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What is HDG?

Once upon a time, a DG Method dreamed of being a Mixed Method. . .
and . . . vice versa . . . and so the HDG method was born.

“HDG” methods = Hybridizable Discontinuous Galerkin methods

HDG methods were discovered in [Cockburn, G., Lazarov, ’09] (“Unified

hybridization of DG, mixed, and CG methods . . . ”, SINUM).

Many authors extended HDG to various applications
(convection-diffusion, fluid flow, elasticity, etc.) in a short time span.

Many authors analyzed HDG method and proved optimal estimates.

Purpose of this talk: Present a new technique of analysis, in the spirit
of (and hopefully as elegant as) mixed methods.
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Why HDG?

HDG methods have the same structural elegance as mixed methods.

They yield matrices of the same size and sparsity as mixed methods
(finally overcoming the criticism that
“all DG methods have too many unknowns”).

Stability is guaranteed for any positive stabilization parameter. (It
does not have to be “sufficiently large”.)

Mixed methods require carefully crafted spaces for stability, while
HDG methods offer much greater flexibility in the choice of spaces.

Unlike most older DG methods, HDG methods yield (provably)
optimal error estimates for flux (and other unknowns).

Coupling methods, even across non-matching mesh interfaces, is easy.
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Dual hybrid methods

Dual DG methods (like Mixed Methods) for the Dirichlet problem

−∆u = f in Ω ⊂ R2

u = 0 on ∂Ω,

are based on its first order reformulation: Find simultaneously the solution
u and its “flux” q satisfying

q + ~∇u = 0 on Ω

∇ · q = f on Ω

u = 0 on ∂Ω.
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Derivation of DG methods

~q + ~∇u = 0 =⇒ [Arnold, Brezzi, Cockburn & Marini, ’01]∫
K
~q · ~v −

∫
K

u ∇ ·~v +

∫
∂K

u (~v · ~n) = 0

∇ · ~q = f =⇒
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expressions for the numerical traces ûh and q̂h.
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∫
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w q̂h · ~n =

∫
K

f w

Traditionally: Various DG methods are obtained by setting various
expressions for the numerical traces ûh and q̂h.

HDG methods: are obtained by letting ûh be an unknown, to be
determined by adding the conservativity condition

Jump of q̂ · ~n across element interfaces ≡ [[q̂ · ~n]] = 0.

HDG doesn’t fit into the unified theory of [Arnold, Brezzi, Cockburn & Marini].
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A popular HDG method

Numerical flux: q̂h = ~qh + τ(uh − ûh),
(stabilization parameter≡ τ > 0).

Flux space: ~qh|K ∈ ~Pk(K ), ∀ mesh elements K .
Solution space: uh|K ∈ Pk(K ), ∀ mesh elements K .
Numerical trace space: ûh|E ∈ Pk(E ), ∀ mesh edges/faces E .
Equations:

(~qh, ~v)K − (uh,∇ ·~v)K + 〈ûh, ~v · ~n〉∂K = 0, ∀K ,

−(~qh, ~∇w)K + 〈q̂h · ~n,w〉∂K = (f ,w)K , ∀K ,

[[q̂h · ~n]] = 0.

Theorem (Condensed system, Cockburn, G & Lazarov, ’09)

The unknown numerical trace ûh can be found by solving a sparse
symmetric positive definite system. The other solution components ~qh and
uh can then be locally recovered from ûh.

Jay Gopalakrishnan 6/16



Compare with mixed method

The HDG method

(~qh, ~v)K − (uh,∇ ·~v)K + 〈ûh, ~v · ~n〉∂K = 0

− (~qh, ~∇w)K + 〈q̂h · ~n,w〉∂K = (f ,w)K

[[q̂h · ~n]] = 0

Spaces: ~qh|K ∈ ~Pk(K ), uh|K ∈ Pk(K ), ûh|E ∈ Pk(E )

The Raviart-Thomas mixed method in hybridized form

(~qh, ~v)K − (uh,∇ ·~v)K + 〈λh, ~v · ~n〉∂K = 0

(∇ ·~qh,w)K = (f ,w)K

[[~qh · ~n]] = 0

Spaces: ~qh|K ∈ ~Pk(K ) + ~xPk(K ), uh|K ∈ Pk(K ), λh|E ∈ Pk(E )

Thus, the HDG method may be thought of as resulting from an attempt
to stabilize the mixed method with unstable spaces.
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Projections in error analysis

Method for analyzing Raviart-Thomas mixed method

A flux projection Π that commutes with the L2-orthogonal projection P

∇ ·Π~q = P∇ ·~q

gives us an analogue of Galerkin orthogonality for mixed methods:

(~q − ~qh, Π~q − ~qh) = 0 =⇒ simple analysis.

Can we mimic this for HDG methods?

Is there a projection Π into the HDG flux space satisfying

∇ ·Π~q = P∇ ·~q ?

Perhaps

∇ ·Π~q = P∇ ·~q + · · ·?
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The HDG projection

The Raviart-Thomas projection: ΠRT
h (~q)

ΠRT
h ~q ∈ ~Pk(K ) + ~xPk(K ) satisfies

(ΠRT
h ~q, ~v)K = (~q, ~v)K for all ~v ∈ ~Pk−1(K ),

〈ΠRT
h ~q · ~n, µ〉F = 〈~q · ~n, µ〉F for all µ ∈ Pk(F ).

Key ideas to extend this to the HDG method:

Couple both ~q and u into a projection. This gives enough degrees of
freedom.

Use the form of the numerical flux (with τ) in projector’s definition.
This simplifies error analysis.
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The HDG projection

The Raviart-Thomas projection: ΠRT
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ΠRT
h ~q ∈ ~Pk(K ) + ~xPk(K ) satisfies

(ΠRT
h ~q, ~v)K = (~q, ~v)K for all ~v ∈ ~Pk−1(K ),

〈ΠRT
h ~q · ~n, µ〉F = 〈~q · ~n, µ〉F for all µ ∈ Pk(F ).

The new HDG projection: Πh(~q, u)

The (flux) q-component of Πh(~q, u) is Πq
h~q. It depends on both ~q and u!

The (scalar) u-component of Πh(~q, u) is Πu
h u. They satisfy:

(Πq
h~q, ~v)K = (~q, ~v)K for all ~v ∈ ~Pk−1(K ),

(Πu
h u,w)K = (u,w)K for all w ∈ Pk−1(K ),

〈Πq
h~q · ~n + τΠu

h u, µ〉F = 〈~q · ~n + τu, µ〉F for all µ ∈ Pk(F ).
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Commutativity

Commutativity property of the Raviart-Thomas projection

For all w ∈ Pk(K ),

(w ,∇ ·~q)K = (w ,∇ ·ΠRT
h ~q)K .

Lemma (Weak commutativity property for the HDG projection)

For all w ∈ Pk(K ),

(w ,∇ ·~q)K = (w ,∇ ·Πq
h~q)K + 〈w , τ(Πu

h u − u)〉∂K .
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Approximation

Suppose τ |∂K is nonnegative and τmax
K := max τ |∂K > 0. Let F ∗ be a face

of K at which the maximum of τ is attained. Put τ∗K := max τ |∂K\F∗ .

Theorem (Dependence on approximation on τ and h)

Let k ≥ 0 and su, sq ∈ (1/2, k + 1]. There is a constant C independent of
element diameter hK and stabilization parameter τ such that

‖Πq
h~q − ~q ‖K ≤ C h

sq
K |~q|Hsq (K) + C hsu

K τ∗K |u|Hsu (K)

‖Πu
h u − u‖K ≤ C hsu

K |u|Hsu (K) + C
h

sq
K

τmax
K

|~q|Hsq (K).
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HDG flux error estimates

Unlike many DG methods, HDG methods have optimally convergent fluxes:

Theorem (Flux error estimate)

For any k ≥ 0,

‖Πq
h~q − ~qh‖ ≤ ‖Πq

h~q − ~q‖.

Thus, combining with the approximation property of the projection,

‖~q − ~qh‖ ≤ C hk+1

[
|~q|Hk+1 + max

K
(τ∗K ) |u|Hk+1

]
.

If τ is such that it is nonzero only on one edge of every mesh triangle,
then τ∗K = 0 and flux error is independent of τ .
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Numerical convergence of flux
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Degree k = 0 case: 1st order convergence observed.
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Convergence of u

Theorem (Optimal convergence of u)

For any k ≥ 0,

‖u − uh‖ ≤ C‖u −Πu
h u‖+ bτC‖~q −Πq

h~q ‖,

where bτ = max{1 + hK τ
∗
K + hK/τ

max
K : K ∈ Th}.

Theorem (Superconvergence of projected error by duality)

Under the full regularity assumption

‖Πu
h u − uh‖ ≤ cτC hmin{k,1} ‖Πq

h~q − ~q ‖ for k ≥ 0,

where h = max{hK : K ∈ Th} and cτ = max{1, hK τ
∗
K : K ∈ Th}.
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Conclusion

There is a weakly commuting projector that renders the analysis of
HDG methods simple and concise.

The local approximation properties of the projector can be precisely
characterized in terms of h and τ .

The global HDG errors and their τ -dependence can be understood
using the local properties of the projector.

All variables converge at optimal order when τ is of unit size.

Standard postprocessing techniques can be applied to obtain
enhanced accuracy (using the superconvergence of projected error).

Similar projectors can be constructed to analyze HDG methods for
Stokes flow.
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