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A typical PDE approximation

The Dirichlet problem:

— div (a(x) grad u) = f, on (2,
u =0, on of).

Weak formulation: Find v« € H;(Q) satisfying

(a grad u,grad v) = (f,v), Vv € Hy(Q).

Spectral approx.: Find u, € P, N Hy(Q) satisfying

(a grad u,, gradv) = (f,v), Vv & P, N Hy(Q).
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A typical PDE approximation

Since u, Is a projection of u, It IS a
guasioptimal approximation:

CaHu—upH}p(Q) < 1I1f HU_UHHl(Q)

veP,NH} ()

Weak formulation: Find v € H;(Q) satisfying

(a grad u,grad v) = (f,v), Yo € Hy(Q).

Spectral approx.: Find u, € P, N Hy(Q) satisfying

(a grad u,, gradv) = (f,v), Yo & P,N Hy(Q).
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A typical PDE approximation

Since u, Is a projection of u, It IS a
guasioptimal approximation:

CaHu—upHHl(Q) < 1Ilf HU_UHHl(Q)

veP,NH} ()

Thus the error analysis of methods like the above
In the variational form

a(u,v) = F(v)

with an innerproduct a(-, -), immediately reduces to
a guestion in approximation theory.
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A typical PDE approximation

Since u, Is a projection of u, It IS a
guasioptimal approximation:

CaHu—upH}p(Q) < 1Ilf HU_UHHl(Q)

veP,NH} ()

What about methods in saddle point form?

q € W} a(q,r) +b(r,u) =G(r), Vrel,
EE b(q,v) = F(v), YvelV.
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The spectral Raviart-Thomas method

First order reformulation of the Dirichlet problem:

q+a(x)gradu=0, on ¢,
divg=f, onf¢),
u=g, onoll.

Weak formulation: Find g and « satisfying

g € H(div)} (a'q,r) — (u,divr) = —(g,7 - n)aq,
uEL2(Q) (v,ddi ) — (fav)a

for all » € H(div) and v € L*(Q).
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The spectral Raviart-Thomas method

First order reformulation of the Dirichlet problem:

q+a(x)gradu=0, on ¢,
divg=f, onf¢),
u=g¢g, 0on ol

Spectral discretization: Find g, and u,, satisfying

oen) (@g,.7) — (uy,dive) = —(g,7 - ),
up € B (?},diV qp) — (fa U)?

forallr € R, C H(div)and v € P, C L*(Q).
(Rp E fL’P p —I_ P p-) Department of Mathematics, University of Florida  [Slide 3 of 22]
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Quasioptimality?

Is the spectral RT method quasioptimal?

In other words, does the estimate

Error of the method

e
lg — a,llm @) + [[u— w120

<C|( inf ||q— ) + inf flu — v
< C(rlel’lRp |q ’PHH(dw) + vlélpp lu—vllz (Q)>

————
Best approximation error

hold with a constant C independent of the
polynomial degree p ?
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Apply Babuska-Brezzi theory

The Babuska-Brezzi theory gives sufficient
conditions for quasioptimality of methods in the
following variational form:

a(g,r) +b(r,u) = G(r), | | Ag+ B'u=G,
b(q,v) = F(v). Bg = F.

m Coercivity on the kernel:
a(r,r) > Ci||r|, Vr € Ker(B).
= Inf-sup condition:

lvllv <Gl B'ollw,  VveV.
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Apply Babuska-Brezzi theory

The Babuska-Brezzi theory gives sufficient
conditions for quasioptimality of methods in the
following variational form:

a(g,r) +b(r,u) = G(r), | | Ag+ B'u=G,
b(q,v) = F(v). Bg = F.

m Coercivity on the kernel:
a(r,r) > Ci||r|, Vr € Ker(B).
= Inf-sup condition:

)
lolly < Cosup 20y ey,
rew ||7||w
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Apply Babuska-Brezzi theory

The Babuska-Brezzi theory gives sufficient
conditions for quasioptimality of methods in the
following variational form: (Case of RT method)

(a'q,r) — (u,divr) = —(g,7 - n)oq,
(v,divg ) = (f,v),

m Coercivity on the kernel:
a(r,r) > Ci||r|, Vr € Ker(B).
m Inf-sup condition:

b
ol < Gsup 20 wev
rcW ||7°HW
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Apply Babuska-Brezzi theory

The Babuska-Brezzi theory gives sufficient
conditions for quasioptimality of methods in the
following variational form: (Case of RT method)

(a'q,r) — (u,divr) = —(g,7 - n)oq,
(v,divg ) = (f,v),

m Coercivity on the kernel:

(@ 'r,r) > ClHrH%{(diV), Vr € R, with divr = 0.

= Inf-sup condition:

V]| 2y < Co sup
r,eR, HTpHH(div)
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An exact sequence property

Let 2 be star shaped with respect to some a € .
Then the following sequences are exact:

grad div

HYQ)/R XS H(curl) &5 H(div) 2% L2(Q),

(This Iis a generalization of the classical de Rham
complex to Sobolev spaces.)
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An exact sequence property

Let 2 be star shaped with respect to some a € .
Then the following sequences are exact:

HY(Q)/R Z2 H(curl) &2 H(div) &% L2(Q),
P, /R &2 Q™ R P,

Notation:
(), = Nédélec space = P, @ { set of homogeneous

polynomials g of degree p + 1 with g(x) - * = 0}.

R, = Raviart-Thomas space = P, ® P,.
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An exact sequence property

Let 2 be star shaped with respect to some a € .
Then the following sequences are exact:

HY(Q)/R Z2 H(curl) &2 H(div) &% L2(Q),
P, /R &2 Q™ R P,

We’ll construct bounded linear maps D, K, G
HYQ)/R << H(curl) < H(div) <= L3(Q),
5 P /R <& Q, R, P,
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The Poincaré lemma

It is well known that if @ € Q and ¢ is irrotational, the line integral

Galw) = [ q-at

a

satisfies grad(Gq) = q. The Poincage lemma is a generalization:
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The Poincaré lemma

Well known fact: Let a € . If g is irrotational, the line integral

Galw) = [ q-at

a

satisfies grad(Gq) = q. The Poincage lemma is a generalization:
For smooth v and v, define

Kv(x) = —(x —a) X /0 tv(t(x —a)+ a) dt,

Di(z) = (x—a) /O 2(t(z — a) + a) dt

m div Dy = .
mcurl Kv =v, whenever divv = 0.
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Right inverses of grad, div, and curl

THEOREM. The maps D, K. G extend continuously to

HYQ)/R <& H(curl) <= H(div) <= L%().
Moreover,
Pp+1/R£ QpL Rp<£ £,

div Dy =1, Vi € L*(Q),
curl Kv =v, Vv e H(div) with dive =0,
gradGq = q, Vq € H(curl) with curlq = 0.

(We assume that (2 is star shaped with respect to some point a € Q
and 0f2 is Lipschitz.)
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Commutativity properties

A well known technique for proving the inf-sup condition is via the
use of commuting projectors.

For the RT method, we need a projector Hf such
that the following diagram commutes:

H(div) 2% L2(Q)

[ |m
R, —— B, | (Here II, = L*-orthogonal

projection onto F,.)

div qu = [1,divg
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Commutativity properties

For the RT method, we need a projector Hf such
that the following diagram commutes:

(v, div )
i le 2 D) < C
H(div) = 12(@) | [Vlz@ <€ s om
lﬂf lﬂp l
| div 7))
div v 2 <C Sup (Upv .
R, — B |lulee<Csup e

t allows one to use inf-sup conditions at the top
evel to prove inf-sup conditions at the bottom level.
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A de Rham diagram

More generally, we will construct a sequence of
projectors such that the following diagram
commutes:

grad dlv

HY(Q)/R =—— H/(curl) our, H (div)

lnXV lHQ lﬂR . lnp

Department of Mathematics, University of Florida  [Slide 10 of 22]



Jay Gopalakrishnan

Projectors

II'v = ILY v+ (I —IL")D( II, divv)

p
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Projectors

p

R,, RO RO :
v = I v+ (I - I°)D((11, ) divv)

IT;” is the L*-orthogonal

projection onto
R)={re R, :divr =0}.

1, = L*-orthogonal
projection onto P,
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Projectors

R,, RO RO :
v = I v+ (I - I°)D((11, ) divv)

p

IT;” is the L*-orthogonal
projection onto

R)={re R, :divr =0}.
Then,

1, = L*-orthogonal
projection onto P,

div IT}*v = div(I — IT,"v) D(11, div v)
= div D(I], div v)
= [, divv.
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Projectors

I'v = IL° v+ (I — IL")D( II, divv)

Q. Q0 Q0 RO
Hpqq+(I—Hp JK( IL™ curlq)

Here HpQO is the L*-orthogonal projection onto
Qg ={g € Q, : curlqg = 0}.
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Projectors

I'v = IL° v+ (I — IL")D( II, divv)

Q. Q0 Q0 RO
ITyq= II>" q+ (I - IL7")K( IL" curlgq)

]Y;yw = IO w+ (I — I"°)G( HZ?O grad w)
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Properties of the projectors

THEOREM. The following diagram commutes:

HY(Q)/R 2% H(curl) <L H(div) 2% 12(Q)

grad curl div
P,i/R —— — R, —— P,.

We have norm bounds independent of degree p :
I 3 gy < (14 CH) 0l Eai Vv € H(div),

| H]?q %—I(curl) (1 + CK) q %—I(curl) \V/q < H(CUI‘I),
1L w7 o (1 +C&) w7 oy Vw € H'(Q).
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Return to the RT method

THEOREM. There Is a positive constant C
Independent of polynomial degree p such that

(?}, div ’I"p)Q

V]| 2() < C sup

, Yv e b,
r,eR, HrpHH(div)

COROLLARY. The spectral RT method is
guasioptimal.
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Other applications

Application to proving Poincaré-Friedrichs type inequalities:

Let Q; ={19€Q,: (g, gradw)=0forall w € Py}.

THEOREM. Forallq € Q,

lal|r2() < Cllcurl g||12(q).

PROOF:

lgllz2) = inf flg — grad wl|z o)

wEPp+1

< |lg — (¢ — Kcurl ‘I)||L2(Q)
< Cx|leurl gl 2(g.
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A magnetostatics problem

Case of zero magnetic boundary condition:

curl y 'curlE=J onq,
divE =0 on¢),
nx u ‘curlE =0 on o).

Case of zero electric boundary condition:

curly 'curlE=J on¢,
divE =0 on (),
nx E=0 on o).
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A magnetostatics problem

Case of zero magnetic boundary condition:

curl y 'curlE=J onq,
divE =0 on¢),
nx u ‘curlE =0 on o).

Spectral method: Find (E,,,) € Q, x Byr /R 3

(:u_lcurl EP? curl qp) _ (grad wpv qp) — (J7 qp)7
(grad w,, E,) = 0,

forall g, € Q,and w, € B, 1/R.
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Quasioptimality

m Inf-sup condition:

rad w,,
ey < C sup B2 @)
q,€Q, quHH(curl)

. \V/wp = Pp_|_1/R.

This follows from the imbedding 7, *™° Q.

m Coercivity on the kernel:

1q|z2(0) < Cl|curl q||r2q), Vq € Qi-

This follows from Poincarée-Friedrichs estimate
we proved earlier.

Hence Babuska-Brezzi theory — quasioptimality.
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Case of electric boundary conditions

Spectral method: Find (E,,,) € @p X f)pH (p > 3):

(,u_lcurl EP7 curl qp) _ (grad wpa Qp) — (J7 qp)a qu S ép
(grad w,, E,) = 0, Vw, € ﬁp_|_1

where @p = Q, N Hy(curl) and f)pﬂ = P, N H ().

e Inf-sup condition is trivial again.

e But we need to show that

a2 < Cllcurl q|| 2

Vq € Q; ={r ¢ ézp - (r,gradw) = 0 forall w € P, }.
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Preserving boundary conditions

We need new right inverses and projectors.

Exact sequences with zero boundary conditions:

grad

HY(Q) £2S Hy(curl) <L Ho(div) 2% 12(Q)/R

= grad = curl © div
I p+1 ’ Qp ’ Rp ’ p/ IN
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Preserving boundary conditions

We need new right inverses and projectors.

Q1: Are there projectors satisfying

grad

HY(Q) £2S Hi(curl) <L Ho(div) 2% 12(Q)/R

0 . IIR
K | | |
° grad 2 curl O div
Py — Q, — R, — F,/R7
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Preserving boundary conditions

We need new right inverses and projectors.

Q2: Are there right inverses

HYQ) <% Hy(curl) «2— Hy(div) <= L%(Q)/R

: ; i : D
Py —— Q, — R, —— B/R7Y

(We need K to analyze the spectral method with
electric boundary conditions.)
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Right inverse with zero b.c.

THEOREM.
exiIsts an o

H(c

Let () beoa tetrahedron. Then there
nerator K on

iv0,Q) = {v € Hy(div) : dive = 0}

with the following properties:
m curl Kv = v, forallv e Hy(div0, Q).
mnx Kv=0, ondQ forallve Hydiv0,Q).
m || K20 < Clvlq), Yo € Hy(divo,Q).

= Whenever v is in R, the function Kv is in Q,,
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Right inverse with zero b.c.

Proof proceeds by finding a map ¢ such that
Kv = Kv — grad ®(v)

satisfies the required properties.
Ingredients in the proof:

m A p-optimal extension operator [Mufioz—Sola, 1997]

HY2(00Q) - HY(Q).

= Hodge decomposition on 92 [Buffa & Ciarlet, 2002]

grad, curl ;

0 — HY2(0Q)/R —% H[Y*(00) =55 H-3/2(6Q) — 0
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A quasioptimality result

Existence of K implies that
1q]|z20) < Cllcurl q||2(q)
Vq € Q; ={r ¢ Qp - (r,gradw) = 0 forallw € P,q}

Hence quasioptimality of the spectral method with
electric boundary condition follows on tetrahedra.
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Conclusion

1. We began with these exact sequences:

grad div

HYQ)/R 25 H(curl) =55 H(div) =% L2(Q)

grad curl div
Bpy1 /R — — R, — 5L
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Conclusion

2. We gave right inverses of grad, div, and curl.

HYQ)/R «S— H(curl) «2— H(div) <2— L2%(Q)
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Conclusion

3. We constructed commuting projectors.

HY(Q)/R 225 H(curl) 2L H(div) 2% 12

ol e

grad curl
Bpp /R — — R, — 5

We showed how to apply these constructions to
various spectral methods.
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Conclusion

4. \We tried to extend the results to zero bc.

grad

HY(Q) £2S Hy(curl) =5 Ho(div) 2% 12(Q)/R

o grad g curl O div
E p+1 ’ Qp ’ Rp ’ p/ IN
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Conclusion

5. One right inverse Is missing in the zero bc case.

HY(Q) 225 Hy(curl) <L Hy(div) 2% 12(Q)/R

S .
| | |
° grad g curl O div
P, e — Qp Rp - p / R

l

6. Further questions: How can one modify and use
such projectors to prove hp-optimality of Ap-mixed
methods?
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