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Photonic crystals

Periodic structures with strong dielectric contrast can exhibit bandgaps.

Example (experimental)

SEM image of a fabricated 3D PBG structure [Blanco et al, Nature, 2000]

Localization of light having frequencies in the bandgap can be achieved by
introducing “defects” in the periodic pattern.
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Photonic crystals

Periodic structures with strong dielectric contrast can exhibit bandgaps.

Example (computational)
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Infinite 3D scaffold structure analyzed in [Dobson, G, & Pasciak, JCP, 2000]

Localization of light having frequencies in the bandgap can be achieved by
introducing “defects” in the periodic pattern.
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Photonic membranes

Practical photonic structures are finite and have truncated periodic
pattern. (They are hence open and lossy.)

It is practically easier to fabricate (etch) 2-dimensional “membranes”
on which periodically spaced air holes can be created.

Even if they have no bandgaps, they can have useful resonant modes.

An SEM image of a free-

standing PBG membrane

with a “defect”.

[Painter et al, Science, 1999]
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The mathematical problem

Compute resonant frequencies k and corresponding resonant modes
of thin photonic membranes.

Identify resonance modes that have high localization within fabricated
“defect” regions.

Resonance k is a complex number for which there is a non-trivial
function u satisfying

∆u + k2ε(x)u = 0 in all Rn,

u is “outgoing” at infinity.

Here ε = refractive index, and “outgoing” has many definitions. . .
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Outgoing wave

For real k , the standard definition of the “outgoing” condition is the
Sommerfeld’s radiation condition

lim
r→∞

r1/2
∣∣∂u

∂r
− iku

∣∣ = 0.

However this is not correct for general complex k.

For complex k , expressions that are analytic continuations of
expressions in the real k case are used to define “outgoing” waves:

I Series representation (2d): u is outgoing if

u(r , θ) =
∞∑

n=−∞
cne

inθH1
n (kr).

I Volume integral representation:

u(x) =

∫
D

Gk(x ; y) f (y) dy

where Gk is the free-space Green’s function.
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Two approaches

We will report results obtained by approaching the problem using two very
different computational techniques:

1 Discretize an asymptotic limit of a Lippman-Schwinger-type integral
formulation for the resonance problem.

I Results in a small dense nonlinear eigenproblem.

2 Discretize using finite elements combined with the perfectly matched
layer (PML).

I Results in a large sparse generalized eigenproblem.
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Thin, high-contrast membranes

Geometry:

t

Dielectric membrane occupies
the volume

D = Ω× (− t

2
,
t

2
).

Assume that the membrane thickness t is small:

t << diam(Ω).

Assume high contrast dielectric:

ε(x1, x2, x3) =


ε0(x1, x2)

t
, if |x3| < t/2 and (x1, x2) ∈ Ω,

1, otherwise.
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Resonance via Lippman-Schwinger

The source problem was analyzed in [Moskow, Santosa & Zhang, 2005] by
asymptotics on the Lippman-Schwinger equation.

Follow along the same lines for the resonance problem:

∆u + k2ε u = 0

=⇒ ∆u + k2u = (1− ε)k2u.

Using the outgoing fundamental solution Gk(x ; y), we thus formally obtain
a Lippman-Schwinger type volume integral equation for the resonance:

=⇒ u(x) = k2

∫
D

Gk(x ; y)
(
1− ε(y)

)
u(y) dy .

For our thin membrane, this implies

u(x) = k2

∫
Ω

∫ t/2

−t/2
Gk(x ; y)

(
1− ε0(y1, y2)

t

)
u(y) dy .
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Scaled operators

From
previous

slide
u(x) = k2

∫
Ω

∫ t/2

−t/2
Gk(x ; y)

(
1−ε0(y1, y2)

t

)
u(y) dy .

We map to a fixed scaled domain D̂,

t 1

D = Ω× (−t/2, t/2) D̂ = Ω× (−1/2, 1/2)

u(x) û(x̂)

and recast the problem: û = k2Tt(k) û, Tt(k) : L2(D̂) 7→ L2(D̂),

Tt(k)û (x̂) =

∫
Ω

∫ 1/2

−1/2
Gk(x̂1, x̂2, tx̂3; ŷ1, ŷ2, tŷ3)

(
t − ε0(ŷ1, ŷ2)

)
û(ŷ) dŷ .

The formal asymptotic limit (as t → 0) is now clear.
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1st approach: Asymptotic limit

Limiting operator T0(k):

T0(k)v̂ (x̂) = −
∫

Ω

∫ 1/2

−1/2
Gk(x̂1, x̂2, 0; ŷ1, ŷ2, 0) ε0(ŷ1, ŷ2) v̂(ŷ) dŷ .

Limiting resonance problem : Find {k0, u0} satisfying

u0 = k2
0T0(k0) u0.

(nonlinear eigenproblem)

Discretization: Collocation scheme using piecewise linear continuous
approximants with respect to a uniform grid.

Dense nonlinear eigenproblem

Small eigenproblem (due to the dimension reduction)

Can solve using Residual Inverse Iteration [Neumaier, 1985].
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Convergence

To obtain rate of convergence using [Osborn, 1975], we assume:

kt is a resonance of Tt . ut = k2
t Tt(kt) ut .

kt converges to some k0 in C.

k0 is a simple resonance of T0. u0 = k2
0T0(k0) u0.

Normalize 〈u0, u0〉 = 1 and assume k2
0 〈D(k0)u0, u0〉 6= −1, where

D(k)v = ∂
∂k (kT0(k)v).

Theorem (Rate of convergence)

There exists C independent of t such that

|kt − k0| ≤ C t,

and furthermore

kt = k0 + k2
0

〈(T0(k0)− Tt(k0))u0, u0〉
1 + k2

0 〈D(k0)u0, u0〉
+ O(t2).
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2nd approach: Apply PML

PML [Berenger 1994] extensively used for source problems.

Does it work for resonance computations?
I Airplane noise (slat resonance) [Hein, Hohage, Koch, Schöberl, 2007]
I Often used in engineering. Spurious modes reported.

To validate PML, consider a problem with calculable exact resonances.

Example: Resonances of a disk

A circular homogeneous dielectric disk (ε = 4)
of radius a = 1 is placed in infinite vacuum.

Compute using finite elements with
PML set in region rbegin < r < rend.

At PML truncation r = rend, set zero b.c.

a
rbegin

PML

rend
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Example: Exact solution

n = 0
(simple modes)

Figures show
region r < 3.

n = 1
(multiplicity 2)

n = 2
(multiplicity 2)

Corresponding k-values
in the complex plane
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Things to learn from the example

1 Approximations can seem to converge, but to the wrong solution!

2 Spurious modes can arise!

Apparent order Difference in resonances with successive mesh refinements

of convergence |k (h)− k (h/2)| |k (h/2)− k (h/4)| |k (h/4)− k (h/8)| |k (h/8)− k (h/16)|
1.90 0.0100 0.0029 0.0007 0.0002

Actual order Actual errors in computed resonances

of convergence |k (h) − k| |k (h/2) − k| |k (h/4) − k| |k (h/8) − k|
0.01 0.0971 0.0957 0.0954 0.0953

(Here h = initial meshsize, k(h) = computed resonance, k = exact resonance.)

Explanation: PML truncation alters the exact spectrum. Discrete
spectrum tries to converge to the altered spectrum.

Moral: Truncation distance rend should be carefully chosen.
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Things to learn from the example

1 Approximations can seem to converge, but to the wrong solution!
2 Spurious modes can arise!
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A simple 2D photonic membrane

We apply both approaches to an example from [Fan et al, 1995]:

infi
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1 Asymptotic approach uses a uniform 1D mesh. (size: 2,289)
x

2 PML approach uses 2D mesh. (size: 221,201)

[zoomed in]

This mesh is further refined 4 times.
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Results from 1st approach (asymptotic)

A coarse pseudospectra-type plot: σmin(I − k2T aprx
0 (k)) on C

A localized eigenfunction: k = 28.0236− 0.0005i
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Results from 2nd approach (PML)

A highly localized resonance mode found at k = 28.7878− 0.0017i
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Results from 2nd approach (PML)

← The localized resonance mode.

↓ First few resonances
(after removing spurious ones and adjust-
ing truncation distance “by hand”).
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Comparison

Our result from the PML approach Our result from the asymptotic approach

As we see, the interesting
mode is captured by all the
three experiments.

FDTD result: Figure from [Fan et al, 1995]
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Conclusions

For thin high-contrast membranes, we formulated and analyzed a
dimension reduced asymptotic limit.

The asymptotic approach is very effective for calculating resonances
of thin photonic membranes.

I Need better nonlinear eigensolvers.

The PML approach is also effective, once we remove spurious modes
and choose truncation distance correctly.

I Need to automate spurious mode removal and truncation choices.

Our two approaches when applied to a simple 2D photonic
membrane, yielded results close to those obtained in literature by
FDTD simulations.

Reference: [G., Moskow & Santosa, SIAP, 2008] Asymptotic and numerical techniques

for resonances of thin photonic structures, � doi: 10.1137/070701388.
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