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What is HDG?

Hybridizable DG methods (HDG) were discovered in

I [Cockburn, G., Lazarov, 2009] “Unified hybridization of DG, mixed, and CG

methods for second order elliptic problems”, SINUM.

I Many authors analyzed HDG, and extended to various applications.

This talk is on an HDG method for Stokes flow:

I [Cockburn, & G., 2009] “The derivation of hybridizable discontinuous

Galerkin methods for Stokes flow”, SINUM.
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Stokes system

−∆u + grad p = f, on Ω,

div u = 0, on Ω,

u = 0, on ∂Ω.

Since −∆u = curl curl u− grad div u, the Stokes equations can be
rewritten using vorticity ω:

ω − curl u = 0, on Ω,

curlω + grad p = f, on Ω,

div u = 0, on Ω.
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Velocity-vorticity formulation

ω − curl u = 0 =⇒ (ω, τ )Ω − (u, curl τ )Ω = 0

curlω + grad p = f =⇒ (v, curlω)Ω = (v, f)Ω

div u = 0 =⇒ (imposed in the space).

ω, τ ∈ H(curl)

u, v ∈ {v ∈ H(div) : div v = 0, v · n|∂Ω=0}.

Known approaches:

Use stream function [Girault & Raviart, 1986]

Use a double hybridization [Cockburn & G., 2000]

Use DG [Carrero, Cockburn, Schötzau, 2006]

This talk’s approach: hybrid DG
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DG methods

ω − curl u = 0 =⇒

(ωh, τ )K − (uh, curl τ )K + 〈ûh,n× τ 〉∂K = 0,

curlω + grad p = f =⇒

(ωh, curl v)K + 〈ω̂h, v × n〉∂K − (ph,div v)K + 〈p̂h, v · n〉∂K = (f, v)K ,

div u = 0 =⇒

−(uh, grad q)K + 〈ûh · n, q〉∂K = 0,

Numerical traces: ûh × n, ω̂h × n, p̂h, ûh × n.

Element spaces: ωh, τ ∈ W(K ), uh, v ∈ V(K ), ph, q ∈ P(K ).

Various DG methods are obtained by prescribing various numerical traces
and element spaces.
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HDG method

Q: Are there choices of numerical traces ûh × n, ω̂h × n, p̂h, ûh × n
that yield a hybridizable method? A: (our main result) Yes!
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HDG method
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(ûh)t =

(
τ+
t (u+

h )t + τ−t (u−h )t

τ−t + τ+
t

)
+

(
1

τ−t + τ+
t

)
[[n× ωh]],
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Solvability

Theorem

Assume that τt and τn are positive everywhere. Assume also that

curl V(K ) ⊂ W(K ),

gradP(K ) ⊂ V(K ),

div V(K ) ⊂ P(K ),

for every element K ∈ Ωh. Then there is one and only one (ωh,uh, ph)
satisfying the equations of the method (including the numerical trace
expressions and boundary conditions).

If W(K), V(K), P(K) are set to polynomials of degree dW , dV , dP , resp., then for any
k ≥ 1, we may choose (dW , dV , dP) to

(k − 1, k − 1, k),
(k − 1, k, k),

(k, k − 1, k),
(k, k, k),
(k, k + 1, k),

(k + 1, k − 1, k),
(k + 1, k, k),
(k + 1, k + 1, k).
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Transmission conditions

There are 4 transmission conditions for Stokes flow:

[[ω × n]]= 0, [[u× n]] = 0, [[u · n]] = 0, [[p n]] = 0.

Hybridization strategy:

Pick two as unknowns, and find equations by the remaining two!

Type I:
Unknowns: ûh × n, p̂hn
Equations: [[ω̂h × n]] = 0, [[ûh · n]] = 0

Type II:

Type III:

Type IV:
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Transmission conditions

There are 4 transmission conditions for Stokes flow:

[[ω × n]]= 0, [[u× n]] = 0, [[u · n]] = 0, [[p n]] = 0.

Hybridization strategy:
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Type III:
Unknowns: ω̂h × n, ûh · n
Equations: [[ûh × n]] = 0, [[p̂hn]] = 0
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Unknowns: ω̂h × n, p̂hn
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Results on Type I hybridization

Type I:
Unknowns: ûh × n, p̂hn
Equations: [[ω̂h × n]] = 0, [[ûh · n]] = 0

The “Equations” give a uniquely solvable condensed system(
A Bt

B C

) (
λt

ρ

)
= r.h.s, (plus one eq. for mean(ρ))

with locally computable operators A, B, C , on appropriate piecewise
polynomial spaces on element interfaces.
The solution (λt , ρ) gives the same numerical traces stated earlier.

On any element K , all variables are recovered locally from (λt , ρ) by:

Solve for ωh, uh, ph using

the HDG discretization of



ω − curl u = 0 in K ,

curlω + grad p = f in K ,

div u = 0 in K ,

(u)t = λt on ∂K ,

p = ρ on ∂K .
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Results on Type II hybridization

Type II:
Unknowns: ûh × n, ûh · n
Equations: [[ω̂h × n]] = 0, [[p̂hn]] = 0

Revised local solver:

Solve for ωh, uh, ph using

the HDG discretization of



ω − curl u = 0 in K ,

curlω + grad p = f in K ,

div u = 0 in K ,

u = λ−
∫

∂K
λ · n on ∂K ,

mean(p) = ρ̄,

after solving a condensed system for (λ, ρ̄):(
A2 Bt

2

B2 0

) (
λ
ρ̄

)
= r.h.s

The solution λ gives the same numerical traces stated earlier.
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Results on Type II hybridization

Type II:
Unknowns: λt λn
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Solving for ωh, uh, ph using

the HDG discretization of
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is possible only if ∫
∂K

λ · n = 0 . . .!
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Conclusion

There is an HDG method for velocity-vorticity formulation of Stokes
flow.

While it may appear that there are four ways to hybridize, all four
ways give the same global HDG method.

Proof of error estimates is an open question, as of now.
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