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A typical PDE approximation

The Dirichlet problem:

− div
(
a(x)grad u

)
= f, on Ω,

u = 0, on ∂Ω.

Weak formulation: Find u ∈ H1
0(Ω) satisfying

(a gradu,grad v) = (f, v), ∀v ∈ H1
0(Ω).

Spectral approx.: Find up ∈ Pp ∩H
1
0(Ω) satisfying

(a grad up,grad v) = (f, v), ∀v ∈ Pp ∩H
1
0(Ω).
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A typical PDE approximation

Since up is a projection of u, it is a
quasioptimal approximation:

Ca‖u−up‖H1(Ω) ≤ inf
v∈Pp∩H1

0 (Ω)
‖u−v‖H1(Ω)

u

up

H1
0

Pp

Weak formulation: Find u ∈ H1
0(Ω) satisfying

(a gradu,grad v) = (f, v), ∀v ∈ H1
0(Ω).

Spectral approx.: Find up ∈ Pp ∩H
1
0(Ω) satisfying

(a grad up,grad v) = (f, v), ∀v ∈ Pp ∩H
1
0(Ω).
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A typical PDE approximation

Since up is a projection of u, it is a
quasioptimal approximation:

Ca‖u−up‖H1(Ω) ≤ inf
v∈Pp∩H1

0 (Ω)
‖u−v‖H1(Ω)

u

up

H1
0

Pp

Thus the error analysis of methods like the above
in the variational form

a(u, v) = F (v)

with an innerproduct a(·, ·), immediately reduces to
a question in approximation theory.
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A typical PDE approximation

Since up is a projection of u, it is a
quasioptimal approximation:

Ca‖u−up‖H1(Ω) ≤ inf
v∈Pp∩H1

0 (Ω)
‖u−v‖H1(Ω)

u

up

H1
0

Pp

What about methods in saddle point form?

q ∈W

u ∈ V

}

a(q, r) + b(r, u) = G(r), ∀r ∈ W,

b(q, v) = F (v), ∀v ∈ V.
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The spectral Raviart-Thomas method

First order reformulation of the Dirichlet problem:

q + a(x)grad u = 0, on Ω,

div q = f, on Ω,

u = g, on ∂Ω.

Weak formulation: Find q and u satisfying

q ∈H(div)

u ∈ L2(Ω)

}

(a−1q , r)− (u , div r) = −(g, r · n)∂Ω,

(v, div q ) = (f, v),

for all r ∈H(div) and v ∈ L2(Ω).
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The spectral Raviart-Thomas method

First order reformulation of the Dirichlet problem:

q + a(x)grad u = 0, on Ω,

div q = f, on Ω,

u = g, on ∂Ω.

Spectral discretization: Find qp and up satisfying

qp ∈ Rp

up ∈ Pp

}

(a−1qp, r)− (up, div r) = −(g, r · n)∂Ω,

(v, div qp) = (f, v),

for all r ∈ Rp ⊆H(div) and v ∈ Pp ⊆ L2(Ω).

(Rp ≡ xPp + P p.) Department of Mathematics, University of Florida [Slide 3 of 22]
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Quasioptimality?

Is the spectral RT method quasioptimal?

In other words, does the estimate

Error of the method

︷ ︸︸ ︷

‖q − qp‖H(div) + ‖u− up‖L2(Ω)

≤ C

(

inf
r∈Rp

‖q − r‖H(div) + inf
v∈Pp

‖u− v‖L2(Ω)

)

︸ ︷︷ ︸

Best approximation error

hold with a constant C independent of the
polynomial degree p ?
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Apply Babuška-Brezzi theory

The Babuška-Brezzi theory gives sufficient
conditions for quasioptimality of methods in the
following variational form:

a(q, r) + b(r, u) = G(r),

b(q, v) = F (v).
or

Aq +Btu = G,

Bq = F.

Coercivity on the kernel:
a(r, r) ≥ C1‖r‖

2
W , ∀r ∈ Ker(B).

Inf-sup condition:

‖v‖V ≤ C2‖B
tv‖W , ∀v ∈ V.
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Apply Babuška-Brezzi theory

The Babuška-Brezzi theory gives sufficient
conditions for quasioptimality of methods in the
following variational form:

a(q, r) + b(r, u) = G(r),

b(q, v) = F (v).
or

Aq +Btu = G,

Bq = F.

Coercivity on the kernel:
a(r, r) ≥ C1‖r‖

2
W , ∀r ∈ Ker(B).

Inf-sup condition:
‖v‖V ≤ C2 sup

r∈W

b(r, v)

‖r‖W
∀v ∈ V.
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Apply Babuška-Brezzi theory

The Babuška-Brezzi theory gives sufficient
conditions for quasioptimality of methods in the
following variational form: (Case of RT method)

(a−1q , r)− (u , div r) = −(g, r · n)∂Ω,

(v, div q ) = (f, v),

Coercivity on the kernel:
a(r, r) ≥ C1‖r‖

2
W , ∀r ∈ Ker(B).

Inf-sup condition:
‖v‖V ≤ C2 sup

r∈W

b(r, v)

‖r‖W
∀v ∈ V.
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Apply Babuška-Brezzi theory

The Babuška-Brezzi theory gives sufficient
conditions for quasioptimality of methods in the
following variational form: (Case of RT method)

(a−1q , r)− (u , div r) = −(g, r · n)∂Ω,

(v, div q ) = (f, v),

Coercivity on the kernel:
(a−1r, r) ≥ C1‖r‖

2
H(div), ∀r ∈ Rp with div r = 0.

Inf-sup condition:
‖v‖L2(Ω) ≤ C2 sup

rp∈Rp

(v, div rp)

‖rp‖H(div)
, ∀v ∈ Pp.
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An exact sequence property

Let Ω be star shaped with respect to some a ∈ Ω.
Then the following sequences are exact:

H1(Ω)/R
grad
−→ H(curl)

curl
−→ H(div)

div
−→ L2(Ω),

Pp+1/R
grad
−→ Qp

curl
−→ Rp

div
−→ Pp.

(This is a generalization of the classical de Rham
complex to Sobolev spaces.)
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An exact sequence property

Let Ω be star shaped with respect to some a ∈ Ω.
Then the following sequences are exact:

H1(Ω)/R
grad
−→ H(curl)

curl
−→ H(div)

div
−→ L2(Ω),

Pp+1/R
grad
−→ Qp

curl
−→ Rp

div
−→ Pp.

Notation:

Qp = Nédélec space ≡ P p ⊕ { set of homogeneous
polynomials q of degree p+ 1 with q(x) · x = 0}.

Rp = Raviart-Thomas space = xPp ⊕ P p.
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An exact sequence property

Let Ω be star shaped with respect to some a ∈ Ω.
Then the following sequences are exact:

H1(Ω)/R
grad
−→ H(curl)

curl
−→ H(div)

div
−→ L2(Ω),

Pp+1/R
grad
−→ Qp

curl
−→ Rp

div
−→ Pp.

We’ll construct bounded linear maps D,K, G :

H1(Ω)/R
G
←− H(curl)

K
←− H(div)

D
←− L2(Ω),

3 Pp+1/R
G
←− Qp

K
←− Rp

D
←− Pp.
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The Poincaré lemma

It is well known that if a ∈ Ω and q is irrotational, the line integral

Gq(x) =

∫
x

a

q · dt,

satisfies grad(Gq) = q. The Poincaŕe lemma is a generalization:
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The Poincaré lemma

Well known fact: Let a ∈ Ω. If q is irrotational, the line integral

Gq(x) =

∫
x

a

q · dt,

satisfies grad(Gq) = q. The Poincaŕe lemma is a generalization:
For smooth v and ψ, define

Kv(x) = −(x− a)×

∫ 1

0

tv(t(x− a) + a) dt,

Dψ(x) = (x− a)

∫ 1

0

t2 ψ(t(x− a) + a) dt.

Then:
div Dψ = ψ.

curlKv = v, whenever div v = 0.
Department of Mathematics, University of Florida [Slide 7 of 22]
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Right inverses of grad, div, and curl

THEOREM. The maps D,K, G extend continuously to

H1(Ω)/R
G
←− H(curl)

K
←− H(div)

D
←− L2(Ω).

Moreover,

Pp+1/R
G
←− Qp

K
←− Rp

D
←− Pp,

div Dψ = ψ, ∀ψ ∈ L2(Ω),

curlKv = v, ∀v ∈H(div) with div v = 0,

gradGq = q, ∀q ∈H(curl) with curl q = 0.

(We assume that Ω is star shaped with respect to some point a ∈ Ω

and ∂Ω is Lipschitz.)
Department of Mathematics, University of Florida [Slide 8 of 22]
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Commutativity properties

A well known technique for proving the inf-sup condition is via the
use of commuting projectors.

For the RT method, we need a projector ΠR
p such

that the following diagram commutes:

H(div)
div
−−→ L2(Ω)



yΠR

p



yΠp

Rp
div
−−→ Pp (Here Πp = L2-orthogonal

projection onto Pp.)

div ΠR
p q = Πp div q
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Commutativity properties

A well known technique for proving the inf-sup condition is via the
use of commuting projectors.

For the RT method, we need a projector ΠR
p such

that the following diagram commutes:

H(div)
div
−−→ L2(Ω)



yΠR

p



yΠp

Rp
div
−−→ Pp

‖v‖L2(Ω) ≤ C sup
r∈H(div)

(v, div r)

‖r‖H(div)

↓

‖vp‖L2(Ω) ≤ C sup
rp∈Rp

(vp, div rp)

‖rp‖H(div)

It allows one to use inf-sup conditions at the top
level to prove inf-sup conditions at the bottom level.
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A de Rham diagram

More generally, we will construct a sequence of
projectors such that the following diagram
commutes:

H1(Ω)/R
grad
−−−→ H(curl )

curl
−−→ H(div)

div
−−→ L2(Ω)



yΠW

p



y

ΠQ
p



yΠR

p



yΠp

Pp+1/R
grad
−−−→ Qp

curl
−−→ Rp

div
−−→ Pp

Department of Mathematics, University of Florida [Slide 10 of 22]
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Projectors

ΠR
p v = ΠR0

p v + (I −ΠR0
p )D( Πp div v)

ΠR0
p is the L2-orthogonal

projection onto
R0

p = {r ∈ Rp : div r =

0}.

Πp = L2-orthogonal
projection onto Pp
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Projectors

ΠR
p v = ΠR0

p v + (I −ΠR0
p )D( Πp div v)

ΠR0
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projection onto
R0

p = {r ∈ Rp : div r = 0}.
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projection onto Pp

Department of Mathematics, University of Florida [Slide 11 of 22]



Jay Gopalakrishnan

Projectors

ΠR
p v = ΠR0

p v + (I −ΠR0
p )D( Πp div v)

ΠR0
p is the L2-orthogonal

projection onto
R0

p = {r ∈ Rp : div r = 0}.

Πp = L2-orthogonal
projection onto Pp

Then,

div ΠR
p v = div(I −ΠR0

p v)D(Πp div v)

= div D(Πp div v)

= Πp div v.
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Projectors

ΠR
p v = ΠR0

p v + (I −ΠR0
p )D( Πp div v)

ΠQ
p q = ΠQ0

p q + (I −ΠQ0
p )K( ΠR0

p curl q)

Here ΠQ0
p is the L2-orthogonal projection onto

Q0
p = {q ∈ Qp : curl q = 0}.
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Projectors

ΠR
p v = ΠR0

p v + (I −ΠR0
p )D( Πp div v)

ΠQ
p q = ΠQ0

p q + (I −ΠQ0
p )K( ΠR0

p curl q)

ΠW
p w = ΠW0 w + (I −ΠW0)G( ΠQ0

p gradw)
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Properties of the projectors

THEOREM. The following diagram commutes:

H1(Ω)/R
grad
−−−→ H(curl )

curl
−−→ H(div)

div
−−→ L2(Ω)



yΠW

p



y

ΠQ
p



yΠR

p



yΠp

Pp+1/R
grad
−−−→ Qp

curl
−−→ Rp

div
−−→ Pp .

We have norm bounds independent of degree p :

‖ΠR
p v‖2H(div) ≤ (1 + C2

D)‖v‖2H(div) ∀v ∈H(div),

‖ΠQ
p q‖2H(curl ) ≤ (1 + C2

K)‖q‖2H(curl ) ∀q ∈H(curl ),

‖ΠW
p w‖2H1(Ω) ≤ (1 + C2

G)‖w‖2H1(Ω) ∀w ∈ H1(Ω).
Department of Mathematics, University of Florida [Slide 13 of 22]
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Return to the RT method

THEOREM. There is a positive constant C
independent of polynomial degree p such that

‖v‖L2(Ω) ≤ C sup
rp∈Rp

(v, div rp)Ω

‖rp‖H(div)
, ∀v ∈ Pp.

COROLLARY. The spectral RT method is
quasioptimal.
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Other applications

Application to proving Poincaré-Friedrichs type inequalities:

Let Q⊥p = {q ∈ Qp : (q,gradw) = 0 for all w ∈ Pp+1}.

THEOREM. For all q ∈ Q⊥p

‖q‖L2(Ω) ≤ C‖curl q‖L2(Ω).

PROOF:

‖q‖L2(Ω) = inf
w∈Pp+1

‖q − gradw‖L2(Ω)

≤ ‖q − (q −Kcurl q)‖L2(Ω)

≤ CK‖curl q‖L2(Ω). �
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A magnetostatics problem

Case of zero magnetic boundary condition:

curlµ−1curlE = J on Ω,

div E = 0 on Ω,

n× µ−1curlE = 0 on ∂Ω.

Case of zero electric boundary condition:

curlµ−1curlE = J on Ω,

div E = 0 on Ω,

n×E = 0 on ∂Ω.
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A magnetostatics problem

Case of zero magnetic boundary condition:

curlµ−1curlE = J on Ω,

div E = 0 on Ω,

n× µ−1curlE = 0 on ∂Ω.

Spectral method: Find (Ep, ψp) ∈ Qp × Pp+1/R 3

(µ−1curlEp, curl qp)− (gradψp, qp) = (J , qp),

(gradwp,Ep) = 0,

for all qp ∈ Qp and wp ∈ Pp+1/R.

Department of Mathematics, University of Florida [Slide 16 of 22]
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Quasioptimality

Inf-sup condition:

‖wp‖H1(Ω) ≤ C sup
qp∈Qp

(gradwp, qp)

‖qp‖H(curl )
, ∀wp ∈ Pp+1/R.

This follows from the imbedding Pp+1
grad
−→ Qp.

Coercivity on the kernel:

‖q‖L2(Ω) ≤ C‖curl q‖L2(Ω), ∀q ∈ Q⊥p .

This follows from Poincaré-Friedrichs estimate
we proved earlier.

Hence Babuška-Brezzi theory =⇒ quasioptimality.
Department of Mathematics, University of Florida [Slide 17 of 22]
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Case of electric boundary conditions

Spectral method: Find (Ep, ψp) ∈ Q̊p × P̊p+1 (p ≥ 3):

(µ−1curlEp, curl qp)− (gradψp, qp) = (J , qp), ∀qp ∈ Q̊p

(gradwp,Ep) = 0, ∀wp ∈ P̊p+1

where Q̊p = Qp ∩H0(curl) and P̊p+1 = Pp+1 ∩H
1
0(Ω).

• Inf-sup condition is trivial again.
• But we need to show that

‖̊q‖L2(Ω) ≤ C‖curl q̊‖L2(Ω)

∀q̊ ∈ Q̊⊥p = {r ∈ Q̊p : (r,gradw) = 0 for all w ∈ P̊p+1}.
Department of Mathematics, University of Florida [Slide 18 of 22]
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Preserving boundary conditions

We need new right inverses and projectors.

Exact sequences with zero boundary conditions:

H1
0(Ω)

grad
−−−→ H0(curl )

curl
−−→ H0(div)

div
−−→ L2(Ω)/R

P̊p+1
grad
−−−→ Q̊p

curl
−−→ R̊p

div
−−→ Pp/R

(We need K̊ to analyze the spectral method with
electric boundary conditions.)
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Preserving boundary conditions

We need new right inverses and projectors.

Q1: Are there projectors satisfying

H1
0(Ω)

grad
−−−→ H0(curl )

curl
−−→ H0(div)

div
−−→ L2(Ω)/R



yΠ̊W

p



yΠ̊Q

p



y

Π̊R
p



yΠp

P̊p+1
grad
−−−→ Q̊p

curl
−−→ R̊p

div
−−→ Pp/R ?

(We need K̊ to analyze the spectral method with
electric boundary conditions.)
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Preserving boundary conditions

We need new right inverses and projectors.

Q2: Are there right inverses

H1
0(Ω)

G̊
←−− H0(curl )

K̊
←−− H0(div)

D̊
←−− L2(Ω)/R

P̊p+1
G̊
←−− Q̊p

K̊
←−− R̊p

D̊
←−− Pp/R ?

(We need K̊ to analyze the spectral method with
electric boundary conditions.)
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Right inverse with zero b.c.

THEOREM. Let Ω be a tetrahedron. Then there
exists an operator K̊ on

H0(div 0,Ω) ≡ {v ∈H0(div) : div v = 0}

with the following properties:

curl K̊v = v, for all v ∈H0(div 0,Ω).

n× K̊v = 0, on ∂Ω for all v ∈H0(div 0,Ω).

‖K̊v‖L2(Ω) ≤ C‖v‖L2(Ω), ∀v ∈H0(div 0,Ω).

Whenever v is in R̊p, the function K̊v is in Q̊p.
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Right inverse with zero b.c.

Proof proceeds by finding a map Φ such that

K̊v = Kv − gradΦ(v)

satisfies the required properties.
Ingredients in the proof:

A p-optimal extension operator [Muñoz–Sola, 1997]

H1/2(∂Ω)
E
−→ H1(Ω).

Hodge decomposition on ∂Ω [Buffa & Ciarlet, 2002]

0→ H1/2(∂Ω)/R
grad

ᵀ

−−−−→ H
−1/2

⊥
(∂Ω)

curl ᵀ

−−−−→ H−3/2(∂Ω)→ 0

Department of Mathematics, University of Florida [Slide 20 of 22]
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A quasioptimality result

Existence of K̊ implies that

‖̊q‖L2(Ω) ≤ C‖curl q̊‖L2(Ω)

∀q̊ ∈ Q̊⊥p = {r ∈ Q̊p : (r,gradw) = 0 for all w ∈ P̊p+1}.

Hence quasioptimality of the spectral method with
electric boundary condition follows on tetrahedra.
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Conclusion

1. We began with these exact sequences:

H1(Ω)/R
grad
−−−→ H(curl )

curl
−−→ H(div)

div
−−→ L2(Ω)

Pp+1/R
grad
−−−→ Qp

curl
−−→ Rp

div
−−→ Pp
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Conclusion

2. We gave right inverses of grad, div, and curl .

H1(Ω)/R
G
←−− H(curl )

K
←−− H(div)

D
←−− L2(Ω)

Pp+1/R
G
←−− Qp

K
←−− Rp

D
←−− Pp

Department of Mathematics, University of Florida [Slide 22 of 22]
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Conclusion

3. We constructed commuting projectors.

H1(Ω)/R
grad
−−−→ H(curl )

curl
−−→ H(div)

div
−−→ L2(Ω)



y

ΠW
p



y

ΠQ
p



yΠR

p



yΠp

Pp+1/R
grad
−−−→ Qp

curl
−−→ Rp

div
−−→ Pp

We showed how to apply these constructions to
various spectral methods.
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Conclusion

4. We tried to extend the results to zero bc.

H1
0(Ω)

grad
−−−→ H0(curl )

curl
−−→ H0(div)

div
−−→ L2(Ω)/R

P̊p+1
grad
−−−→ Q̊p

curl
−−→ R̊p

div
−−→ Pp/R
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Conclusion

5. One right inverse is missing in the zero bc case.

H1
0(Ω)

grad
−−−→ H0(curl )

curl
−−→ H0(div)

div
−−→ L2(Ω)/R



yΠ̊W

p



yΠ̊Q

p



y?



yΠp

P̊p+1
grad
−−−→ Q̊p

curl
−−→ R̊p

div
−−→ Pp/R

6. Further questions: How can one modify and use
such projectors to prove hp-optimality of hp-mixed
methods?
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