NGsolve::Take the rough with the smooth

Multilevel methods

Jay Gopalakrishnan

Portland State University

Winter 2015

Download code (works only for version 6.0) for these notes from here.
Contents

1. Smoother

2. Coarse grid correction

3. Using multigrid with NGSolve’s built-in facilities
A Multigrid iteration is an iteration that reduces error using a hierarchy of successively refined multilevel grids:

- The error has rough components and smooth components.
- Rough error components must be damped on fine grids.
 - Need smoothers that reduce the high frequencies of the error.
- Smooth error components may be corrected on coarser grids.
 - Coarser grids must be sent projection of errors.

We typically do not know the error. But to understand the ideas, we now consider a case where the exact solution $u = 0$, so that its approximating iterates u^n coincide with the error $u^n - 0$.
If A is a symmetric positive definite matrix, and $D = \text{diag}(A)$, then

$$u^{n+1} = u^n + \omega D^{-1}(f - Au^n), \quad n = 1, 2, \ldots$$

is the classical scaled Jacobi iteration.

- For what scaling factor ω does it converge to $A^{-1}f$? (See e.g., Theorem 50 of MG diary from a previous course.)

- We are not interested in convergence of Jacobi iterations, but rather in its smoothing properties.

- Take a look at the implementation in smoothproject.cpp with $f = 0$ (so the exact solution $u = A^{-1}f = 0$).
A simple implementation

```cpp
class NumProcSmoothProject : public NumProc {
    // :
    // :
    double Jacobi(const BaseSparseMatrix & A,
                   const BaseSparseMatrix & B,
                   BaseVector & u, const BaseVector & f) {
        auto r = u.CreateVector();
        r = A * u;
        double anormu2=InnerProduct(u, r); // compute || u || A^2
        r -= f; // r = A*u - f
        u -= B * r; // u = u + B*( f - A*u )
        return anormu2;
    }
```

- The assembled matrix A is got from a Laplace bilinear form.
- The matrix $B = \omega D^{-1}$ is made as private data in `NumProcSmoothProject::SetInitLevels()`.
Run the pde file

Compile using make. Load smoothproject.pde.

```plaintext
# : FILE: smoothproject.pde
#

shared = libmg

fespace v -type=nodal         # lowest order space

bilinearform a -fespace=v -symmetric
laplace (1.0)
mass     (1.0)

gridfunction u -fespace=v -nested

numproc smoothproject nps -gridfunction=u -bilinearform=a -fespace=v
-numiters=100 -omega=0.1 -random -demo=1
```

Make sure the `-demo=1` flag is set and press Solve twice.
Smoothing effect of Jacobi iterations

In addition to observing that \(\|u^n\|_A \to 0\), we also observe that

\[
\|(I - P_0)Ku^n\|_A \to 0
\]

where \(K = I - \omega D^{-1}A\) and \(P_0\) is the coarse “elliptic projection” (the projection in \(A\)-inner product) implemented in NumProcSmoothProject::EllipticProjection.
Smoothing effect of Jacobi iterations

Random initial iterate u^1

Jacobi iterate u^{100}

Coarse projection of u^1

Coarse projection of u^{100}
Smoothing effect of Jacobi iterations

Conclusions from this demo:

- Jacobi iterations smooth the error.
- The smoothed iterates are well-representable on the coarser grid.
- Why not project to the next coarser grid and iterate there? → MG!
Prolongation and restriction

<table>
<thead>
<tr>
<th>Lagrange space V_0</th>
<th>Lagrange space V_1</th>
</tr>
</thead>
<tbody>
<tr>
<td>Basis ${\phi_j^0}$</td>
<td>Basis ${\phi_j^1}$</td>
</tr>
</tbody>
</table>

Since $V_0 \hookrightarrow V_1$, any function $v_0 \in V_0$ can be expressed in both basis:

$$v_0 = \sum_j c_j^0 \phi_j^0 = \sum_l c_l^1 \phi_l^1$$

- The **prolongation** matrix C_{lj} satisfies $c_l^1 = \sum_j C_{lj} c_j^0$.

- The **restriction** matrix is its transpose C^t.

- A object of class Prolongation can be obtained from the Lagrange finite element space in NGSolve.
A Multigrid Vcycle

class NumProcSmoothProject : public NumProc {
 // :
 void MG(int level, BaseVector & u, const BaseVector & f) {
 if (level==0) { u = (*A0inv) * f; }
 else {
 // get matrices A(k) and D(k) at level k, etc
 Jacobi(A, D, u, f); // u = u + D*(f - A*u)
 r = f - A * u;
 prl->RestrictInline(level, r); // r0 = Q*(f - A*u)
 MG(level-1, w0, r0); // recurse: w0=MG(0,r0)
 prl->ProlongateInline(level,w); // w = w0
 u += w; // u = u + MG(0, r0)
 Jacobi(A, D, u, f); // smooth again
 }
 }
};
Solve by multigrid cycles

- In the pde file, change `-demo=1` to `-demo=2` to run the multigrid V-cycle.

- You should see $\|u^n\|_A \rightarrow 0$ much faster.
Use multigrid as a preconditioner in Conjugate Gradients:

```bash
preconditioner c -type=multigrid -bilinearform=a -smoother=block
numproc bvp np1 -preconditioner=c -bilinearform=a -linearform=f
-solver=cg -innerproduct=hermitian -gridfunction=u
```

See examples in `pde_tutorial`: `d1_square.pde`, `d2_chip.pde`, etc.

Higher order FESpaces use their lowest order subspaces for multigrid.

An alternate technique to code the Jacobi smoother as a preconditioner is in `my_little_ngsolve/myPreconditioner.cpp`:

```cpp
// Get matrix "mat" from bilinear form. Then:
jacobi = mat.CreateJacobiPrecond (freedofs);
```

For more general block smoothers, use `CreateBlockJacobiPrecond`.