An HDG method for the velocity-vorticity formulation

Jay Gopalakrishnan

University of Florida

Collaborator: B. Cockburn

April 2009
Finite Element Circus, Delaware

Thanks: NSF

- Hybridizable DG methods (HDG) were discovered in
- [Cockburn, G., Lazarov, 2009] "Unified hybridization of DG, mixed, and CG methods for second order elliptic problems", SINUM.
- Many authors analyzed HDG, and extended to various applications.
- This talk is on an HDG method for Stokes flow:
- [Cockburn, \& G., 2009] "The derivation of hybridizable discontinuous Galerkin methods for Stokes flow", SINUM.

Stokes system

$$
\begin{aligned}
-\mathbf{\Delta u}+\operatorname{grad} p & =\mathbf{f}, & & \text { on } \Omega \\
\operatorname{div} \mathbf{u} & =0, & & \text { on } \Omega \\
\mathbf{u} & =\mathbf{0}, & & \text { on } \partial \Omega .
\end{aligned}
$$

Since $-\boldsymbol{\Delta u}=\mathbf{c u r l} \mathbf{c u r l} \mathbf{u}-\operatorname{grad} \operatorname{div} \mathbf{u}$, the Stokes equations can be rewritten using vorticity $\boldsymbol{\omega}$:

$$
\begin{aligned}
\boldsymbol{\omega}-\mathbf{c u r l} \mathbf{u} & =\mathbf{0}, & & \text { on } \Omega, \\
\operatorname{curl} \boldsymbol{\omega}+\mathbf{g r a d} p & =\mathbf{f}, & & \text { on } \Omega, \\
\operatorname{div} \mathbf{u} & =0, & & \text { on } \Omega .
\end{aligned}
$$

Velocity-vorticity formulation

$$
\begin{array}{rll}
\boldsymbol{\omega}-\mathbf{c u r l} \mathbf{u}=0 & \Longrightarrow \quad \begin{array}{ll}
(\boldsymbol{\omega}, \boldsymbol{\tau})_{\Omega}-(\mathbf{u}, \mathbf{c u r l} \boldsymbol{\tau})_{\Omega} & =0 \\
\operatorname{curl} \boldsymbol{\omega}+\mathbf{g r a d} p=\mathbf{f} & \Longrightarrow \quad \begin{array}{l}
(\mathbf{v}, \operatorname{curl} \omega)_{\Omega} \\
\operatorname{div} \mathbf{u}=0
\end{array} \\
& \Longrightarrow \quad(\mathbf{v}, \mathbf{f})_{\Omega} \\
\boldsymbol{(i m p o s e d} \text { in the space }) .
\end{array} \\
\boldsymbol{\omega}, \boldsymbol{\tau} \in \quad H(\text { curl }) \\
\mathbf{u}, \mathbf{v} \in \quad\left\{\mathbf{v} \in H(\operatorname{div}): \operatorname{div} \mathbf{v}=0,\left.\quad \mathbf{v} \cdot \mathbf{n}\right|_{\partial \Omega=0}\right\} .
\end{array}
$$

Known approaches:

- Use stream function [Girault \& Raviart, 1986]
- Use a double hybridization [Cockburn \& G., 2000]
- Use DG [Carrero, Cockburn, Schötzau, 2006]

This talk's approach: hybrid DG

DG methods

$\omega-\operatorname{curl} \mathbf{u}=\mathbf{0}$

$$
\left(\boldsymbol{\omega}_{h}, \tau\right)_{K}-\left(\mathbf{u}_{h}, \operatorname{curl} \tau\right)_{K}+\left\langle\widehat{\mathbf{u}}_{h}, \mathbf{n} \times \tau\right\rangle_{\partial K}=0,
$$

$\operatorname{curl} \boldsymbol{\omega}+\operatorname{grad} p=\mathbf{f}$ \Longrightarrow

$$
\left(\boldsymbol{\omega}_{h}, \mathbf{c u r l} \mathbf{v}\right)_{K}+\left\langle\widehat{\boldsymbol{\omega}}_{h}, \mathbf{v} \times \mathbf{n}\right\rangle_{\partial K}-\left(p_{h}, \operatorname{div} \mathbf{v}\right)_{K}+\left\langle\widehat{p}_{h}, \mathbf{v} \cdot \mathbf{n}\right\rangle_{\partial K}=(\mathbf{f}, \mathbf{v})_{K},
$$

$\operatorname{div} \mathbf{u}=0$

$$
-\left(\mathbf{u}_{h}, \operatorname{grad} q\right)_{K}+\left\langle\widehat{\mathbf{u}}_{h} \cdot \mathbf{n}, q\right\rangle_{\partial K}=0,
$$

- Numerical traces: $\widehat{\mathbf{u}}_{h} \times \mathbf{n}, \quad \widehat{\boldsymbol{\omega}}_{h} \times \mathbf{n}, \quad \hat{p}_{h}, \quad \widehat{\mathbf{u}}_{h} \times \mathbf{n}$.
- Element spaces: $\boldsymbol{\omega}_{h}, \boldsymbol{\tau} \in \mathbf{W}(K), \quad \mathbf{u}_{h}, \mathbf{v} \in \mathbf{V}(K), \quad p_{h}, \boldsymbol{q} \in P(K)$.

Various DG methods are obtained by prescribing various numerical traces and element spaces.

HDG method

Q: Are there choices of numerical traces $\widehat{\mathbf{u}}_{h} \times \mathbf{n}, \widehat{\boldsymbol{\omega}}_{h} \times \mathbf{n}, \widehat{p}_{h}, \quad \widehat{\mathbf{u}}_{h} \times \mathbf{n}$ that yield a hybridizable method? A: (our main result) Yes!

Q: Are there choices of numerical traces $\widehat{\mathbf{u}}_{h} \times \mathbf{n}, \widehat{\boldsymbol{\omega}}_{h} \times \mathbf{n}, \widehat{p}_{h}, \quad \widehat{\mathbf{u}}_{h} \times \mathbf{n}$ that yield a hybridizable method? A: (our main result) Yes!

$$
\begin{aligned}
\left(\widehat{\boldsymbol{\omega}}_{h}\right)_{t} & =\left(\frac{\tau_{t}^{-}\left(\boldsymbol{\omega}_{h}^{+}\right)_{t}+\tau_{t}^{+}\left(\boldsymbol{\omega}_{h}^{-}\right)_{t}}{\tau_{t}^{-}+\tau_{t}^{+}}\right)+\left(\frac{\tau_{t}^{+} \tau_{t}^{-}}{\tau_{t}^{-}+\tau_{t}^{+}}\right) \llbracket \mathbf{u}_{h} \times \mathbf{n} \rrbracket, \\
\left(\widehat{\mathbf{u}}_{h}\right)_{t} & =\left(\frac{\tau_{t}^{+}\left(\mathbf{u}_{h}^{+}\right)_{t}+\tau_{t}^{-}\left(\mathbf{u}_{h}^{-}\right)_{t}}{\tau_{t}^{-}+\tau_{t}^{+}}\right)+\left(\frac{1}{\tau_{t}^{-}+\tau_{t}^{+}}\right) \llbracket \mathbf{n} \times \boldsymbol{\omega}_{h} \rrbracket, \\
\left(\widehat{\mathbf{u}}_{h}\right)_{n} & =\left(\frac{\tau_{n}^{+}\left(\mathbf{u}_{h}^{+}\right)_{n}+\tau_{n}^{-}\left(\mathbf{u}_{h}^{-}\right)_{n}}{\tau_{n}^{-}+\tau_{n}^{+}}\right)+\left(\frac{1}{\tau_{n}^{-}+\tau_{n}^{+}}\right) \llbracket p_{h} \mathbf{n} \rrbracket, \\
\hat{p}_{h} & =\left(\frac{\tau_{n}^{-} p_{h}^{+}+\tau_{n}^{+} p_{h}^{-}}{\tau_{n}^{-}+\tau_{n}^{+}}\right)+\left(\frac{\tau_{n}^{+} \tau_{n}^{-}}{\tau_{n}^{-}+\tau_{n}^{+}}\right) \llbracket \mathbf{u}_{h} \cdot \mathbf{n} \rrbracket,
\end{aligned}
$$

- 【 $\cdots \rrbracket \rightarrow$ jump, $\quad(\cdot)_{t} \rightarrow$ tangential, $\quad(\cdot)_{n} \rightarrow$ normal
- $\tau_{t}, \tau_{n} \rightarrow$ two stabilization parameters
- \pm indicate values from adjacent elements $K^{ \pm}$.

Solvability

Theorem

Assume that τ_{t} and τ_{n} are positive everywhere. Assume also that

$$
\begin{aligned}
\operatorname{curl} \mathbf{V}(K) & \subset \mathbf{W}(K), \\
\operatorname{grad} P(K) & \subset \mathbf{V}(K), \\
\operatorname{div} \mathbf{V}(K) & \subset P(K),
\end{aligned}
$$

for every element $K \in \Omega_{h}$. Then there is one and only one $\left(\boldsymbol{\omega}_{h}, \mathbf{u}_{h}, p_{h}\right)$ satisfying the equations of the method (including the numerical trace expressions and boundary conditions).

If $\mathbf{W}(K), \mathbf{V}(K), P(K)$ are set to polynomials of degree d_{W}, d_{V}, d_{P}, resp., then for any $k \geq 1$, we may choose (d_{W}, d_{V}, d_{P}) to

$$
\begin{array}{lllllllll}
(k-1, & k-1, & k), & (k, & k-1, & k), & (k+1, & k-1, & k), \\
(k-1, & k, & k), & (k, & k, & k), & (k+1, & k, & k), \\
(k, & k+1, & k), & (k+1, & k+1, & k) .
\end{array}
$$

Transmission conditions

There are 4 transmission conditions for Stokes flow:

$$
\llbracket \boldsymbol{\omega} \times \mathbf{n} \rrbracket=0, \quad \llbracket \mathbf{u} \times \mathbf{n} \rrbracket=0, \quad \llbracket \mathbf{u} \cdot \mathbf{n} \rrbracket=0, \quad \llbracket p \mathbf{n} \rrbracket=0
$$

Hybridization strategy:

- Pick two as unknowns, and find equations by the remaining two!

$$
\begin{array}{llcc}
\hline \text { Type I: } & \text { Unknowns: } & \widehat{\mathbf{u}}_{h} \times \mathbf{n}, & \widehat{p}_{h} \mathbf{n} \\
& \text { Equations: } & \llbracket \widehat{\omega}_{h} \times \mathbf{n} \rrbracket=0, & \llbracket \widehat{\mathbf{u}}_{h} \cdot \mathbf{n} \rrbracket=0
\end{array}
$$

Type II:
Type III:
Type IV:

Transmission conditions

There are 4 transmission conditions for Stokes flow:

$$
\llbracket \boldsymbol{\omega} \times \mathbf{n} \rrbracket=0, \quad \llbracket \mathbf{u} \times \mathbf{n} \rrbracket=0, \quad \llbracket \mathbf{u} \cdot \mathbf{n} \rrbracket=0, \quad \llbracket p \mathbf{n} \rrbracket=0 .
$$

Hybridization strategy:

- Pick two as unknowns, and find equations by the remaining two!

$$
\begin{array}{cccc}
\text { Type I: } & \text { Unknowns: } & \widehat{\mathbf{u}}_{h} \times \mathbf{n}, & \widehat{p}_{h} \mathbf{n} \\
& \text { Equations: } & \llbracket \widehat{\boldsymbol{\omega}}_{h} \times \mathbf{n} \rrbracket=0, & \llbracket \widehat{\mathbf{u}}_{h} \cdot \mathbf{n} \rrbracket=0 \\
\text { Type II: } & \text { Unknowns: } & \widehat{\mathbf{u}}_{h} \times \mathbf{n}, & \widehat{\mathbf{u}}_{h} \cdot \mathbf{n} \\
& \text { Equations: } & \llbracket \widehat{\omega}_{h} \times \mathbf{n} \rrbracket=0, & \llbracket \widehat{p}_{h} \mathbf{n} \rrbracket=0
\end{array}
$$

Type III:
Type IV:

Transmission conditions

There are 4 transmission conditions for Stokes flow:

$$
\llbracket \boldsymbol{\omega} \times \mathbf{n} \rrbracket=0, \quad \llbracket \mathbf{u} \times \mathbf{n} \rrbracket=0, \quad \llbracket \mathbf{u} \cdot \mathbf{n} \rrbracket=0, \quad \llbracket p \mathbf{n} \rrbracket=0 .
$$

Hybridization strategy:

- Pick two as unknowns, and find equations by the remaining two!

Type I:	Unknowns:	$\widehat{\mathbf{u}}_{h} \times \mathbf{n}$,	$\widehat{p}_{h} \mathbf{n}$
	Equations:	$\llbracket \widehat{\boldsymbol{\omega}}_{h} \times \mathbf{n} \rrbracket=0$,	$\llbracket \widehat{\mathbf{u}}_{h} \cdot \mathbf{n} \rrbracket=0$
Type II:	Unknowns:	$\widehat{\mathbf{u}}_{h} \times \mathbf{n}$,	$\widehat{\mathbf{u}}_{h} \cdot \mathbf{n}$
	Equations:	$\llbracket \widehat{\boldsymbol{\omega}}_{h} \times \mathbf{n} \rrbracket=0$,	$\llbracket \widehat{p}_{h} \mathbf{n} \rrbracket=0$
Type III:	Unknowns:	$\widehat{\boldsymbol{\omega}}_{h} \times \mathbf{n}$,	$\widehat{\mathbf{u}}_{h} \cdot \mathbf{n}$
	Equations:	$\llbracket \widehat{\mathbf{u}}_{h} \times \mathbf{n} \rrbracket=0$,	$\llbracket \widehat{p}_{h} \mathbf{n} \rrbracket=0$

Type IV:

Transmission conditions

There are 4 transmission conditions for Stokes flow:

$$
\llbracket \boldsymbol{\omega} \times \mathbf{n} \rrbracket=0, \quad \llbracket \mathbf{u} \times \mathbf{n} \rrbracket=0, \quad \llbracket \mathbf{u} \cdot \mathbf{n} \rrbracket=0, \quad \llbracket p \mathbf{n} \rrbracket=0 .
$$

Hybridization strategy:

- Pick two as unknowns, and find equations by the remaining two!

$$
\begin{array}{cccc}
\text { Type I: } & \text { Unknowns: } & \widehat{\mathbf{u}}_{h} \times \mathbf{n}, & \widehat{p}_{h} \mathbf{n} \\
& \text { Equations: } & \llbracket \widehat{\boldsymbol{\omega}}_{h} \times \mathbf{n} \rrbracket=0, & \llbracket \widehat{\mathbf{u}}_{h} \cdot \mathbf{n} \rrbracket=0 \\
\text { Type II: } & \text { Unknowns: } & \widehat{\mathbf{u}}_{h} \times \mathbf{n}, & \widehat{\mathbf{u}}_{h} \cdot \mathbf{n} \\
& \text { Equations: } & \llbracket \widehat{\boldsymbol{\omega}}_{h} \times \mathbf{n} \rrbracket=0, & \llbracket \widehat{p}_{h} \mathbf{n} \rrbracket=0 \\
\text { Type III: } & \text { Unknowns: } & \widehat{\boldsymbol{\omega}}_{h} \times \mathbf{n}, & \widehat{\mathbf{u}}_{h} \cdot \mathbf{n} \\
& \text { Equations: } & \llbracket \widehat{\mathbf{u}}_{h} \times \mathbf{n} \rrbracket=0, & \llbracket \widehat{p}_{h} \mathbf{n} \rrbracket=0 \\
\text { Type IV: } & \text { Unknowns: } & \widehat{\boldsymbol{\omega}}_{h} \times \mathbf{n}, & \widehat{p}_{h} \mathbf{n} \\
& \text { Equations: } & \llbracket \widehat{\mathbf{u}}_{h} \times \mathbf{n} \rrbracket=0, & \llbracket \widehat{\mathbf{u}}_{h} \cdot \mathbf{n} \rrbracket=0
\end{array}
$$

Discard the remaining two choices.

Results on Type I hybridization

$$
\begin{array}{llcc}
\text { Type I: } & \text { Unknowns: } & \widehat{\mathbf{u}}_{h} \times \mathbf{n}, & \widehat{p}_{h} \mathbf{n} \\
& \text { Equations: } & \llbracket \widehat{\omega}_{h} \times \mathbf{n} \rrbracket=0, & \llbracket \widehat{\mathbf{u}}_{h} \cdot \mathbf{n} \rrbracket=0
\end{array}
$$

Results on Type I hybridization

$$
\begin{array}{llcc}
\text { Type I: } & \text { Unknowns: } & \lambda_{t} & \rho \\
& \text { Equations: } & \llbracket \widehat{\omega}_{h} \times \mathbf{n} \rrbracket=0, & \llbracket \widehat{\mathbf{u}}_{h} \cdot \mathbf{n} \rrbracket=0
\end{array}
$$

- The "Equations" give a uniquely solvable condensed system

$$
\left(\begin{array}{cc}
A & B^{t} \\
B & C
\end{array}\right)\binom{\lambda_{t}}{\rho}=\text { r.h.s, } \quad \text { (plus one eq. for } \operatorname{mean}(\rho) \text {) }
$$

with locally computable operators A, B, C, on appropriate piecewise polynomial spaces on element interfaces.

Results on Type I hybridization

$\begin{array}{llcc}\text { Type I: } & \text { Unknowns: } & \lambda_{t} & \rho \\ & \text { Equations: } & \llbracket \hat{\boldsymbol{\omega}}_{\boldsymbol{h}} \times \mathbf{n} \rrbracket=0, & \llbracket \hat{\mathbf{u}}_{\boldsymbol{h}} \cdot \mathbf{n} \rrbracket=0\end{array}$

- The "Equations" give a uniquely solvable condensed system

$$
\left(\begin{array}{cc}
A & B^{t} \\
B & C
\end{array}\right)\binom{\lambda_{t}}{\rho}=\text { r.h.s, } \quad \text { (plus one eq. for } \operatorname{mean}(\rho) \text {) }
$$

with locally computable operators A, B, C, on appropriate piecewise polynomial spaces on element interfaces.

- The solution $\left(\boldsymbol{\lambda}_{t}, \rho\right)$ gives the same numerical traces stated earlier.

Results on Type I hybridization

Type I:

Unknowns:	λ_{t}	ρ
Equations:	$\llbracket \widehat{\boldsymbol{\omega}}_{h} \times \mathbf{n} \rrbracket=0$,	$\llbracket \widehat{\mathbf{u}}_{h} \cdot \mathbf{n} \rrbracket=0$

- The "Equations" give a uniquely solvable condensed system

$$
\left(\begin{array}{cc}
A & B^{t} \\
B & C
\end{array}\right)\binom{\lambda_{t}}{\rho}=\text { r.h.s, } \quad \text { (plus one eq. for mean }(\rho) \text {) }
$$

with locally computable operators A, B, C, on appropriate piecewise polynomial spaces on element interfaces.

- The solution $\left(\boldsymbol{\lambda}_{t}, \rho\right)$ gives the same numerical traces stated earlier.
- On any element K, all variables are recovered locally from $\left(\lambda_{t}, \rho\right)$ by:

Solve for $\boldsymbol{\omega}_{h}, \mathbf{u}_{h}, p_{h}$ using $\left\{\begin{array}{rlrl}\boldsymbol{\omega}-\mathbf{c u r l} \mathbf{u} & =0 \\ \operatorname{curl} \boldsymbol{\omega}+\operatorname{grad} p & =\mathbf{f} \\ \operatorname{div} \mathbf{u} & =0 \\ (\mathbf{u})_{t} & =\boldsymbol{\lambda}_{t} \\ p & =\rho & & \text { in } K, \\ \text { in } K, \\ \text { in } K, \\ & & & \text { on } \partial K, \\ \text { on } \partial K .\end{array}\right.$

Results on Type II hybridization

$$
\begin{array}{llcc}
\text { Type II: } & \text { Unknowns: } & \widehat{\mathbf{u}}_{h} \times \mathbf{n}, & \widehat{\mathbf{u}}_{h} \cdot \mathbf{n} \\
& \text { Equations: } & \llbracket \widehat{\boldsymbol{\omega}}_{h} \times \mathbf{n} \rrbracket=0, & \llbracket \widehat{p}_{h} \mathbf{n} \rrbracket=0
\end{array}
$$

Results on Type II hybridization

$$
\begin{array}{llcc}
\text { Type II: } & \text { Unknowns: } & \lambda_{t} & \lambda_{n} \\
& \text { Equations: } & \llbracket \widehat{\boldsymbol{\omega}}_{h} \times \mathbf{n} \rrbracket=0, & \llbracket \widehat{p}_{h} \mathbf{n} \rrbracket=0
\end{array}
$$

- Local recovery from $\lambda \equiv\left(\lambda_{t}, \lambda_{n}\right)$?

Solving for $\boldsymbol{\omega}_{h}, \mathbf{u}_{h}, p_{h}$ using the HDG discretization of	$\left\{\begin{aligned} \boldsymbol{\omega}-\operatorname{curl} \mathbf{u} & =0 \\ \operatorname{curl} \boldsymbol{\omega}+\operatorname{grad} p & =\mathbf{f} \\ \operatorname{div} \mathbf{u} & =0 \\ (\mathbf{u})_{t} & =\boldsymbol{\lambda}_{t} \\ (\mathbf{u})_{n} & =\lambda_{n} \end{aligned}\right.$

is possible only if

$$
\int_{\partial K} \boldsymbol{\lambda} \cdot \mathbf{n}=0 \quad \ldots!
$$

Results on Type II hybridization

$$
\begin{array}{llcc}
\text { Type II: } & \text { Unknowns: } & \lambda_{t} & \lambda_{n} \\
& \text { Equations: } & \llbracket \widehat{\boldsymbol{\omega}}_{h} \times \mathbf{n} \rrbracket=0, & \llbracket \widehat{p}_{h} \mathbf{n} \rrbracket=0
\end{array}
$$

- Revised local solver:
Solve for $\boldsymbol{\omega}_{h}, \mathbf{u}_{h}, p_{h}$ using $\left\{\begin{aligned} & \boldsymbol{\omega}-\mathbf{c u r l} \mathbf{u}=0 \\ & \operatorname{curl} \boldsymbol{\omega}+\operatorname{grad} p=\mathbf{f} \\ & \operatorname{div} \mathbf{u}=0 \\ & \text { in } K, \\ & \text { in } K, \\ & \text { in } K,\end{aligned}\right.$ the HDG discretization of

$$
\begin{aligned}
& \quad \mathbf{u}=\boldsymbol{\lambda}-\int_{\partial K} \boldsymbol{\lambda} \cdot \mathbf{n} \quad \text { on } \partial K \\
& \operatorname{mean}(p)=\bar{\rho}
\end{aligned}
$$

after solving a condensed system for $(\boldsymbol{\lambda}, \bar{\rho})$:

$$
\left(\begin{array}{cc}
A_{2} & B_{2}^{t} \\
B_{2} & 0
\end{array}\right)\binom{\lambda}{\bar{\rho}}=\text { r.h.s }
$$

Results on Type II hybridization

$$
\begin{array}{llcc}
\text { Type II: } & \text { Unknowns: } & \lambda_{t} & \lambda_{n} \\
& \text { Equations: } & \llbracket \widehat{\boldsymbol{\omega}}_{h} \times \mathbf{n} \rrbracket=0, & \llbracket \widehat{p}_{h} \mathbf{n} \rrbracket=0
\end{array}
$$

- Revised local solver:
Solve for $\boldsymbol{\omega}_{h}, \mathbf{u}_{h}, p_{h}$ using $\left\{\begin{aligned} & \boldsymbol{\omega}-\mathbf{c u r l} \mathbf{u}=0 \\ & \operatorname{curl} \boldsymbol{\omega}+\operatorname{grad} p=\mathbf{f} \\ & \operatorname{div} \mathbf{u}=0 \\ & \text { in } K, \\ & \text { in } K, \\ & \text { in } K,\end{aligned}\right.$ the HDG discretization of

$$
\begin{aligned}
& \mathbf{u}=\boldsymbol{\lambda}-\int_{\partial K} \boldsymbol{\lambda} \cdot \mathbf{n} \quad \text { on } \partial K \\
& \operatorname{mean}(p)=\bar{\rho}
\end{aligned}
$$

after solving a condensed system for $(\boldsymbol{\lambda}, \bar{\rho})$:

$$
\left(\begin{array}{cc}
A_{2} & B_{2}^{t} \\
B_{2} & 0
\end{array}\right)\binom{\lambda}{\bar{\rho}}=\text { r.h.s }
$$

- The solution λ gives the same numerical traces stated earlier.

Conclusion

- There is an HDG method for velocity-vorticity formulation of Stokes flow.
- While it may appear that there are four ways to hybridize, all four ways give the same global HDG method.
- Proof of error estimates is an open question, as of now.

