jn pn
MpN

k pL
l TM

NL = Ci lm
jk W k

lm. (3.6)

4. 2-dimensional model

To illustrate effectively our simple model and to show the range of phenomena it

can capture, we adopt the general model introduced in the previous section (3.3) to

the planar evolution of an otherwise 3-dimensional uniform material body B. As we

have indicated earlier, we restrict our attention to a body made of solid crystals and



6 MAREK ELŻANOWSKI AND SERGE PRESTON

such that the uniformity maps P are, and remain during the evolution, independent

of, say, X3 coordinate.

Adopting an orthonormal coordinate frame in the reference crystal V and a Carte-

sian coordinate system in a fixed reference configuration, we calculate the torsion of

the unique material connection taking values in the Lie algebra of the special linear

group sl(2, R) and its realization (a pull-back) in the reference crystal V . In other

words, we select the uniformity maps such that

p(X1, X2, X3, t) =




a(X1, X2, t) b(X1, X2, t) 0

c(X1, X2, t) d(X1, X2, t) 0

0 0 1


 , (4.1)

where ab− cd = 1 at all times and at all material points of the body. The connection

form of the material connection (2.4) induced by the uniformity maps (4.1) can now

be calculated as

ΓI
JKdXJ = −

(
da,X1 −cb,X1 −ba,X1 +ab,X1

dc,X1 −cd,X1 ad,X1 −bc,X1

)
dX1

−
(

da,X2 −cb,X2 −ba,X2 +ab,X2

dc,X2 −cd,X2 ad,X2 −bc,X2

)
dX2, (4.2)

where comma denotes partial derivative. Hence, the non-vanishing components of

the torsion tensor are:

T 1
12 =

1

2
(Γ1

12 − Γ1
21) = −1

2
[−b · a,X1 +a · b,X1 −d · a,X2 +c · b,X2 ],

T 2
12 =

1

2
(Γ2

12 − Γ2
21) = −1

2
[a · d,X1 −b · c,X1 −d · c,X2 +c · d,X2 ] (4.3)

To facilitate our future analysis of the two dimensional evolution law, we introduce

also the trace 1-form of the torsion tensor. To this end we define

ω = T I
JIdXJ . (4.4)

The availability of the trace form ω allows us to decompose the torsion of a connection

into its traceless and diagonal parts, respectively. Namely, we have that

T̂ = T − T̃ where T̃ I
JK =

1

1− n
(δI

JωK − δI
KωJ). (4.5)
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This yields

T̃ I
JI =

1

1− n
(ωJ − nωJ) = ωJ , and T̂ I

JI = 0 (4.6)

where n denotes the space dimension. In particular, when n = 2, T̂ vanishes and one

obtains that

T I
JK = −(δI

JωK − δI
KωJ). (4.7)

Given the choice of the uniformity maps (4.1), the trace 1-form ω takes the form

ω = T 2
12dX1 − T 1

12dX2 = −1

2
(ad,X1 −bc,X1 −dc,X2 +cd,X2 )dX1

+
1

2
(−ba,X1 +ab,X1 −da,X2 +cb,X2 )dX2. (4.8)

The components of the pullback of the torsion tensor to the reference crystal W

in the standard euclidian basis of V and the material frame induced by the reference

configuration are

W i
jk = pi

MpN
j pL

k TM
NL = pi

M(p1
jp

2
k − p2

jp
1
k)T

M
12 . (4.9)

As both the pullback W and the torsion T have the same symmetries, and as p1
1p

2
2 −

p2
1p

1
2 = det p = 1, the only non-vanishing components of W are:

W i
12 = pi

M(p1
1p

2
2 − p2

1p
1
2)T

M
12 = pi

MTM
12 (4.10)

for i = 1, 2. Combining relations (4.5) and using the definition of the 1-form ω (4.4),

we obtain that

W i
jk = pi

Ip
J
j pK

k T I
JK = −δi

jp
K
k ωK + δi

kp
K
j ωK . (4.11)

Consequently, the only non-vanishing components of W are

W 1
12 = −pK

2 ωK = −bω1 − dω2 and W 2
12 = pK

1 ωK = aω1 + cω2. (4.12)

More specifically, either using the original definition of W (4.10) or the relation (4.12),

we obtain that in our special two dimensional case (4.1)

W 1
12 = dT 1

12 − bT 2
12 = −1

2
[bx + dy] and W 2

12 = −cT 1
12 + aT 2

12 =
1

2
[ax + cy]. (4.13)

where we have benefited from the fact that ad− bc = 1.
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5. Linear evolution

As we have indicated earlier, the material velocity of evolution of the uniformity

maps P is given by the sl(2, R)-valued inhomogeneity velocity gradient L (3.4). Its

coordinate representation in the planar case (4.1) takes the form

L =




dȧ− bċ dḃ− bḋ 0

−cȧ + aċ −cḃ + aḋ 0

0 0 0


 . (5.1)

Thus, when the linear evolution law (3.6) is adopted, and taking into consideration

the fact that the tensor W has only two non-vanishing components, the four non-

vanishing components of the tensorial evolution law (3.6) can be written as

Li
j =(k) C i

jW
k
12 =(2) Ci

jp
K
1 ωK −(1) Ci

jp
K
2 ωK , (5.2)

where

(1)C =

(
A E

F −A

)
, (2)C =

(
B D

G −B

)
(5.3)

are constant, volume preserving, matrices of constitutive parameter such that

(k)C
j
l ≡ Cj 12

kl − Cj 21
kl . (5.4)

Taking into account the form of the pull-back of the torsion tensor W (4.13) the evo-

lution law (5.2) reduces to a system of four first-order quasi-linear partial differential

equations

ȧ = (Aa + Fb)[b,X1 −d,X2 ] + (Ba + Gb)[a,X1 +c,X2 ],

ḃ = (Ea− Ab)[b,X1 −d,X2 ] + (Da−Bb)[a,X1 +c,X2 ],

ċ = (Ac + Fd)[b,X1 −d,X2 ] + (Bc + Gd)[a,X1 +c,X2 ],

ḋ = (Ec− Ad)[b,X1 −d,X2 ] + (Dc−Bd)[a,X1 +c,X2 ].

(5.5)

It is worth pointing out that the equations (5.5) are not independent as ȧd+aḋ− ḃc−
bċ = 0 due to the fact that the inhomogeneity velocity gradient L takes values in the

algebra of traceless matrices. Moreover, the system (5.5) is not strictly hyperbolic

for all choice of material constants. In fact, it is often degenerate as at least one

eigenvalue of its characteristic matrix always vanishes.
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We do not attempt to present here the complete analysis of this system. Rather,

for the sake of specificity and clarity of presentation as well as to be able to illustrate

effectively different types of evolution, we shall concentrate on a number of particular

cases restricting the choice of the uniformity maps P to specific subgroups of the

special linear group. To be able to present our analysis effectively and efficiently we

point out first that the coordinate representation of the uniformity map depends,

naturally, on the choice of bases in the reference crystal V . On the other hand, a

change of bases, does not change the coordinate representation of the corresponding

material connection. It, however, does change by conjugation the inhomogeneity

velocity gradient L and the pull-back of the torsion tensor W . Consequently, the

material coefficients C transform in V like a tensor. It would now be easy to show

that the components of matrices (k)C transform by conjugation too. In other words,

viewing the change of bases as the action of the special linear group SL(2,R) on the

pair of 2 × 2 traceless matrices of material constants (1)C and (2)C we realize that

the choice of such parameters is invariant within orbits of such an action. Indeed,

selecting two different sets of material coefficients from within the same orbit will

produce the same tensorial evolution law (5.2). Thus, it appears that when analyzing

different uniform structures, we may benefit from selecting canonical representations

of the corresponding SL(2,R)-orbits. In particular, we are interested in the Borel

subalgebra of upper-triangular traceless matrices
(

A E

0 −A

)
(5.6)

as well as such special subalgebras as the nilpotent subalgebra and the diagonal

subalgebras (
0 E

0 0

)
,

(
0 −A

A 0

)
and

(
A 0

0 −A

)
, (5.7)

respectively.

6. Examples

In order to illustrate better different types of evolution, we consider in this section

a number of specific cases selecting the uniformity maps P from different subgroups

of the special linear group, such as, orthogonal, diagonal and triangular matrices,
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respectively. Our objective is show how different distributions of inhomogeneities

evolve.

6.1. Contorted aelotropy (orthogonal) case. Assuming that the uniform refer-

ence represents the state of constant strain [14] and that the evolution proceeds only

within the realm of such states, implies [3] that the uniformity maps (4.1) can be

represented as planar rotations

p(X1, X2, X3, t) =




cos θ − sin θ 0

sin θ cos θ 0

0 0 1


 (6.1)

where θ = θ(X1, X2, t) measures the counterclockwise rotation. The essential Christof-

fel symbols of the corresponding material connection (2.4) can now be easily evaluated

as

ΓI
JK =

(
0 1

−1 0

)
θ,XI (6.2)

where I, J,K = 1, 2 only. This yields the following non-vanishing components of the

torsion tensor

T 1
12 =

1

2
θ,X1 , T 2

12 =
1

2
θ,X2 , (6.3)

while the torsion trace 1-form ω reduces to

ω =
1

2
θ,X2 dX1 − 1

2
θX1dX2. (6.4)

Substituting these formulas into (4.13) shows that

W 1
12 =

cos θ

2
θ,X1 +

sin θ

2
θ,X2 , W 2

12 =
cos θ

2
θ,X2 −sin θ

2
θ,X1 . (6.5)

Skew symmetry of the tensor W renders a number of material constants redundant

reducing the evolution law to a single hyperbolic quasi-linear differential equation for

the angle of rotation θ

2θ,t = (D sin θ − E cos θ)θ,X1 −(E sin θ + D cos θ)θ,X2 . (6.6)

The above equation models, depending on the choice of initial conditions and the

value of material parameters E and D, such phenomena as dissipation of dislocations

(rarefaction waves) and dislocation pileups (shock waves), as it was shown in [5].
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6.2. Diagonal case. Let us suppose now that we deal with the inhomogeneous ma-

terial body such that the only distributions of inhomogeneity allowed are those rep-

resented by the ”diagonal” uniformity maps. In other words, the state of inhomo-

geneities is modeled at all points and all times by

p(X1, X2, X3, t) =




a(X1, X2, t) 0 0

0 1/a(X1, X2, t) 0

0 0 1


 . (6.7)

The material connection takes the form

ΓI
J = −1

a

(
1 0

0 −1

)
[a,X1 dX1 + a,X2 dX2], (6.8)

I, J = 1, 2, inducing the torsion tensor such that

T 1
12 =

1

2
a−1a,X2 , T 2

12 =
1

2
a−1a,X1 , (6.9)

and the torsion trace 1-form

ω =
1

2
a−1a,X1 dX1 − 1

2
a−1a,X2 dX2. (6.10)

The pull-back of the torsion tensor has only two non-vanishing components

W 1
12 = −1

2
a−2a,X2 , W 2

12 =
1

2
a,X1 . (6.11)

One can easily calculate the inhomogeneity velocity gradient as

Li
j =

1

a




a,t 0 0

0 −a,t 0

0 0 0


 . (6.12)

Comparing this inhomogeneity velocity gradient L with the corresponding plastic

distortion rate tensor

LP ≡ P−1LP (6.13)

of finite strain plasticity [10] shows that it represents a plastic slip system on two

perpendicular planes with the identical shear rates [12].

The form of the inhomogeneity velocity gradient (6.12), and that of the torsion

tensor, forces most material constants to vanish thus reducing the law of evolution to
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a single equation for the function a, namely

a,t =
B

2
aa,X1 −A

2
a−1a,X2 =

(
Ba

2
,− A

2a

)
∇a (6.14)

where the pair
(

Ba
2

,− A
2a

)
shall be called the evolution vector. The equation is hy-

perbolic and it models the same class of phenomena as the evolution equation of the

contorted aelotropy (6.6). In particular, its generic continuous solutions can be gen-

erated by the following procedure. First, by re-scaling the spatial variables we can

reduce the equation (6.14) to

at = aa,X1 −a−1a,X2 . (6.15)

Assuming invertibility of solutions, we re-write our differential equation in terms of

the new unknown function t(X1, X2, a)

at,X1 −a−1t,X2 = 1. (6.16)

This is a linear, inhomogeneous, first order differential equation where X1, X2 and a

are considered independent variables. Its particular solution is, for example,

tp =
X1

a
. (6.17)

The general solution of the homogeneous counterpart of the equation (6.16) takes the

form

th = f(a, x + a2y) (6.18)

where f is an arbitrary function of two variables. Superposing both solutions one

obtains the implicit form of the general solution of the evolution law (6.14)

t =
x

a
+ f(a, x + a2y). (6.19)

6.3. Upper triangular case. Consider now a situation in which the evolution of

inhomogeneities is such that the uniformity maps are at all times and at all material

points represented by the upper triangular matrices

p =




a b 0

0 a−1 0

0 0 1


 (6.20)
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where a and b are functions of X1, X2 and t only. The corresponding inhomogeneity

gradients L and the matrices of material constants (i)C, i = 1, 2, belong to the

subalgebra of traceless upper triangular matrices. We also note that

W 1
12 = −1

2
[b,X1 −a−2a,X2 ], W 2

12 =
1

2
a,X1 . (6.21)

As a result, the evolution equations take the form

a,t = −Aa

2
[b,X1 −a−2a,X2 ] +

Ba

2
a,X1 ,

b,t = −1

2
(Ea− Ab)[b,X1 −a−2a,X2 ] +

Da−Bb

2
a,X1 .

(6.22)

The characteristic matrix of the system (6.22) is

M =
1

2

(
aB −aA

Da−Bb Ab− Ea

)
σ1 +

1

2

(
a−1A 0

a−2(Ea− Ab) 0

)
σ2, (6.23)

where σ = σ1dx+σ2dy is the co-vector of characteristic co-direction. It should be easy

to see that depending on the choice of material parameters the type of the system

changes. In particular, it is hyperbolic only for some, very particular, choice of the

parameters A,B, D, E. To show how different this case can be from the previously

investigating evolutions we shall consider the nilpotent case.

6.4. Nilpotent case. We assume that the state of inhomogeneity is given by the

upper-triangular matrices and remains during the planar evolution as

p(X1, X2, t) =




1 b(X1, X2, t) 0

0 1 0

0 0 1


 . (6.24)

As a result

W 1
12 = −1

2
b,X1 and W 2

12 = 0. (6.25)

The only equation left from the system of evolution equations (5.5) is a simple trans-

port equation

ḃ = EW 1
12 = −E

2
b,X1 . (6.26)

Its general solution is a traveling wave

b = f(X1 − E

2
t), (6.27)
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where f(·) is an arbitrary function defining the initial profile of the distribution.

7. Thermodynamic constraints

In this final section, considering the dissipative nature of the processes we have been

investigating, we the role of the Clausius-Duhem [10], [6] in imposing thermodynamic

constraints on the evolution law.

As we have pointed out in [12], the main obstacle in dealing effectively with the

issue of thermodynamic constrains, within the framework adopted here, is the very

fact that our evolution law (3.1) seems to be independent of the Eshelby stress. Yet,

it is commonly accepted that that the Eshelby stress is the driving force behind the

evolution of inhomogeneities [8], [11]. As we show in the next section, this apparent

independence of the torsion driven evolution from the Eshelby tensor may not neces-

sarily be true. Indeed, after all, both objects describe the same physical concept of

a distribution of inhomogeneities. Hence, our first task is to express, when possible,

the torsion of the unique material connection in terms of the Eshelby stress.

7.1. Eshelby stress tensor and torsion. The Eshelby stress tensor, known also

as the Eshelby energy-momentum tensor, being a generalization of the Piola-Kirchoff

stress, is defined for uniform material [6] as

b ≡ −∂W
∂P

= −∂Ŵ
P

P T (7.1)

where P T denotes the transpose of the representation of the uniformity map P and

where P ’s are assumed volume preserving. Enforcing the balance of linear momentum

law implies, as shown in [6], the following relation between the torsion of the material

connection and the Eshelby tensor:

bI
J ;I = −bI

KTK
JI + bI

JTK
IK = −bI

KTK
JI + bI

JωI , (7.2)

where ; denotes covariant differentiation with respect to the material connection,

and where the definition of the torsion trace 1-from (4.4) was utilized. The balance

equation (7.2) is satisfied identically be the Eshelby stress tensor associated with a

solution to a particular boundary-value problem.
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As we are able to represent (in two dimensions) the torsion tensor via the trace

form ω (4.5), the balance equation (7.2) reduces to

bI
J ;I = ωJ − bI

JωJ . (7.3)

In other words, in the planar case, and the planar case only, one is able to represent

the torsion of the material connection as a function of the Eshelby stress tensor and

its covariant derivatives. This rather simple fact has far reaching consequences for

the analysis of cases we consider in this presentation. Indeed, having the relation

between the torsion tensor and the Eshelby stress available allows us to present the

residual inequality of the Clausius-Duhem inequality in terms of the components of

the Eshelby stress without compromising our original assumption about the torsion

being the impetus for the evolution of inhomogeneities.

7.2. Entropy production. The residual part of the Clausius-Duhem inequality un-

der the isothermal conditions takes the form [6], [10]

tr(bT LP ) ≤ 0 (7.4)

where bT denotes the transpose of the Eshelby stress tensor (7.1) and LP is the plastic

distortion rate tensor (6.13). In the planar case, and for the linear evolution law (5.2),

the inequality reduces to

bI
Jpi

Ip
J
j ((2)C

j
i p

K
1 ωK −(1) Cj

i p
K
2 ωK) ≤ 0 (7.5)

where i, j, I, J = 1, 2. Although, in general, it does not seem to be possible to replace

in (7.5) the trace torsion form ω by the Eshelby stress and/or its derivatives via (7.3),

in all particular cases investigated in this work the Clausius-Duhem inequality (7.5)

gets reduced to a rather simple form . Indeed, assuming that the evolution of inho-

mogeneities is given the diagonal uniformity maps (6.7), the inhomogeneity velocity

gradient becomes

Li
j =

(
−A 0

0 A

)
a−1ω2 +

(
B 0

0 −B

)
aω1. (7.6)

On the other hand, using (7.3), elementary calculations show that

ωI =
bJ
I,J

b2
2 − b1

1

(7.7)
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provided the Eshelby stress tensor is such that b1
1 6= b2

2. Note that this assumption does

not restrict in any way the choice of the Eshelby stress as the condition b1
1 = b2

2 implies

the vanishing of the divergence bJ
I,J implying, in turn, homogeneity [3]. Combining the

expression for the inhomogeneity velocity gradient (7.6) and the form of the torsion

trace 1-form (7.7) we finally obtain the following corresponding plastic distortion rate

tensor

LI
P J =

1

a(b 2
2 − b 1

1 )

(
−[Ab K

2 , K −Ba2b K
1 , K ] 0

0 [Ab K
2 , K −Ba2b K

1 , K ]

)
, (7.8)

where I, J = 1, 2 and the summation convention of repeated indices is enforced. This

yields the following form of the Clausius-Duhem inequality (7.5):

A
b K
2 , K

a
−Bab K

1 , K ≤ 0. (7.9)

Not that the left hand side of the residual inequality represents the scalar product

of the divergence vector of the Eshelby stress tensor and the evolution vector (6.14).

Given the stored energy function W(F,X) of a uniform material body admitting the

particular class of uniformity maps and the corresponding Eshelby stress tensor, in

particular, its divergence, and assuming that the material parameters A and B of the

evolution law are arbitrary, the residual inequality (7.9) restricts the choice of the

evolution processes.

In the contorted aelotropy case the entropy production tr(bT LP ) can again be

represented as the product of the divergence vector of the Eshelby stress and the

corresponding evolution vector

− (D sin θ − E cos θ, E sin θ + D cos θ) . (7.10)

However, due to the fact that the plastic distortion rate tensor of the orthogonal

evolution

Li
j = −

(
0 −1

1 0

)
[(D sin θ − E cos θ) θX1 + (E sin θ + D cos θ) θX2 ] (7.11)

is skew-symmetric while the corresponding Eshelby stress tensor is symmetric, in fact,

diagonal [6], the residual inequality is trivially satisfied.

We would like to conclude our investigations by looking again at the nilpotent

case (6.24). Given the non-vanishing components of the torsion pullback (6.25) we
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know that the trace torsion 1-form is

ω =
E

2
b,X1 dX2, (7.12)

and that the only non-vanishing component of the inhomogeneity velocity gradient,

which in this case is identical to the plastic distortion rate tensor, is

L2
1 = −E

2
b,X1 . (7.13)

The plastic distortion rate tensor can now be represented as

L2
P 1 = − E

2b2
1

bJ
1,J (7.14)

which yields the following residual Clausius-Duhem inequality

−Eb1
2

2b2
1

bJ
1,J ≤ 0. (7.15)

Taking (−E/2, 0) as the evolution vector, the entropy production is again propor-

tional to the scalar product of the divergence of the Eshelby stress tensor and the

corresponding evolution vector. Moreover, as the parameters of the evolution process

are not explicitly present, and assuming that the Eshelby stress tensor can be selected

arbitrarily1 , it implies that E = 0 and no processes of this kind are allowed.
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[12] S. Preston, M. Elżanowski: Modelling the evolution of inhomogeneities, Proceedings of STAMM

2004, in print.

[13] J. Schouten: Ricci Calculus (Springer-Verlag, Berlin, 1954)

[14] C. Truesdell, W. Noll: The Non-linear Field Theories of Mechanics, 2nd ed. (Springer-Verlag,

Berlin, 1992)

[15] C-C. Wang, C. Truesdell: Introduction to Rational Elasticity (Nordhoff, Leyden 1973)

Department of Mathematics and Statistics, Portland State University, Portland,

OR, U.S.

E-mail address: elzanowskim@pdx.edu

Department of Mathematics and Statistics, Portland State University, Portland,

OR, U.S.

E-mail address: serge@pdx.edu


