An HDG method for the velocity-vorticity formulation

Jay Gopalakrishnan

University of Florida

Collaborator: B. Cockburn

April 2009 Finite Element Circus, Delaware

Thanks: NSF

- Hybridizable DG methods (HDG) were discovered in
 - [Cockburn, G., Lazarov, 2009] "Unified hybridization of DG, mixed, and CG methods for second order elliptic problems", SINUM.
 - Many authors analyzed HDG, and extended to various applications.

- This talk is on an HDG method for Stokes flow:
 - [Cockburn, & G., 2009] "The derivation of hybridizable discontinuous Galerkin methods for Stokes flow", SINUM.

$$\begin{aligned} -\Delta \mathbf{u} + \operatorname{grad} p &= \mathbf{f}, & \text{on } \Omega, \\ \operatorname{div} \mathbf{u} &= \mathbf{0}, & \text{on } \Omega, \\ \mathbf{u} &= \mathbf{0}, & \text{on } \partial \Omega. \end{aligned}$$

Since $-\Delta u = \operatorname{curl} \operatorname{curl} u - \operatorname{grad} \operatorname{div} u$, the Stokes equations can be rewritten using vorticity ω :

$\boldsymbol{\omega} - \operatorname{curl} \mathbf{u} = 0,$	on Ω ,
$\operatorname{curl} \boldsymbol{\omega} + \operatorname{grad} \boldsymbol{p} = \mathbf{f},$	on Ω ,
$\operatorname{div} \mathbf{u} = 0,$	on Ω .

$$\begin{split} \omega &-\operatorname{curl} \mathbf{u} = 0 \implies (\omega, \tau)_{\Omega} - (\mathbf{u}, \operatorname{curl} \tau)_{\Omega} &= 0\\ \operatorname{curl} \omega &+ \operatorname{grad} p = \mathbf{f} \implies (\mathbf{v}, \operatorname{curl} \omega)_{\Omega} &= (\mathbf{v}, \mathbf{f})_{\Omega}\\ \operatorname{div} \mathbf{u} &= 0 \implies (\operatorname{imposed in the space}). \end{split}$$

$$\begin{split} \boldsymbol{\omega}, \boldsymbol{\tau} &\in \quad H(\operatorname{curl}) \\ \mathbf{u}, \mathbf{v} &\in \quad \{\mathbf{v} \in H(\operatorname{div}) : \ \operatorname{div} \mathbf{v} = \mathbf{0}, \quad \mathbf{v} \cdot \mathbf{n}|_{\partial \Omega = \mathbf{0}} \}. \end{split}$$

Known approaches:

- Use stream function [Girault & Raviart, 1986]
- Use a double hybridization [Cockburn & G., 2000]
- Use DG [Carrero, Cockburn, Schötzau, 2006]

This talk's approach: hybrid DG

DG methods

 $\omega - \operatorname{curl} \mathbf{u} = \mathbf{0} \implies$

 $(\omega_h, au)_{\mathcal{K}} - (\mathbf{u}_h, \operatorname{curl} au)_{\mathcal{K}} + \langle \widehat{\mathbf{u}}_h, \mathbf{n} imes au
angle_{\partial \mathcal{K}} = \mathbf{0},$

 $\operatorname{curl} \omega + \operatorname{grad} p = \mathbf{f} \quad \Longrightarrow$

 $(\boldsymbol{\omega}_h,\operatorname{curl} \mathbf{v})_{\mathcal{K}} + \langle \widehat{\boldsymbol{\omega}}_h, \mathbf{v} \times \mathbf{n} \rangle_{\partial \mathcal{K}} - (p_h, \operatorname{div} \mathbf{v})_{\mathcal{K}} + \langle \widehat{p}_h, \mathbf{v} \cdot \mathbf{n} \rangle_{\partial \mathcal{K}} = (\mathbf{f}, \mathbf{v})_{\mathcal{K}},$

 $\operatorname{div} \mathbf{u} = \mathbf{0} \implies$

 $-(\mathbf{u}_h, \mathbf{grad} \ q)_{\mathcal{K}} + \langle \widehat{\mathbf{u}}_h \cdot \mathbf{n}, q \rangle_{\partial \mathcal{K}} = \mathbf{0},$

• Numerical traces: $\hat{\mathbf{u}}_h \times \mathbf{n}$, $\hat{\boldsymbol{\omega}}_h \times \mathbf{n}$, $\hat{\boldsymbol{p}}_h$, $\hat{\mathbf{u}}_h \times \mathbf{n}$.

• Element spaces: $\omega_h, \tau \in \mathsf{W}(\mathsf{K}), \quad \mathsf{u}_h, \mathsf{v} \in \mathsf{V}(\mathsf{K}), \quad p_h, q \in \mathsf{P}(\mathsf{K}).$

Various DG methods are obtained by prescribing various numerical traces and element spaces.

HDG method

Q: Are there choices of numerical traces $\hat{\mathbf{u}}_h \times \mathbf{n}$, $\hat{\boldsymbol{\omega}}_h \times \mathbf{n}$, $\hat{\boldsymbol{p}}_h$, $\hat{\mathbf{u}}_h \times \mathbf{n}$ that yield a hybridizable method? A: (our main result) Yes!

HDG method

Q: Are there choices of numerical traces $\hat{\mathbf{u}}_h \times \mathbf{n}$, $\hat{\boldsymbol{\omega}}_h \times \mathbf{n}$, $\hat{\boldsymbol{\rho}}_h$, $\hat{\mathbf{u}}_h \times \mathbf{n}$ that yield a hybridizable method? A: (our main result) Yes!

$$\begin{aligned} (\widehat{\boldsymbol{\omega}}_{h})_{t} &= \left(\frac{\tau_{t}^{-}\left(\boldsymbol{\omega}_{h}^{+}\right)_{t} + \tau_{t}^{+}\left(\boldsymbol{\omega}_{h}^{-}\right)_{t}}{\tau_{t}^{-} + \tau_{t}^{+}}\right) + \left(\frac{\tau_{t}^{+}\tau_{t}^{-}}{\tau_{t}^{-} + \tau_{t}^{+}}\right) \left[\!\left[\mathbf{u}_{h}\times\mathbf{n}\right]\!\right], \\ (\widehat{\mathbf{u}}_{h})_{t} &= \left(\frac{\tau_{t}^{+}\left(\mathbf{u}_{h}^{+}\right)_{t} + \tau_{t}^{-}\left(\mathbf{u}_{h}^{-}\right)_{t}}{\tau_{t}^{-} + \tau_{t}^{+}}\right) + \left(\frac{1}{\tau_{t}^{-} + \tau_{t}^{+}}\right) \left[\!\left[\mathbf{n}\times\boldsymbol{\omega}_{h}\right]\!\right], \\ (\widehat{\mathbf{u}}_{h})_{n} &= \left(\frac{\tau_{n}^{+}\left(\mathbf{u}_{h}^{+}\right)_{n} + \tau_{n}^{-}\left(\mathbf{u}_{h}^{-}\right)_{n}}{\tau_{n}^{-} + \tau_{n}^{+}}\right) + \left(\frac{1}{\tau_{n}^{-} + \tau_{n}^{+}}\right) \left[\!\left[\mathbf{p}_{h},\mathbf{n}\right]\!\right], \\ \widehat{p}_{h} &= \left(\frac{\tau_{n}^{-}p_{h}^{+} + \tau_{n}^{+}p_{h}^{-}}{\tau_{n}^{-} + \tau_{n}^{+}}\right) + \left(\frac{\tau_{n}^{+}\tau_{n}^{-}}{\tau_{n}^{-} + \tau_{n}^{+}}\right) \left[\!\left[\mathbf{u}_{h}\cdot\mathbf{n}\right]\!\right], \end{aligned}$$

- $\bullet \quad \llbracket \cdots \rrbracket \to \mathsf{jump}, \quad (\cdot)_t \to \mathsf{tangential}, \quad (\cdot)_n \to \mathsf{normal}$
- $\tau_t, \tau_n \rightarrow$ two stabilization parameters
- \pm indicate values from adjacent elements K^{\pm} .

K^+ au_t^+ K^-

Solvability

Theorem

Assume that τ_t and τ_n are positive everywhere. Assume also that

 $\begin{aligned} & \operatorname{curl} \mathbf{V}(K) \subset \mathbf{W}(K), \\ & \operatorname{grad} P(K) \subset \mathbf{V}(K), \\ & \operatorname{div} \mathbf{V}(K) \subset P(K), \end{aligned}$

for every element $K \in \Omega_h$. Then there is one and only one $(\omega_h, \mathbf{u}_h, p_h)$ satisfying the equations of the method (including the numerical trace expressions and boundary conditions).

If W(K), V(K), P(K) are set to polynomials of degree d_W , d_V , d_P , resp., then for any $k \ge 1$, we may choose (d_W, d_V, d_P) to

UF FLORIDA

There are 4 transmission conditions for Stokes flow:

 $\llbracket \boldsymbol{\omega} \times \mathbf{n} \rrbracket = \mathbf{0}, \qquad \llbracket \mathbf{u} \times \mathbf{n} \rrbracket = \mathbf{0}, \qquad \llbracket \mathbf{u} \cdot \mathbf{n} \rrbracket = \mathbf{0}, \qquad \llbracket p \, \mathbf{n} \rrbracket = \mathbf{0}.$

Hybridization strategy:

• Pick two as unknowns, and find equations by the remaining two!

Type I:	Unknowns: Equations:	$\widehat{\mathbf{u}}_h \times \mathbf{n}, \\ \llbracket \widehat{\boldsymbol{\omega}}_h \times \mathbf{n} \rrbracket = 0,$	\widehat{p}_h n $[\![\widehat{\mathbf{u}}_h \cdot \mathbf{n}]\!] = 0$
Type II:			
Type III:			
Type IV:			

UF FLORIDA

There are 4 transmission conditions for Stokes flow:

 $\llbracket \boldsymbol{\omega} \times \mathbf{n} \rrbracket = \mathbf{0}, \qquad \llbracket \mathbf{u} \times \mathbf{n} \rrbracket = \mathbf{0}, \qquad \llbracket \mathbf{u} \cdot \mathbf{n} \rrbracket = \mathbf{0}, \qquad \llbracket p \, \mathbf{n} \rrbracket = \mathbf{0}.$

Hybridization strategy:

• Pick two as unknowns, and find equations by the remaining two!

т.,	Unknowns:	$\widehat{\mathbf{u}}_h \times \mathbf{n},$	$\widehat{p}_h \mathbf{n}$
Type I:	Equations:	$\llbracket \widehat{\boldsymbol{\omega}}_h \times \mathbf{n} \rrbracket = 0,$	$\llbracket \widehat{\mathbf{u}}_h \cdot \mathbf{n} \rrbracket = 0$
Type II:	Unknowns: Equations:	$\widehat{\mathbf{u}}_h imes \mathbf{n}, \ [\![\widehat{\boldsymbol{\omega}}_h imes \mathbf{n}]\!] = 0,$	$\widehat{\mathbf{u}}_h \cdot \mathbf{n}$ $\llbracket \widehat{p}_h \mathbf{n} \rrbracket = 0$
Type III:			
Type IV:			

UF FLORIDA

There are 4 transmission conditions for Stokes flow:

 $\llbracket \boldsymbol{\omega} \times \mathbf{n} \rrbracket = \mathbf{0}, \qquad \llbracket \mathbf{u} \times \mathbf{n} \rrbracket = \mathbf{0}, \qquad \llbracket \mathbf{u} \cdot \mathbf{n} \rrbracket = \mathbf{0}, \qquad \llbracket p \, \mathbf{n} \rrbracket = \mathbf{0}.$

Hybridization strategy:

• Pick two as unknowns, and find equations by the remaining two!

Tupo li	Unknowns:	$\widehat{\mathbf{u}}_{h} imes \mathbf{n},$	\widehat{p}_h n
Type I.	Equations:	$\llbracket \widehat{\boldsymbol{\omega}}_h \times \mathbf{n} \rrbracket = 0,$	$\llbracket \widehat{\mathbf{u}}_h \cdot \mathbf{n} \rrbracket = 0$
Tuna Ili	Unknowns:	$\widehat{\mathbf{u}}_{h} imes \mathbf{n},$	$\widehat{\mathbf{u}}_h \cdot \mathbf{n}$
Туре П:	Equations:	$\llbracket \widehat{\boldsymbol{\omega}}_h \times \mathbf{n} \rrbracket = 0,$	$[\![\widehat{p}_h \mathbf{n}]\!] = 0$
Tuno III	Unknowns:	$\widehat{\boldsymbol{\omega}}_{\boldsymbol{h}} imes \mathbf{n},$	$\widehat{\mathbf{u}}_h \cdot \mathbf{n}$
туре пт.	Equations:	$\llbracket \widehat{\mathbf{u}}_h \times \mathbf{n} \rrbracket = 0,$	$[\![\widehat{p}_h \mathbf{n}]\!] = 0$
Type IV:			

UF FLORIDA

There are 4 transmission conditions for Stokes flow:

 $\llbracket \boldsymbol{\omega} \times \mathbf{n} \rrbracket = \mathbf{0}, \qquad \llbracket \mathbf{u} \times \mathbf{n} \rrbracket = \mathbf{0}, \qquad \llbracket \mathbf{u} \cdot \mathbf{n} \rrbracket = \mathbf{0}, \qquad \llbracket p \, \mathbf{n} \rrbracket = \mathbf{0}.$

Hybridization strategy:

• Pick two as unknowns, and find equations by the remaining two!

Type I:	Unknowns: Equations:	$\widehat{\mathbf{u}}_h \times \mathbf{n}, \\ \llbracket \widehat{\boldsymbol{\omega}}_h \times \mathbf{n} \rrbracket = 0,$	$\widehat{p}_h \mathbf{n}$ $\llbracket \widehat{\mathbf{u}}_h \cdot \mathbf{n} \rrbracket = 0$
Type II:	Unknowns: Equations:	$\widehat{\mathbf{u}}_h imes \mathbf{n}, \ [[\widehat{\boldsymbol{\omega}}_h imes \mathbf{n}]] = 0,$	$\widehat{\mathbf{u}}_h \cdot \mathbf{n}$ $[[\widehat{p}_h \mathbf{n}]] = 0$
Type III:	Unknowns: Equations:	$\widehat{\boldsymbol{\omega}}_h imes \mathbf{n},$ $\llbracket \widehat{\mathbf{u}}_h imes \mathbf{n} rbracket = 0,$	$\widehat{\mathbf{u}}_h \cdot \mathbf{n}$ $[\![\widehat{p}_h \mathbf{n}]\!] = 0$
Type IV:	Unknowns: Equations:	$\widehat{\boldsymbol{\omega}}_{h} imes \mathbf{n}, \ [\![\widehat{\mathbf{u}}_{h} imes \mathbf{n}]\!] = 0,$	\widehat{p}_h n [[$\widehat{\mathbf{u}}_h \cdot \mathbf{n}$]] = 0

Discard the remaining two choices.

Tune li	Unknowns:	$\widehat{\mathbf{u}}_{h} imes \mathbf{n},$	\widehat{p}_h n
Type I:	Equations:	$\llbracket \widehat{\boldsymbol{\omega}}_h \times \mathbf{n} \rrbracket = 0,$	$\llbracket \widehat{\mathbf{u}}_h \cdot \mathbf{n} \rrbracket = 0$

Tuna li	Unknowns:	$oldsymbol{\lambda}_t$	ho
турет.	Equations:	$\llbracket \widehat{\boldsymbol{\omega}}_h \times \mathbf{n} \rrbracket = 0,$	$\llbracket \widehat{\mathbf{u}}_h \cdot \mathbf{n} \rrbracket = 0$

• The "Equations" give a uniquely solvable condensed system

 $\begin{pmatrix} A & B^t \\ B & C \end{pmatrix} \begin{pmatrix} \boldsymbol{\lambda}_t \\ \rho \end{pmatrix} = \text{r.h.s}, \qquad (\text{plus one eq. for mean}(\rho))$

with locally computable operators A, B, C, on appropriate piecewise polynomial spaces on element interfaces.

UF FI ORT

Tung li	Unknowns:	$oldsymbol{\lambda}_t$	ρ
турет.	Equations:	$\llbracket \widehat{\boldsymbol{\omega}}_h \times \mathbf{n} \rrbracket = 0,$	$\llbracket \widehat{\mathbf{u}}_h \cdot \mathbf{n} \rrbracket = 0$

• The "Equations" give a uniquely solvable condensed system

 $\begin{pmatrix} A & B^t \\ B & C \end{pmatrix} \begin{pmatrix} \lambda_t \\ \rho \end{pmatrix} = \text{r.h.s}, \qquad (\text{plus one eq. for mean}(\rho))$

with locally computable operators A, B, C, on appropriate piecewise polynomial spaces on element interfaces.

• The solution (λ_t, ρ) gives the same numerical traces stated earlier.

IF FIOR

Tuna li	Unknowns:	$oldsymbol{\lambda}_t$	ho
турет.	Equations:	$\llbracket \widehat{\boldsymbol{\omega}}_h \times \mathbf{n} \rrbracket = 0,$	$\llbracket \widehat{\mathbf{u}}_h \cdot \mathbf{n} \rrbracket = 0$

The "Equations" give a uniquely solvable condensed system

 $\begin{pmatrix} A & B^t \\ B & C \end{pmatrix} \begin{pmatrix} \lambda_t \\ \rho \end{pmatrix} = \text{r.h.s}, \qquad (\text{plus one eq. for mean}(\rho))$

with locally computable operators A, B, C, on appropriate piecewise polynomial spaces on element interfaces.

- The solution (λ_t, ρ) gives the same numerical traces stated earlier.
- On any element K, all variables are recovered locally from (λ_t, ρ) by:

 $\begin{array}{ll} \text{Solve for } \boldsymbol{\omega}_h, \, \mathbf{u}_h, \, p_h \text{ using} \\ \text{the HDG discretization of} \end{array} \begin{cases} \boldsymbol{\omega} - \mathbf{curl} \, \mathbf{u} = 0 & \text{in } K, \\ \mathbf{curl} \, \boldsymbol{\omega} + \mathbf{grad} \, p = \mathbf{f} & \text{in } K, \\ \text{div} \, \mathbf{u} = 0 & \text{in } K, \\ (\mathbf{u})_t = \boldsymbol{\lambda}_t & \text{on } \partial K, \\ p = \rho & \text{on } \partial K. \end{cases}$

UFFIO

Type II:	Unknowns:	$\widehat{\mathbf{u}}_{h} \times \mathbf{n},$	û _h ∙ n	
	Equations:	$\llbracket \widehat{\boldsymbol{\omega}}_h \times \mathbf{n} \rrbracket = 0,$	$[\![\widehat{p}_h\mathbf{n}]\!]=0$	

Results on Type II hybridization				UF FLORIDA	
Type II:	Unknowns: Equations:	$\frac{\boldsymbol{\lambda}_t}{[\![\widehat{\boldsymbol{\omega}}_h \times \mathbf{n}]\!]} = 0,$	$\frac{\boldsymbol{\lambda}_n}{[[\widehat{\boldsymbol{p}}_h \mathbf{n}]]} =$	0	
• Local recovery from $\lambda \equiv (\lambda_t, \lambda_n)$?					
		$\omega - \operatorname{curl} u$	= 0	in <i>K</i> ,	
Solving fo		$\operatorname{curl} oldsymbol{\omega} + \operatorname{grad} oldsymbol{p}$	= f	in <i>K</i> ,	
Solving IC	$\omega_h, \mathbf{u}_h, p_h$ using	div u	= 0	in K,	
the HDG discretization of		$(\mathbf{u})_t$	$= oldsymbol{\lambda}_t$	on ∂K ,	
		$(\mathbf{u})_n$	$= \lambda_n$	on ∂K .	
is possible	only if				

$$\int_{\partial K} \boldsymbol{\lambda} \cdot \mathbf{n} = 0 \qquad \dots!$$

	Type II:	Unknowns: Equations:	$\frac{\boldsymbol{\lambda}_t}{[\![\widehat{\boldsymbol{\omega}}_h \times \mathbf{n}]\!]} = 0,$	$\frac{\boldsymbol{\lambda}_n}{[[\widehat{\boldsymbol{\rho}}_h \mathbf{n}]]} = 0$)
٠	Revised local	solver:			
			($\omega-{ m curlu}$	= 0	in <i>K</i> ,
			$\operatorname{curl} oldsymbol{\omega} + \operatorname{grad} oldsymbol{ ho}$	= f	in <i>K</i> ,
	Solve for ω_h	\mathbf{u}_h , p_h using	div u	= 0	in <i>K</i> ,
	the HDG dis	cretization of	$u=oldsymbol{\lambda}$	$-\int_{\partial K} {oldsymbol \lambda} \cdot {f n}$	on ∂K ,
			$\operatorname{mean}(p)$	$= \overline{ ho},$	
	after solving a	condensed sy	estem for $(\boldsymbol{\lambda}, \bar{\rho})$:		
		$\begin{pmatrix} A_2\\ B_2 \end{pmatrix}$	$ \begin{pmatrix} B_2^t \\ 0 \end{pmatrix} \begin{pmatrix} \lambda \\ \overline{\rho} \end{pmatrix} = \text{r.h.} $	5	

	Type II:	Unknowns: Equations:	$egin{aligned} & oldsymbol{\lambda}_t \ & oldsymbol{\left[} \widehat{oldsymbol{\omega}}_h imes oldsymbol{n} oldsymbol{ beta} = 0 \end{aligned}$	$, \qquad \begin{bmatrix} \boldsymbol{\lambda}_n \\ [\widehat{\boldsymbol{p}}_h \mathbf{n}] \end{bmatrix} = 0$	D
٩	Revised local	solver:			
			$\omega - curl$	$\mathbf{u} = 0$	in <i>K</i> ,
Solve for ω_h , \mathbf{u}_h , p_h using the HDG discretization of			$\operatorname{curl} oldsymbol{\omega} + \operatorname{grad}$	$ ho={f f}$	in <i>K</i> ,
			div	$\mathbf{u} = 0$	in <i>K</i> ,
			u = .	$oldsymbol{\lambda} - \int_{\partial K} oldsymbol{\lambda} \cdot oldsymbol{n}$	on ∂K ,
			mean(p	$p) = \overline{\rho},$	
after solving a condensed system for $(\lambda, \overline{\rho})$:					
$egin{pmatrix} A_2 & B_2^t \ B_2 & 0 \ \end{pmatrix} egin{pmatrix} \pmb{\lambda} \ ar{\pmb{ ho}} \end{pmatrix} = \mathrm{r.h.s}$					

 \bullet The solution λ gives the <code>same</code> numerical traces stated earlier. Jay Gopalakrishnan

- There is an HDG method for velocity-vorticity formulation of Stokes flow.
- While it may appear that there are four ways to hybridize, all four ways give the same global HDG method.
- Proof of error estimates is an open question, as of now.