Polynomial approximations of certain boundary value problems

Jay Gopalakrishnan

University of Florida
July 2005

Collaborator:
Leszek Demkowicz
The University of Texas at Austin

A typical PDE approximation

The Dirichlet problem:

$$
\begin{aligned}
-\operatorname{div}(\boldsymbol{a}(\boldsymbol{x}) \operatorname{grad} u) & =f, & & \text { on } \Omega, \\
u & =0, & & \text { on } \partial \Omega .
\end{aligned}
$$

Weak formulation: Find $u \in H_{0}^{1}(\Omega)$ satisfying $(\boldsymbol{a} \operatorname{grad} u, \operatorname{grad} v)=(f, v), \quad \forall v \in H_{0}^{1}(\Omega)$.

Spectral approx.: Find $u_{p} \in P_{p} \cap H_{0}^{1}(\Omega)$ satisfying
$\left(\boldsymbol{a} \operatorname{grad} u_{p}, \operatorname{grad} v\right)=(f, v), \quad \forall v \in P_{p} \cap H_{0}^{1}(\Omega)$.

A typical PDE approximation

Since u_{p} is a projection of u, it is a quasioptimal approximation:
$\mathcal{C}_{a}\left\|u-u_{p}\right\|_{H^{1}(\Omega)} \leq \inf _{v \in P_{p} \cap H_{0}^{1}(\Omega)}\|u-v\|_{H^{1}(\Omega)}$

Weak formulation: Find $u \in H_{0}^{1}(\Omega)$ satisfying $(\boldsymbol{a} \operatorname{grad} u, \operatorname{grad} v)=(f, v), \quad \forall v \in H_{0}^{1}(\Omega)$.

Spectral approx.: Find $u_{p} \in P_{p} \cap H_{0}^{1}(\Omega)$ satisfying $\left(\boldsymbol{a} \operatorname{grad} u_{p}, \operatorname{grad} v\right)=(f, v), \quad \forall v \in P_{p} \cap H_{0}^{1}(\Omega)$.

A typical PDE approximation

Since u_{p} is a projection of u, it is a quasioptimal approximation:
$\mathcal{C}_{a}\left\|u-u_{p}\right\|_{H^{1}(\Omega)} \leq \inf _{v \in P_{p} \cap H_{0}^{1}(\Omega)}\|u-v\|_{H^{1}(\Omega)}$

Thus the error analysis of methods like the above in the variational form

$$
a(u, v)=F(v)
$$

with an innerproduct $a(\cdot, \cdot)$, immediately reduces to a question in approximation theory.

A typical PDE approximation

Since u_{p} is a projection of u, it is a quasioptimal approximation:
$\mathcal{C}_{a}\left\|u-u_{p}\right\|_{H^{1}(\Omega)} \leq \inf _{v \in P_{p} \cap H_{0}^{1}(\Omega)}\|u-v\|_{H^{1}(\Omega)}$

What about methods in saddle point form?

$$
\left.\begin{array}{rlrl}
q \in W \\
u \in V
\end{array}\right\} \quad a(\boldsymbol{q}, \boldsymbol{r})+b(\boldsymbol{r}, u)=G(\boldsymbol{r}), \quad \begin{aligned}
& \forall \boldsymbol{r} \in W, \\
b(\boldsymbol{q}, v)=F(v), & \forall v \in V .
\end{aligned}
$$

The spectral Raviart-Thomas method

First order reformulation of the Dirichlet problem:

$$
\begin{aligned}
\boldsymbol{q}+\boldsymbol{a}(\boldsymbol{x}) \operatorname{grad} u=0, & & \text { on } \Omega, \\
\operatorname{div} \boldsymbol{q}=f, & & \text { on } \Omega, \\
u=g, & & \text { on } \partial \Omega .
\end{aligned}
$$

Weak formulation: Find q and u satisfying

$$
\left.\begin{array}{l}
q \in H(\mathrm{div}) \\
u \in L^{2}(\Omega)
\end{array}\right\} \quad \begin{aligned}
\left(\boldsymbol{a}^{-1} \boldsymbol{q}, \boldsymbol{r}\right)-(u, \operatorname{div} \boldsymbol{r})=-(g, \boldsymbol{r} \cdot \boldsymbol{n}) \partial \Omega \\
(v, \operatorname{div} \boldsymbol{q})=(f, v)
\end{aligned}
$$

for all $r \in H(\operatorname{div})$ and $v \in L^{2}(\Omega)$.

The spectral Raviart-Thomas method

First order reformulation of the Dirichlet problem:

$$
\begin{aligned}
\boldsymbol{q}+\boldsymbol{a}(\boldsymbol{x}) \operatorname{grad} u & =0, & & \text { on } \Omega, \\
\operatorname{div} \boldsymbol{q} & =f, & & \text { on } \Omega, \\
u & =g, & & \text { on } \partial \Omega .
\end{aligned}
$$

Spectral discretization: Find \boldsymbol{q}_{p} and u_{p} satisfying

$$
\left.\begin{array}{rl}
q_{p} \in R_{p} \\
u_{p} \in P_{p}
\end{array}\right\} \quad\left(\boldsymbol{a}^{-1} \boldsymbol{q}_{p}, \boldsymbol{r}\right)-\left(u_{p}, \operatorname{div} \boldsymbol{r}\right)=-(g, \boldsymbol{r} \cdot \boldsymbol{n})_{\partial \Omega},
$$

for all $\boldsymbol{r} \in \boldsymbol{R}_{p} \subseteq \boldsymbol{H}($ div $)$ and $v \in P_{p} \subseteq L^{2}(\Omega)$.
$\left(\boldsymbol{R}_{p} \equiv \boldsymbol{x} P_{p}+\boldsymbol{P}_{p}.\right)$

Quasioptimality?

Is the spectral RT method quasioptimal?
In other words, does the estimate

Error of the method

$$
\begin{aligned}
\| \boldsymbol{q} & -\boldsymbol{q}_{p}\left\|_{\boldsymbol{H}(\mathrm{div})}+\right\| u-u_{p} \|_{L^{2}(\Omega)} \\
& \leq \mathcal{C}\left(\inf _{r \in \boldsymbol{R}_{p}}\|\boldsymbol{q}-\boldsymbol{r}\|_{\boldsymbol{H}(\mathrm{div})}+\inf _{v \in P_{p}}\|u-v\|_{L^{2}(\Omega)}\right)
\end{aligned}
$$

Best approximation error

hold with a constant \mathcal{C} independent of the polynomial degree p ?

Apply Babuška-Brezzi theory

The Babuška-Brezzi theory gives sufficient conditions for quasioptimality of methods in the following variational form:

$$
\begin{aligned}
a(\boldsymbol{q}, \boldsymbol{r})+b(\boldsymbol{r}, u) & =G(\boldsymbol{r}), \\
b(\boldsymbol{q}, v) & =F(v) .
\end{aligned}
$$

$$
\begin{aligned}
A \boldsymbol{q}+B^{t} u & =G \\
B \boldsymbol{q} & =F .
\end{aligned}
$$

- Coercivity on the kernel:

$$
a(\boldsymbol{r}, \boldsymbol{r}) \geq \mathcal{C}_{1}\|\boldsymbol{r}\|_{W}^{2}, \quad \forall \boldsymbol{r} \in \operatorname{Ker}(B) .
$$

- Inf-sup condition:

$$
\|v\|_{V} \leq \mathcal{C}_{2}\left\|B^{t} v\right\|_{W}, \quad \forall v \in V .
$$

Apply Babuška-Brezzi theory

The Babuška-Brezzi theory gives sufficient conditions for quasioptimality of methods in the following variational form:

$$
\begin{aligned}
a(\boldsymbol{q}, \boldsymbol{r})+b(\boldsymbol{r}, u) & =G(\boldsymbol{r}), \\
b(\boldsymbol{q}, v) & =F(v) .
\end{aligned}
$$

$$
\begin{aligned}
A \boldsymbol{q}+B^{t} u & =G \\
B \boldsymbol{q} & =F
\end{aligned}
$$

- Coercivity on the kernel:

$$
a(\boldsymbol{r}, \boldsymbol{r}) \geq \mathcal{C}_{1}\|\boldsymbol{r}\|_{W}^{2}, \quad \forall \boldsymbol{r} \in \operatorname{Ker}(B)
$$

- Inf-sup condition:

$$
\|v\|_{V} \leq \mathcal{C}_{2} \sup _{r \in W} \frac{b(\boldsymbol{r}, v)}{\|\boldsymbol{r}\|_{W}} \quad \forall v \in V .
$$

Apply Babuška-Brezzi theory

The Babuška-Brezzi theory gives sufficient conditions for quasioptimality of methods in the following variational form: (Case of RT method)

$$
\begin{aligned}
\left(\boldsymbol{a}^{-1} \boldsymbol{q}, \boldsymbol{r}\right)-(u, \operatorname{div} \boldsymbol{r}) & =-(g, \boldsymbol{r} \cdot \boldsymbol{n})_{\partial \Omega}, \\
(v, \operatorname{div} \boldsymbol{q}) & =(f, v),
\end{aligned}
$$

- Coercivity on the kernel:

$$
a(\boldsymbol{r}, \boldsymbol{r}) \geq \mathcal{C}_{1}\|\boldsymbol{r}\|_{W}^{2}, \quad \forall \boldsymbol{r} \in \operatorname{Ker}(B) .
$$

- Inf-sup condition:

$$
\|v\|_{V} \leq \mathcal{C}_{2} \sup _{r \in W} \frac{b(r, v)}{\|r\|_{W}} \quad \forall v \in V .
$$

Apply Babuška-Brezzi theory

The Babuška-Brezzi theory gives sufficient conditions for quasioptimality of methods in the following variational form: (Case of RT method)

$$
\begin{aligned}
\left(\boldsymbol{a}^{-1} \boldsymbol{q}, \boldsymbol{r}\right)-(u, \operatorname{div} \boldsymbol{r}) & =-(g, \boldsymbol{r} \cdot \boldsymbol{n})_{\partial \Omega} \\
(v, \operatorname{div} \boldsymbol{q}) & =(f, v)
\end{aligned}
$$

- Coercivity on the kernel:

$$
\left(\boldsymbol{a}^{-1} \boldsymbol{r}, \boldsymbol{r}\right) \geq \mathcal{C}_{1}\|\boldsymbol{r}\|_{\boldsymbol{H}(\text { div })}^{2}, \quad \forall \boldsymbol{r} \in \boldsymbol{R}_{p} \text { with } \operatorname{div} \boldsymbol{r}=0 .
$$

- Inf-sup condition:

$$
\|v\|_{L^{2}(\Omega)} \leq \mathcal{C}_{2} \sup _{\boldsymbol{r}_{p} \in \boldsymbol{R}_{p}} \frac{\left(v, \operatorname{div} \boldsymbol{r}_{p}\right)}{\left\|\boldsymbol{r}_{p}\right\|_{\boldsymbol{H}(\operatorname{div})}}, \quad \forall v \in P_{p}
$$

An exact sequence property

Let Ω be star shaped with respect to some $a \in \bar{\Omega}$. Then the following sequences are exact:

$$
H^{1}(\Omega) / \mathbb{R} \xrightarrow{\text { grad }} H(\text { curl }) \xrightarrow{\text { curl }} H(\text { div }) \xrightarrow{\text { div }} L^{2}(\Omega),
$$

(This is a generalization of the classical de Rham complex to Sobolev spaces.)

An exact sequence property

Let Ω be star shaped with respect to some $a \in \bar{\Omega}$. Then the following sequences are exact:

$$
\begin{array}{cccc}
H^{1}(\Omega) / \mathbb{R} \xrightarrow{\text { grad }} & H(\text { curl }) \xrightarrow{\text { curl }} & H(\text { div }) \xrightarrow{\text { div }} & L^{2}(\Omega), \\
P_{p+1} / \mathbb{R} \xrightarrow{\text { grad }} & Q_{p} \xrightarrow{\text { curl }} & R_{p} \xrightarrow{\text { div }} & P_{p} .
\end{array}
$$

Notation:
$\boldsymbol{Q}_{p}=$ Nédélec space $\equiv \boldsymbol{P}_{p} \oplus\{$ set of homogeneous polynomials \boldsymbol{q} of degree $p+1$ with $\boldsymbol{q}(\boldsymbol{x}) \cdot \boldsymbol{x}=0\}$.
$\boldsymbol{R}_{p}=$ Raviart-Thomas space $=\boldsymbol{x} P_{p} \oplus \boldsymbol{P}_{p}$.

An exact sequence property

Let Ω be star shaped with respect to some $a \in \bar{\Omega}$.
Then the following sequences are exact:

$$
\begin{array}{rrrr}
H^{1}(\Omega) / \mathbb{R} \xrightarrow{\text { grad }} & H(\text { curl }) \xrightarrow{\text { curl }} & H(\text { div }) \xrightarrow{\text { div }} & L^{2}(\Omega), \\
P_{p+1} / \mathbb{R} \xrightarrow{\text { grad }} & Q_{p} \xrightarrow{\text { curl }} & \boldsymbol{R}_{p} \xrightarrow{\text { div }} & P_{p} .
\end{array}
$$

We'll construct bounded linear maps $\boldsymbol{D}, \boldsymbol{K}, G$:

$$
\begin{array}{rrrr}
& H^{1}(\Omega) / \mathbb{R} \stackrel{G}{\leftrightarrows} & H(\operatorname{curl}) \stackrel{K}{\leftrightarrows} & H(\operatorname{div}) \stackrel{D}{\longleftrightarrow} \\
\ni & L^{2}(\Omega), \\
\ni & P_{p+1} / \mathbb{R} \stackrel{G}{\leftrightarrows} & Q_{p} \stackrel{K}{\longleftarrow} & R_{p} \stackrel{D}{\longleftarrow}
\end{array} P_{p} .
$$

The Poincaré lemma

It is well known that if $a \in \bar{\Omega}$ and q is irrotational, the line integral

$$
G \boldsymbol{q}(x)=\int_{a}^{x} q \cdot \mathrm{~d} t
$$

satisfi es $\operatorname{grad}(G \boldsymbol{q})=\boldsymbol{q}$. The Poincaré lemma is a generalization:

The Poincaré lemma

Well known fact: Let $a \in \bar{\Omega}$. If q is irrotational, the line integral

$$
G q(x)=\int_{a}^{x} q \cdot \mathrm{~d} t
$$

satisfi es $\operatorname{grad}(G q)=q$. The Poincaré lemma is a generalization:
For smooth v and ψ, define

$$
\begin{aligned}
& \boldsymbol{K} \boldsymbol{v}(\boldsymbol{x})=-(\boldsymbol{x}-\boldsymbol{a}) \times \int_{0}^{1} t \boldsymbol{v}(t(\boldsymbol{x}-\boldsymbol{a})+\boldsymbol{a}) \mathrm{d} t \\
& \boldsymbol{D} \psi(\boldsymbol{x})=(\boldsymbol{x}-\boldsymbol{a}) \int_{0}^{1} t^{2} \psi(t(\boldsymbol{x}-\boldsymbol{a})+\boldsymbol{a}) \mathrm{d} t \\
& \quad \square \operatorname{div} \boldsymbol{D} \psi=\psi
\end{aligned}
$$

Then:
$\boldsymbol{r} \operatorname{curl} \boldsymbol{K} \boldsymbol{v}=\boldsymbol{v}, \quad$ whenever $\operatorname{div} \boldsymbol{v}=0$.

Right inverses of grad, div, and curl

Theorem. The maps $\boldsymbol{D}, \boldsymbol{K}, G$ extend continuously to

$$
H^{1}(\Omega) / \mathbb{R} \stackrel{G}{\leftrightarrows} \boldsymbol{H}(\operatorname{curl}) \stackrel{K}{\longleftarrow} \boldsymbol{H}(\operatorname{div}) \stackrel{D}{\longleftarrow} L^{2}(\Omega) .
$$

Moreover,

$$
\begin{aligned}
P_{p+1} / \mathbb{R} \stackrel{G}{\longleftrightarrow} & \boldsymbol{Q}_{p} \stackrel{K}{\longleftrightarrow} \quad \boldsymbol{R}_{p} \stackrel{D}{\longleftrightarrow} \\
\operatorname{div} \boldsymbol{D} \psi=\psi, & \forall \psi \in L_{p}(\Omega), \\
\operatorname{curl} \boldsymbol{K} \boldsymbol{v}=\boldsymbol{v}, & \forall \boldsymbol{v} \in \boldsymbol{H}(\operatorname{div}) \text { with } \operatorname{div} \boldsymbol{v}=0, \\
\operatorname{grad} G \boldsymbol{q}=\boldsymbol{q}, & \forall \boldsymbol{q} \in \boldsymbol{H}(\operatorname{curl}) \text { with } \operatorname{curl} \boldsymbol{q}=0 .
\end{aligned}
$$

(We assume that Ω is star shaped with respect to some point $a \in \bar{\Omega}$ and $\partial \Omega$ is Lipschitz.)

Commutativity properties

A well known technique for proving the inf-sup condition is via the use of commuting projectors.
For the RT method, we need a projector Π_{p}^{R} such that the following diagram commutes:

$$
\begin{array}{rlll}
\boldsymbol{H}(\mathrm{div}) & \xrightarrow{\text { div }} L^{2}(\Omega) \\
\downarrow^{\Pi_{p}^{R}} & & \downarrow^{\Pi_{p}} \\
\boldsymbol{R}_{p} & \xrightarrow{\text { div }} & P_{p}
\end{array}
$$

(Here $\Pi_{p}=L^{2}$-orthogonal projection onto P_{p}.)

$$
\operatorname{div} \boldsymbol{\Pi}_{p}^{R} \boldsymbol{q}=\Pi_{p} \operatorname{div} \boldsymbol{q}
$$

Commutativity properties

A well known technique for proving the inf-sup condition is via the use of commuting projectors.
For the RT method, we need a projector Π_{p}^{R} such that the following diagram commutes:

$$
\begin{array}{rll|l}
\boldsymbol{H}(\mathrm{div}) & \xrightarrow{\text { div }} L^{2}(\Omega) & \|v\|_{L^{2}(\Omega)} \leq \mathcal{C} \sup _{\boldsymbol{r} \in \boldsymbol{H}(\text { div) }} \frac{(v, \operatorname{div} \boldsymbol{r})}{\|\boldsymbol{r}\|_{\boldsymbol{H}(\text { div })}} \\
\downarrow^{\Pi \Pi_{p}^{R}} & & \downarrow^{\Pi_{p}} & \downarrow \\
\boldsymbol{R}_{p} & \xrightarrow{\operatorname{div}} & P_{p} & \left\|v_{p}\right\|_{L^{2}(\Omega)} \leq \mathcal{C} \sup _{r_{p} \in \boldsymbol{R}_{p}} \frac{\left(v_{p}, \operatorname{div} \boldsymbol{r}_{p}\right)}{\left\|\boldsymbol{r}_{p}\right\|_{\boldsymbol{H}(\text { div })}}
\end{array}
$$

It allows one to use inf-sup conditions at the top level to prove inf-sup conditions at the bottom level.

A de Rham diagram

More generally, we will construct a sequence of projectors such that the following diagram commutes:

$$
\begin{aligned}
& H^{1}(\Omega) / \mathbb{R} \xrightarrow{\text { grad }} \boldsymbol{H}(\text { curl }) \xrightarrow{\text { curl }} \boldsymbol{H}(\text { div }) \xrightarrow{\text { div }} L^{2}(\Omega) \\
& \downarrow_{I_{p}^{W}}^{W} \downarrow_{p}^{Q} \\
& P_{p+1} / \mathbb{R} \xrightarrow{\text { grad }} \boldsymbol{Q}_{p} \xrightarrow{\text { curl }} \boldsymbol{R}_{p} \xrightarrow{\text { div }} P_{p}
\end{aligned}
$$

Projectors

$$
\boldsymbol{\Pi}_{p}^{R} \boldsymbol{v}=\boldsymbol{\Pi}_{p}^{R 0} \boldsymbol{v}+\left(\boldsymbol{I}-\boldsymbol{\Pi}_{p}^{R 0}\right) \boldsymbol{D}\left(\Pi_{p} \operatorname{div} \boldsymbol{v}\right)
$$

Projectors

$$
\begin{aligned}
& \boldsymbol{\Pi}_{p}^{R} \boldsymbol{v}=\boldsymbol{\Pi}_{p}^{R 0} \boldsymbol{v}+(\boldsymbol{I}- \\
& \text { is the } L^{2} \text {-orthogonal }
\end{aligned}
$$ projection onto

$$
\boldsymbol{R}_{p}^{0}=\left\{\boldsymbol{r} \in \boldsymbol{R}_{p}: \operatorname{div} \boldsymbol{r}=0\right\} .
$$

$\Pi_{p}=L^{2}$-orthogonal projection onto P_{p}

Projectors

$$
\boldsymbol{\Pi}_{p}^{R} \boldsymbol{v}=\boldsymbol{\Pi}_{p}^{R 0} \boldsymbol{v}+\left(\boldsymbol{I}-\boldsymbol{\Pi}_{p}^{R 0}\right) \boldsymbol{D}\left(\Pi_{p} \operatorname{div} \boldsymbol{v}\right)
$$

$\Pi_{p}^{R 0}$ is the L^{2}-orthogonal projection onto $\boldsymbol{R}_{p}^{0}=\left\{\boldsymbol{r} \in \boldsymbol{R}_{p}: \operatorname{div} \boldsymbol{r}=0\right\}$.
$\Pi_{p}=L^{2}$-orthogonal projection onto P_{p}

Then,

$$
\begin{aligned}
\operatorname{div} \boldsymbol{\Pi}_{p}^{R} \boldsymbol{v} & =\operatorname{div}\left(\boldsymbol{I}-\Pi_{p}^{R 0} \boldsymbol{v}\right) \boldsymbol{D}\left(\Pi_{p} \operatorname{div} \boldsymbol{v}\right) \\
& =\operatorname{div} \boldsymbol{D}\left(\Pi_{p} \operatorname{div} \boldsymbol{v}\right) \\
& =\Pi_{p} \operatorname{div} \boldsymbol{v}
\end{aligned}
$$

Projectors

$$
\begin{aligned}
& \qquad \boldsymbol{\Pi}_{p}^{R} \boldsymbol{v}=\boldsymbol{\Pi}_{p}^{R 0} \boldsymbol{v}+\left(\boldsymbol{I}-\boldsymbol{\Pi}_{p}^{R 0}\right) \boldsymbol{D}\left(\Pi_{p} \operatorname{div} \boldsymbol{v}\right) \\
& \boldsymbol{\Pi}_{p}^{Q} \boldsymbol{q}=\boldsymbol{\Pi}_{p}^{Q 0} \boldsymbol{q}+\left(\boldsymbol{I}-\boldsymbol{\Pi}_{p}^{Q 0}\right) \boldsymbol{K}\left(\boldsymbol{\Pi}_{p}^{R 0} \operatorname{curl} \boldsymbol{q}\right) \\
& \text { Here } \boldsymbol{\Pi}_{p}^{Q 0} \text { is the } L^{2} \text {-orthogonal projection onto } \\
& \boldsymbol{Q}_{p}^{0}=\left\{\boldsymbol{q} \in \boldsymbol{Q}_{p}: \operatorname{curl} \boldsymbol{q}=0\right\} .
\end{aligned}
$$

Projectors

$$
\begin{gathered}
\boldsymbol{\Pi}_{p}^{R} \boldsymbol{v}=\Pi_{p}^{R 0} \boldsymbol{v}+\left(\boldsymbol{I}-\boldsymbol{\Pi}_{p}^{R 0}\right) \boldsymbol{D}\left(\Pi_{p} \operatorname{div} \boldsymbol{v}\right) \\
\boldsymbol{\Pi}_{p}^{Q} \boldsymbol{q}=\boldsymbol{\Pi}_{p}^{Q 0} \boldsymbol{q}+\left(\boldsymbol{I}-\boldsymbol{\Pi}_{p}^{Q 0}\right) \boldsymbol{K}\left(\Pi_{p}^{R 0} \operatorname{curl} \boldsymbol{q}\right) \\
\Pi_{p}^{W} w=\Pi^{W 0} w+\left(\boldsymbol{I}-\Pi^{W 0}\right) G\left(\Pi_{p}^{Q 0} \operatorname{grad} w\right)
\end{gathered}
$$

Properties of the projectors

THEOREM. The following diagram commutes:

$$
\begin{aligned}
& H^{1}(\Omega) / \mathbb{R} \xrightarrow{\text { grad }} \boldsymbol{H}(\text { curl }) \xrightarrow{\text { curl }} \boldsymbol{H}(\text { div }) \xrightarrow{\text { div }} L^{2}(\Omega) \\
& \downarrow_{I_{p}^{W}}^{W} \downarrow_{p}^{Q} \\
& P_{p+1} / \mathbb{R} \xrightarrow{\text { grad }} \boldsymbol{Q}_{p} \xrightarrow{\text { curl }} \boldsymbol{R}_{p} \xrightarrow{\text { div }} P_{p} \text {. }
\end{aligned}
$$

We have norm bounds independent of degree p :

$$
\begin{array}{rlrl}
\left\|\boldsymbol{\Pi}_{p}^{R} \boldsymbol{v}\right\|_{\boldsymbol{H}(\mathrm{div})}^{2} & \leq\left(1+\mathcal{C}_{D}^{2}\right)\|\boldsymbol{v}\|_{\boldsymbol{H}(\mathrm{div})}^{2} & & \forall \boldsymbol{v} \in \boldsymbol{H}(\mathrm{div}), \\
\left\|\boldsymbol{\Pi}_{p}^{Q} \boldsymbol{q}\right\|_{\boldsymbol{H}(\mathrm{curl})}^{2} \leq\left(1+\mathcal{C}_{K}^{2}\right)\|\boldsymbol{q}\|_{\boldsymbol{H}(\mathrm{curl})}^{2} & & \forall \boldsymbol{q} \in \boldsymbol{H}(\text { curl }), \\
\left\|\Pi_{p}^{W} w\right\|_{H^{1}(\Omega)}^{2} & \leq\left(1+\mathcal{C}_{G}^{2}\right)\|w\|_{H^{1}(\Omega)}^{2} & & \forall w \in H^{1}(\Omega) .
\end{array}
$$

Return to the RT method

Theorem. There is a positive constant \mathcal{C} independent of polynomial degree p such that

$$
\|v\|_{L^{2}(\Omega)} \leq \mathcal{C} \sup _{\boldsymbol{r}_{p} \in \boldsymbol{R}_{p}} \frac{\left(v, \operatorname{div} \boldsymbol{r}_{p}\right)_{\Omega}}{\left\|\boldsymbol{r}_{p}\right\|_{\boldsymbol{H}(\mathrm{div})}}, \quad \forall v \in P_{p}
$$

Corollary. The spectral RT method is quasioptimal.

Other applications

Application to proving Poincaré-Friedrichs type inequalities:
Let $Q_{p}^{\perp}=\left\{\boldsymbol{q} \in \boldsymbol{Q}_{p}:(\boldsymbol{q}, \operatorname{grad} w)=0\right.$ for all $\left.w \in P_{p+1}\right\}$.
THEOREM. For all $\boldsymbol{q} \in Q_{p}^{\perp}$

$$
\|\boldsymbol{q}\|_{L^{2}(\Omega)} \leq \mathcal{C}\|\operatorname{curl} \boldsymbol{q}\|_{L^{2}(\Omega)} .
$$

PROOF:

$$
\begin{aligned}
\|\boldsymbol{q}\|_{L^{2}(\Omega)} & =\inf _{w \in P_{p+1}}\|\boldsymbol{q}-\operatorname{grad} w\|_{L^{2}(\Omega)} \\
& \leq\|\boldsymbol{q}-(\boldsymbol{q}-K \operatorname{curl} \boldsymbol{q})\|_{L^{2}(\Omega)} \\
& \leq \mathcal{C}_{K}\|\operatorname{curl} \boldsymbol{q}\|_{L^{2}(\Omega)} .
\end{aligned}
$$

A magnetostatics problem

Case of zero magnetic boundary condition:

$$
\begin{aligned}
\operatorname{curl} \mu^{-1} \operatorname{curl} \boldsymbol{E}=\boldsymbol{J} & \text { on } \Omega, \\
\operatorname{div} \boldsymbol{E}=0 & \text { on } \Omega, \\
n \times \mu^{-1} \operatorname{curl} \boldsymbol{E}=0 & \text { on } \partial \Omega .
\end{aligned}
$$

Case of zero electric boundary condition:

$$
\begin{aligned}
\operatorname{curl} \mu^{-1} \operatorname{curl} \boldsymbol{E}=\boldsymbol{J} & \text { on } \Omega, \\
\operatorname{div} \boldsymbol{E}=0 & \text { on } \Omega, \\
n \times \boldsymbol{E}=0 & \text { on } \partial \Omega .
\end{aligned}
$$

A magnetostatics problem

Case of zero magnetic boundary condition:

$$
\begin{aligned}
\operatorname{curl} \mu^{-1} \operatorname{curl} \boldsymbol{E}=\boldsymbol{J} & \text { on } \Omega, \\
\operatorname{div} \boldsymbol{E}=0 & \text { on } \Omega, \\
n \times \mu^{-1} \operatorname{curl} \boldsymbol{E}=0 & \text { on } \partial \Omega .
\end{aligned}
$$

Spectral method: Find $\left(\boldsymbol{E}_{p}, \psi_{p}\right) \in \boldsymbol{Q}_{p} \times P_{p+1} / \mathbb{R} \quad \ni$

$$
\begin{aligned}
\left(\mu^{-1} \operatorname{curl} \boldsymbol{E}_{p}, \operatorname{curl} \boldsymbol{q}_{p}\right)-\left(\operatorname{grad} \psi_{p}, \boldsymbol{q}_{p}\right) & =\left(\boldsymbol{J}, \boldsymbol{q}_{p}\right), \\
\left(\operatorname{grad} w_{p}, \boldsymbol{E}_{p}\right) & =0,
\end{aligned}
$$

for all $\boldsymbol{q}_{p} \in \boldsymbol{Q}_{p}$ and $w_{p} \in P_{p+1} / \mathbb{R}$.

Quasioptimality

- Inf-sup condition:

$$
\left\|w_{p}\right\|_{H^{1}(\Omega)} \leq \mathcal{C} \sup _{\boldsymbol{q}_{p} \in \boldsymbol{Q}_{p}} \frac{\left(\operatorname{grad} w_{p}, \boldsymbol{q}_{p}\right)}{\left\|\boldsymbol{q}_{p}\right\|_{\boldsymbol{H}(\operatorname{curl})}}, \quad \forall w_{p} \in P_{p+1} / \mathbb{R} .
$$

This follows from the imbedding $P_{p+1} \xrightarrow{\text { grad }} Q_{p}$.
■ Coercivity on the kernel:

$$
\|\boldsymbol{q}\|_{L^{2}(\Omega)} \leq \mathcal{C}\|\operatorname{curl} \boldsymbol{q}\|_{L^{2}(\Omega)}, \quad \forall \boldsymbol{q} \in \boldsymbol{Q}_{p}^{\perp}
$$

This follows from Poincaré-Friedrichs estimate we proved earlier.

Hence Babuška-Brezzi theory \Longrightarrow quasioptimality.

Case of electric boundary conditions

Spectral method: Find $\left(\boldsymbol{E}_{p}, \psi_{p}\right) \in \dot{\boldsymbol{Q}}_{p} \times \dot{P}_{p+1}(p \geq 3)$:
$\left(\mu^{-1} \operatorname{curl} \boldsymbol{E}_{p}, \operatorname{curl} \boldsymbol{q}_{p}\right)-\left(\operatorname{grad} \psi_{p}, \boldsymbol{q}_{p}\right)=\left(\boldsymbol{J}, \boldsymbol{q}_{p}\right), \forall \boldsymbol{q}_{p} \in \dot{\boldsymbol{Q}}_{p}$ $\left(\operatorname{grad} w_{p}, \boldsymbol{E}_{p}\right)=0, \quad \forall w_{p} \in \stackrel{\circ}{P}_{p+1}$
where $\stackrel{\circ}{Q}_{p}=\boldsymbol{Q}_{p} \cap H_{0}($ curl $)$ and $\stackrel{\circ}{P}_{p+1}=P_{p+1} \cap H_{0}^{1}(\Omega)$.

- Inf-sup condition is trivial again.
- But we need to show that

$$
\|\dot{\boldsymbol{q}}\|_{L^{2}(\Omega)} \leq \mathcal{C}\|\operatorname{curl} \dot{\boldsymbol{q}}\|_{L^{2}(\Omega)}
$$

$\forall \dot{\boldsymbol{q}} \in \stackrel{\circ}{\boldsymbol{Q}}_{p}^{\perp}=\left\{\boldsymbol{r} \in \stackrel{\circ}{\boldsymbol{Q}}_{p}:(\boldsymbol{r}, \operatorname{grad} w)=0\right.$ for all $\left.w \in \stackrel{\circ}{P}_{p+1}\right\}$.

Preserving boundary conditions

We need new right inverses and projectors.
Exact sequences with zero boundary conditions:

$$
\begin{aligned}
H_{0}^{1}(\Omega) & \xrightarrow{\text { grad }} \boldsymbol{H}_{0}(\text { curl }) \xrightarrow{\text { curl }} \boldsymbol{H}_{0}(\text { div }) \\
\stackrel{\circ}{P}_{p+1} & \xrightarrow{\text { grad }} L^{2}(\Omega) / \mathbb{R} \\
\stackrel{R}{Q}_{p} & \xrightarrow{\text { curl }}
\end{aligned} \stackrel{\circ}{\boldsymbol{R}}_{p} \xrightarrow{\text { div }} P_{p} / \mathbb{R}
$$

Preserving boundary conditions

We need new right inverses and projectors.

Q1: Are there projectors satisfying

$$
\begin{aligned}
& H_{0}^{1}(\Omega) \xrightarrow{\text { grad }} \boldsymbol{H}_{0}(\text { curl }) \xrightarrow{\text { curl }} \boldsymbol{H}_{0}(\text { div }) \xrightarrow{\text { div }} L^{2}(\Omega) / \mathbb{R} \\
& \downarrow \dot{\Pi}_{p}^{W} \quad \dot{\Pi}_{p}^{Q} \quad \downarrow \stackrel{\Pi}{\Pi}_{p}^{R} \quad \downarrow \Pi_{p} \\
& \stackrel{\circ}{P}_{p+1} \xrightarrow{\text { grad }}{\stackrel{\circ}{Q_{p}}} \quad \xrightarrow{\text { curl }} \quad \stackrel{\circ}{\boldsymbol{R}}_{p} \quad \xrightarrow{\text { div }} P_{p} / \mathbb{R} \text { ? }
\end{aligned}
$$

Preserving boundary conditions

We need new right inverses and projectors.
Q2: Are there right inverses

$$
\begin{aligned}
& H_{0}^{1}(\Omega) \stackrel{\grave{G}}{\leftrightarrows} \boldsymbol{H}_{0}(\mathbf{c u r l}) \stackrel{\hat{K}}{\longleftrightarrow} \boldsymbol{H}_{0}(\operatorname{div}) \stackrel{\dot{D}}{\longleftrightarrow} L^{2}(\Omega) / \mathbb{R} \\
& \stackrel{\circ}{P}_{p+1} \stackrel{\dot{G}}{\leftrightarrows} \quad \dot{Q}_{p} \quad \stackrel{\circ}{\boldsymbol{K}} \quad \stackrel{\circ}{\boldsymbol{R}}_{p} \quad \stackrel{\circ}{\leftrightarrows} \quad P_{p} / \mathbb{R} ?
\end{aligned}
$$

(We need \grave{K} to analyze the spectral method with electric boundary conditions.)

Right inverse with zero b.c.

THEOREM. Let Ω be a tetrahedron. Then there exists an operator \dot{K} on

$$
\boldsymbol{H}_{0}(\operatorname{div} 0, \Omega) \equiv\left\{\boldsymbol{v} \in \boldsymbol{H}_{0}(\operatorname{div}): \operatorname{div} \boldsymbol{v}=0\right\}
$$

with the following properties:

- $\operatorname{curl} \check{K} \boldsymbol{v}=\boldsymbol{v}, \quad$ for all $\boldsymbol{v} \in \boldsymbol{H}_{0}(\operatorname{div} 0, \Omega)$.

■ $\boldsymbol{n} \times \dot{K} \boldsymbol{v}=0$, on $\partial \Omega \quad$ for all $\boldsymbol{v} \in \boldsymbol{H}_{0}(\operatorname{div} 0, \Omega)$.

- $\|\stackrel{\circ}{\boldsymbol{K}} \boldsymbol{v}\|_{L^{2}(\Omega)} \leq \mathcal{C}\|\boldsymbol{v}\|_{L^{2}(\Omega)}, \quad \forall \boldsymbol{v} \in \boldsymbol{H}_{0}(\operatorname{div} 0, \Omega)$.
- Whenever v is in $\stackrel{\circ}{R}_{p}$, the function $\stackrel{\circ}{\mathbf{K}} \boldsymbol{v}$ is in $\stackrel{\circ}{Q}_{p}$.

Right inverse with zero b.c.

Proof proceeds by finding a map Φ such that

$$
\stackrel{\circ}{\boldsymbol{K}} \boldsymbol{v}=\boldsymbol{K} \boldsymbol{v}-\operatorname{grad} \Phi(\boldsymbol{v})
$$

satisfies the required properties. Ingredients in the proof:

- A p-optimal extension operator [Muñoz-Sola, 1997]

$$
H^{1 / 2}(\partial \Omega) \xrightarrow{\mathcal{E}} H^{1}(\Omega) .
$$

- Hodge decomposition on $\partial \Omega$ [Buffa \& Ciarlet, 2002]

$$
0 \rightarrow H^{1 / 2}(\partial \Omega) / \mathbb{R} \xrightarrow{\operatorname{grad}_{\mathbb{T}}} H_{\perp}^{-1 / 2}(\partial \Omega) \xrightarrow{\text { curl }_{T}} H^{-3 / 2}(\partial \Omega) \rightarrow 0
$$

A quasioptimality result

Existence of \boldsymbol{K} implies that

$$
\|\stackrel{\circ}{\boldsymbol{q}}\|_{L^{2}(\Omega)} \leq \mathcal{C}\|\operatorname{curl} \stackrel{\circ}{\boldsymbol{q}}\|_{L^{2}(\Omega)}
$$

$\forall \dot{q} \in \dot{\boldsymbol{Q}}_{p}^{\perp}=\left\{\boldsymbol{r} \in \dot{\boldsymbol{Q}}_{p}:(\boldsymbol{r}, \operatorname{grad} w)=0\right.$ for all $\left.w \in \stackrel{\circ}{P}_{p+1}\right\}$
Hence quasioptimality of the spectral method with electric boundary condition follows on tetrahedra.

Conclusion

1. We began with these exact sequences:

$$
\begin{aligned}
H^{1}(\Omega) / \mathbb{R} & \xrightarrow{\text { grad }} \boldsymbol{H}(\text { curl }) \xrightarrow{\text { curl }} \boldsymbol{H}(\text { div }) \xrightarrow{\text { div }} L^{2}(\Omega) \\
P_{p+1} / \mathbb{R} & \xrightarrow{\text { grad }} \\
\boldsymbol{Q}_{p} & \xrightarrow{\text { curl }} \boldsymbol{R}_{p} \xrightarrow{\text { div }} P_{p}
\end{aligned}
$$

Conclusion

2. We gave right inverses of grad, div, and curl .

$$
\begin{aligned}
& H^{1}(\Omega) / \mathbb{R} \stackrel{G}{\leftrightarrows} \boldsymbol{H}(\operatorname{curl}) \stackrel{K}{\longleftrightarrow} \boldsymbol{H}(\operatorname{div}) \stackrel{D}{\longleftrightarrow} L^{2}(\Omega) \\
& P_{p+1} / \mathbb{R} \quad \stackrel{G}{\leftrightarrows} \quad \boldsymbol{Q}_{p} \quad \stackrel{K}{\longleftarrow} \quad \boldsymbol{R}_{p} \quad \stackrel{D}{\leftrightarrows} P_{p}
\end{aligned}
$$

Conclusion

3. We constructed commuting projectors.

$$
\begin{array}{rccccc}
H^{1}(\Omega) / \mathbb{R} & \text { grad } & \boldsymbol{H}(\text { curl }) & \xrightarrow{\text { curl }} & \boldsymbol{H}(\text { div }) & \xrightarrow{\text { div }} \\
L^{2}(\Omega) \\
\|_{p}^{W} & & \|_{p}^{Q} & & \Pi_{p}^{R} & \\
P_{p+1} / \mathbb{R} & \xrightarrow{\text { grad }} & \boldsymbol{Q}_{p} & \xrightarrow{\text { curl }} & \boldsymbol{R}_{p} & \xrightarrow{\text { div }} \\
\Pi_{p} & P_{p}
\end{array}
$$

We showed how to apply these constructions to various spectral methods.

Conclusion

4. We tried to extend the results to zero bc.

$$
\begin{aligned}
& H_{0}^{1}(\Omega) \xrightarrow{\text { grad }} \boldsymbol{H}_{0}(\text { curl }) \xrightarrow{\text { curl }} \boldsymbol{H}_{0}(\text { div }) \xrightarrow{\text { div }} L^{2}(\Omega) / \mathbb{R} \\
& \dot{P}_{p+1} \xrightarrow{\text { grad }} \quad \dot{Q}_{p} \quad \xrightarrow{\text { curl }} \quad \stackrel{\circ}{\boldsymbol{R}}_{p} \xrightarrow{\text { div }} P_{p} / \mathbb{R}
\end{aligned}
$$

Conclusion

5. One right inverse is missing in the zero bc case.

$$
\begin{aligned}
& H_{0}^{1}(\Omega) \xrightarrow{\text { grad }} \boldsymbol{H}_{0}(\text { curl }) \xrightarrow{\text { curl }} \boldsymbol{H}_{0}(\text { div }) \xrightarrow{\text { div }} L^{2}(\Omega) / \mathbb{R}
\end{aligned}
$$

$$
\begin{aligned}
& \dot{P}_{p+1} \xrightarrow{\text { grad }} \grave{Q}_{p} \xrightarrow{\text { curl }} \dot{R}_{p} \xrightarrow{\text { div }} P_{p} / \mathbb{R}
\end{aligned}
$$

6. Further questions: How can one modify and use such projectors to prove $h p$-optimality of $h p$-mixed methods?
