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The Nédélec polynomial space <39

® FLORIDA
The k™ Nédélec space (in any space dimension) is
Rk — Pk—l S Sk

Notation:

P;. = set of all vector functions whose every component
is a polynomial of degree at most k.

S,={qec P,: x-qlx)=0 foralxz},

where

P, = set of vector polynomials whose components

are homogeneous of degree £.
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Why Nédélec space?

» It gives H (curl)-conforming finite elements.
#® Does not produce spurious modes. Provable convergence.

#® Uses only degrees of freedom needed to handle curl.
In approximating curl, gradients need not be included:

P,=P,, & P
L k—1 \f/ [Nédélec,1980]

S.® VP

— Ry =P © S

Q: Are there other ways of removing the gradients?
A: Yes. .. (examples later).
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An exactness property

Another reason for Nédélec space is that they arise
canonically from an exactness property: [Hiptmair, 1999]

V P, = Ker(curl, Ry),

where Ker(curl, R;) = {q € Ry, : curlq = 0}.

Consider Nédélec-type spaces R, = Pj_1 @ S, where S,
IS a subspace of ?k that is linearly independentto V P ;.

PROPOSITION. The property
V P, = Ker(curl, R)),

;s y7 /
holds for any Nédélec-type space RR;..
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A related multilinear form

¢ FLORIDA

[Nedélec, 1980] shows that a smooth function g : RY — RV is
in R, if and only if

€k(q)(’l"17 ro,... ,T’k_|_1) — 07 \V/T’Z',

where the multilinear form £(q)(- - - ) is defined by

6k(q)(r17 ra,... 7rk—l—1) —

1
(k4 1)! Z(de)(ra(l)v Fo(2))--- ’ra(k)) "To(k+1)-

Here the sum runs over all permutations ¢ of the set

{1,2,...,k+ 1} and d"q denotes the k™ order Fréchet
derivative of q.
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Characterizations of S';.

¢ FLORIDA

THEOREM. A C*function g = (qe) is in Ry, if and only if

N
Z By 0P q, = 0, forall |3| =k + 1.
¢=1

Notation:

- B = (051, 5,...,0N) are multi-indices.

- Bl=061+062+---+ 8y and e, = (0,...1,...0).
Ao ol

— For any multi-index o, == .

4 0x]' 0y - - - O\

— All terms involving 3 — ey are considered to be zero if a

component of 3 — ey is negative.
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Characterizations of S,

7%, UNIVE

THEOREM. A C*function g = (qe) is in Ry, if and only if

N
Z By 0P q, = 0, forall |3| =k + 1.
¢=1

D Cara®
o=k
COROLLARY. The polynomial g(x) =
is in S}, if and only if Z Can X
N o=k ]
205_%g = 0, forall |[B| =k + 1.
=1
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An example

Case of
CB—e,0 =0, forall |B| =2+1
CI(CB) = ( Z Ca,l 330‘) e; + ( Z Ca,2 330‘) es + ( Z Ca,3 iBa) €3
|| =2 || =2 || =2
is in S if and only if its coeffi cients { ¢, ¢} satisfy:
B =(2,1,0) €(1,1,0),1 T €(2,0,0,2 = 0,
B=(20,1): €(1,0,1),1 t €(2,0,0),3 = 0,
B =(1,2,0) : C(0,2,0),1 T ¢(1,1,0)2 = 0,
B=(1,1,1) C(0,1,1),1 T €(1,0,1),2 T €(1,1,0),3 = 0,
B =(1,0,2) €(0,0,2),1 T €(1,0,1),3 = 0,

(10 equations)
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An example

& Case of
CB—e,¢ =0, foral|B] =241
; grect N=3, k=2
CI(ZB) = ( Z Cay,l $a> e| + ( Z Ca,2 $a> e + ( Z Ca,3 Cl?a) €3
|| =2 || =2 || =2
is in Sy if and only if its coeffi cients { ¢y ¢} satisfy:
B=(21,0): €(1,1,0),1 T €(2,0,0,2 = 0,
L1I9
Eg., the first equation tells us that x3xr2€1 — :1;%62 = _g;% isin So.
0

More generally, observe that xP ©le; — P ®2ey isin S forall |3] = 3

with positive 31 and (35.
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A basis for S

Consider all such linearly independent two-term expressions.
E.g., for a 3 with three nonzero entries and |3| = k + 1,

we have two expressions:

xP¢e, — xPeme,,. xPeme,  — xP e, .

THEOREM. The collection of all such expressions (for all

multi-indices 3 with |3| = k + 1) forms a basis for .S, (for
any order k and any dimension V).
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Some Nedélec-type spaces

Let S,(f) denote the set of all homogeneous polynomials

q(x) = Z Z Cat T €

(=1 |a|=k
whose coefficients {cq. ¢} satisfy
N

Z ag Cg—e,0 = 0, forall ‘ﬁ‘ =k 4+ 1,
(=1

for some numbers {ag ¢} such that 37", ag¢0s # 0.

PROPOSITION. Then, ?k — S,(f) D VF;CH, SO
R](f) — P, 1 & S](f) is a Nédélec-type space.

=
¥ FLORIDA
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In the lowest order case, Whitney forms give expressions in

barycentric (or affine) coordinates that form a basis for the
Nédélec space:

AV — A VAL

Q: Can we systematically generalize such expressions to
obtain bases for higher order Nédélec spaces?
A: Yes, as we shall now show ...
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Background

Many papers have given basis expressions in affine
coordinates and investigated their utility in electromagnetics.

Papers from the engineer-
Ing literature in the 90's:

Lee, Sun & Csendes, 1991]
[Ahagon & Kashimoto, 1995]
:Savage & Peterson, 1996]
Yioultsis & Tsiboukis, 1996]
Graglia, Wilton & Peterson, 1997]
\Webb, 1999]

However, some of them do not span the Nédélec space (e.g.
the first and the last — more remarks on this later).
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Some Isomorphisms

A:c% + B:c% + C’:c% + Dxix9 + Fx123 + Froxs

l A3
(z=1) I
l -
Az? + Bxi 4+ C + Dxizo + Exy + Fao .

PROPOSITION. The restriction of homogeneous polynomials of

degree k£ in N + 1 variables x1, x9, ... T N4 to the
hyperplane x ;1 = 1 is an isomorphism onto the space of all

polynomials of degree at most £ in the first /V variables.
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Some Isomorphisms

A:c% + B:c% + C’:c% + Dxix9 + Fx123 + Froxs

l
(®1 + @2 + 23 = 1) Aoy + 2+ 25 =1

ANZ 4 BA2 £ CA2 4+ DM\do + EMidg + Flods #7;

ProPOSITION. If \;’s are the barycentric coordinates of an

N -simplex, the above indicated map X is an isomorphism
from the space of homogeneous polynomials of degree £ in

N + 1 variables onto the space of all polynomials of degree at

most k on the simplex.
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Some Isomorphisms

Ax% + B:c% + C’x% + Dxix9 + Fx123 + Froxs

L T3
|
(1 + 72 + 73 = 1) Ao+ a9 +33=1

AN 4 BA2 4 OX2 4+ DA da + EM g + Flads #2

For vector polynomials, we consider Y so that the following diagram commutes:

_ \v/ _
k41 > P,
[ [

\v/
Pk+1 > P,
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Some Isomorphisms

N+1
Polynomial SJ SJ Co ™ €7 in N + 1 variables
=1 |ol=k l L T3

(.CIZ'Z' — >\i7 €y — V)\g)

N+1 l Y - Io

Polynomial S: S: Cot XY VA in N variables
(=1 |af=k

ey + a0+ 23 =1

THEOREM. The map Y considered as a map from

S, — R,

IS an isomorphism.
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Basis 1n affine coordinates

&5 UNIVERSITV OF
®2 FLORIDA

Therefore, to get a basis for the Nédélec space R in 3

dimensions, we simply apply Y to the previously constructed
basis for S. in 4 dimensions.

a:ﬁ_elel — mﬁ_emem
1Y

AP\, — NP enV N

Collecting such expressions for all admissible 3, we can
categorize them as edge, face, and interior basis functions:
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Basis 1n affine coordinates

Basis expressions categorized: Edge, face, and interior basis
functions for any order (k) follows. Let & = (a1, aio, (i3, Qug).

la| = k — 1 with two

nonzero entries a;, .y,

| = k — 2 with three AYMNALV A — A A V),
nonzero entries v, Qm, Ay AT (A, A, VN — ANV AL,

(Face basis functions)

‘Oé‘ — k — 3 with all four )\a()\l)\g)\3V)\4 — )\2)\3)\4V)\1),
entries nonzero A% (A2 A3 NV A — A V),
AY(A3MA VAo — A A3V ).

(Interior basis functions)
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Two previous works - .

Different expressions for the gquadratic case were suggested:
® [Lee, Sun & Csendes, 1991]:

Edge(i,7): ANV, AV (spans P1)
Face(7,7,k): ANiA;V Ak, MgV, (adds 8 quadratics)

® [Savage & Peterson, 1996]:
Edge(?,7): AV, AV (spans P;)
Face(i,j, k) )\ZA]V)\k — )\])\kV)\fu
AiALV A — A\ VA (adds 8 quadratics)

The latter is a hierarchical rearrangement of our previously
established expressions, so it spans the Nédélec space R».

But the former does not span the Nédélec space ...
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Two previous Works

Sl NIVERSITY OF
%% FLORIDA

Different expressions for the gquadratic case were suggested:
® [Lee, Sun & Csendes, 1991]:

Edge(i,7): ANV, AV (spans P1)
Face(7,7,k): ANiA;V Ak, MgV, (adds 8 quadratics)

Using our technigues, it iIs easy to see why an expression like
AiAj V A cannot be in the Nédélec space:

Lil;€EL
Y

Aid; V Ay

One question remains: Why does it work so well?
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Different expressions for the gquadratic case were suggested:
® [Lee, Sun & Csendes, 1991]:

Edge(?,7): ANV, AV (spans P1)
Face(i,7,k): AA;V Ak, MgV, (adds 8 quadratics)

— |t spans a Neéedeélec-type space,
so standard analysis using discrete
Helmholtz decomposition etc. holds.
— Although asymmetric, gets global
tangential continuity by assigning two
basis functions per face globally.

— Same approximation order as the
Nédélec space Rs.

A\ VA
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Hierarchical shape functions

We prefer shape functions that are hierarchical in k.
But our expressions were not written out hierarchically, eg.:

la| = k — 1 with two

nonzero entries o, o,

But we can use any hierarchical basis for polynomials of
degree at most £ — 1 on the edge in place of above.
Doing this for each category of basis functions, we find:

Hierarchical shape functions for standard polynomial spaces
can be used to build hierarchical shape functions for the
Nédéelec space.
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Eg., | k=1

Edge(l,m) : (MV ) — AV )

Face(l,m,n) :

Interior :
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Eg.,

Edge(l,m) :

Face(l,m,n) :

Interior :

Jay Gopalakrishnan

k=2

AV A — A V)

A Aa VA — A\ V)
ANV A — NAm VA,

'</\lv /\m>

Department of Mathematics
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The hierarchy

Eg., k=3
Edge(l,m) : (MV ) — AV ) (A1, Am) - (edge bubbles)
Face(l,m,n) : (AmA VA — ANV AL) (Al Amy An)
()\n)\lV)\m _ )\l)\mV)\n) '<)\la )\ma )\n>

Interior : (>\1>\2)\3V)\4 — )\2)\3)\4V)\1)
(A2 A3AaV AL — A3 A1V o)
(A3A4A1 VA2 — A A3V )
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Eg., k=4
Edge(l,m) : (MV ) — AV ) (A1, Am) - (edge bubbles)
Face(l,m,n) : (AmA VA — ANV AL) (Al, Am, An) - (side shape fn)
(AN VAL — N An VAL (Al, Am, An) - (side shape fn)

Interior : ()\1)\2)\3V)\4 — )\2)\3)\4V)\1) -<)\1, A9, A3, )\4>
(A2A3A4 VAL — A3A A1V ) (A1, Ao, Az, Ag)
(A3ALAIV Ao — A A3A2 VA ) (A1, Ao, Az, Ag)

...and so on for higher £.
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Conclusion

#® We gave some characterizations of the Nédélec
space R;..

#® This helped us identify an elementary basis for the highest
degree part S';.

® We established an isomorphism between S, in N + 1
dimensions and R in /N dimensions.

#® Using the isomorphism, we got a basis in affine
coordinates for ;. of any order.

#® Our basis can be used to develop shape functions that are
hierarchical in the degree.

#® While Nédélec-type spaces offer an alternative to the
Nédélec space, whether they have advantages over the
Nédélec space remains unclear.
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