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Photonic crystals UF a8

Periodic structures with strong dielectric contrast can exhibit bandgaps.

Example (experimental)
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SEM image of a fabricated 3D PBG structure [Blanco et al, Nature, 2000]

Localization of light having frequencies in the bandgap can be achieved by
introducing “defects” in the periodic pattern.
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Photonic Crystals W‘UNIVERSITY f

Periodic structures with strong dielectric contrast can exhibit bandgaps.

Example (computational)
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Infinite 3D scaffold structure analyzed in [Dobson, G, & Pasciak, JCP, 2000]

Localization of light having frequencies in the bandgap can be achieved by
introducing “defects” in the periodic pattern.
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UNIVERSITY of

Photonic membranes UF [¥1 ORIDA

@ Practical photonic structures are finite and have truncated periodic
pattern. (They are hence open and lossy.)

e It is practically easier to fabricate (etch) 2-dimensional “membranes”
on which periodically spaced air holes can be created.

@ Even if they have no bandgaps, they can have useful resonant modes.

An SEM image of a free-
standing PBG membrane
with a “defect”.

[Painter et al, Science, 1999]
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The mathematical problem UF 58 A

@ Compute resonant frequencies k and corresponding resonant modes
of thin photonic membranes.

@ Identify resonance modes that have high localization within fabricated
“defect” regions.

Resonance k is a complex number for which there is a non-trivial
function u satisfying

Au+ Ke(x)u=0 in all R”,

u is “outgoing” at infinity.

Here € = refractive index, and “outgoing” has many definitions. ..
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Outgoing wave UF a8

o For real k, the standard definition of the “outgoing” condition is the
Sommerfeld’s radiation condition

. ou .

lim r1/2}— — /ku| =0.

r—o0 or
However this is not correct for general complex k.

@ For complex k, expressions that are analytic continuations of

expressions in the real k case are used to define “outgoing” waves:
» Series representation (2d): u is outgoing if

Z cne™ HE (kr).

n=—oo

» Volume integral representation:

x) = / Ge(x:y) Fly) dy

where Gy is the free-space Green's function.
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TWO approaches UF UNIVERS]TY f

We will report results obtained by approaching the problem using two very
different computational techniques:

@ Discretize an asymptotic limit of a Lippman-Schwinger-type integral
formulation for the resonance problem.

> Results in a small dense nonlinear eigenproblem.
@ Discretize using finite elements combined with the perfectly matched

layer (PML).

» Results in a large sparse generalized eigenproblem.
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Thin, high-contrast membranes UF 5i5855A

o Geometry:

Dielectric membrane occupies

e the volume
| 1 tt
- D=Qx(—=,=).
@ Assume that the membrane thickness t is small:
t < diam(Q).
@ Assume high contrast dielectric:
20(122) et < 62 and (x1%0) € Q)
5(X17X27X3) = t
1, otherwise.
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Resonance via Lippman-Schwinger UF ¥ ORTDA

@ The source problem was analyzed in [Moskow, Santosa & Zhang, 2005] by
asymptotics on the Lippman-Schwinger equation.

@ Follow along the same lines for the resonance problem:

Au+ kKPeu=0
—  Au+t Ku=(1-¢e)k?u.

Using the outgoing fundamental solution Gk (x;y), we thus formally obtain
a Lippman-Schwinger type volume integral equation for the resonance:

= u(x) = kz/D Gr(x;y) (1 —e(y)) u(y) dy.

For our thin membrane, this implies
u(x) = k2// Gi(x; y)( M) u(y) dy.
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Scaled operators UF FLORIDA

_ kz/ /_t/2 (x:y) ( co(y1, yz)) u(y) dy.

We map to a fixed scaled domain D,

From
previous
slide

t u(x) 1% 8(%)
I
D=Qx(-t/2,t/2) D=Qx(-1/2,1/2)
and recast the problem: 0= K2Ty(k)d, Te(k):L3(D)— L2(D),

:>

1/2
/ / ) Gi (%1, %2, t83; 91, 92, t93) (t — €0($1, §2)) B(P) Y.
1/2

The formal asymptotic limit (as t — 0) is now clear.
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1st approach: Asymptotic limit UFS53A

Limiting operator To(k):
1/2
TO( / / / Gk(>’\<1,5\<2,0;),\/1,)72,0) 60(5}175}2) ‘7(5}) dj}
1/2

Limiting resonance problem : Find {ko, up} satisfying

up = kg To(ko) up.

(nonlinear eigenproblem)

Discretization: Collocation scheme using piecewise linear continuous
approximants with respect to a uniform grid.

@ Dense nonlinear eigenproblem
@ Small eigenproblem (due to the dimension reduction)

@ Can solve using Residual Inverse Iteration [Neumaier, 1985].
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Convergence W‘UNIVERS!TY of

To obtain rate of convergence using [Osborn, 1975], we assume:
@ k; is a resonance of T;. ur = k? Te(ke) Uy
@ k; converges to some kg in C.
@ ko is a simple resonance of T. uo = k& To(ko) uo

o Normalize (up, up) = 1 and assume k2(D(ko)uo, up) # —1, where
D(k)v = Z(kTo(k)v).

Theorem (Rate of convergence)

There exists C independent of t such that
|k — ko| < C't,

and furthermore

{((To(ko) — Te(ko))uo, uo)
1+ kg(D(ko)uO, uo>
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2nd approach: Apply PML UF FLORIDA

@ PML [Berenger 1994] extensively used for source problems.

@ Does it work for resonance computations?
> Airplane noise (slat resonance) [Hein, Hohage, Koch, Schoberl, 2007]
» Often used in engineering. Spurious modes reported.

@ To validate PML, consider a problem with calculable exact resonances.

Example: Resonances of a disk

A circular homogeneous dielectric disk (¢ = 4)
of radius a = 1 is placed in infinite vacuum.

Compute using finite elements with
PML set in region ryegin < r < fend-

At PML truncation r = ru.,q, set zero b.c.
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Example: Exact solution

lIFI|uN|vERsn'Y of

n=20
(simple modes)

n=1
(multiplicity 2)

n=>2
(multiplicity 2)

Corresponding k-values
in the complex plane
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Figures show
region r < 3.
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Things to learn from the example

UF UNIVERS!TY af

© Approximations can seem to converge, but to the wrong solution!

Apparent order
of convergence

Difference in resonances with successive mesh refinements
KB /2| (/2 /) | A (/)| /) (/19),

1.90 0.0100 0.0029 0.0007 0.0002
Actual order Actual errors in computed resonances
of convergence |k®) — k| |kh/D _ k| |/ _ k] |78 _ k|
0.01 0.0971 0.0957 0.0954 0.0953

(Here h = initial meshsize, Kk(h) = computed resonance, k = exact resonance.)

Explanation: PML truncation alters the exact spectrum. Discrete

spectrum tries to converge to the altered spectrum.

Moral: Truncation distance rynq should be carefully chosen.

Jay Gopalakrishnan

14/19



Things to learn from the example UF [F{OR A

© Approximations can seem to converge, but to the wrong solution!
@ Spurious modes can arise!
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A simple 2D photonic membrane UF [Fi ORIDA

We apply both approaches to an example from [Fan et al, 1995]:
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@ Asymptotic approach uses a uniform 1D mesh. (size: 2,289)
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@ PML approach uses 2D mesh. (size: 221,201)
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This mesh is further refined 4 times.
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Results from 1st approach (asymptotic) UF ¥ ORTDA

A coarse pseudospectra-type plot: omin(l — K2 T3P (k)) on C
: T \/jz/ SN
? ( @
A localized eigenfunction: k = 28.0236 — 0.0005/
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Results from 2nd approach (PML) UF [F{ORIA

0 = @) -

04 02z o0 0z 04 06
A highly localized resonance mode found at k = 28.7878 — 0.0017i
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Results from 2nd approach (PML) UF £16Ri5A

«— The localized resonance mode.

| First few resonances
(after removing spurious ones and adjust-
ing truncation distance “by hand”).
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Comparison l’rl|umvsnsnyof

Our result from the PML approach | Qur result from the asymptotic approach

As we see, the interesting
mode is captured by all the
three experiments.

-
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Conclusions WUNIVERS!TYaf

@ For thin high-contrast membranes, we formulated and analyzed a
dimension reduced asymptotic limit.

@ The asymptotic approach is very effective for calculating resonances
of thin photonic membranes.
> Need better nonlinear eigensolvers.

@ The PML approach is also effective, once we remove spurious modes
and choose truncation distance correctly.

» Need to automate spurious mode removal and truncation choices.

@ Our two approaches when applied to a simple 2D photonic
membrane, yielded results close to those obtained in literature by
FDTD simulations.

Reference: [G., Moskow & Santosa, SIAP, 2008] Asymptotic and numerical techniques
for resonances of thin photonic structures, I doi: 10.1137,/070701388.
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