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Department of Mathematics [Slide 1 of 18]

http://www.math.ufl.edu/~jayg


Jay Gopalakrishnan

The Nédélec polynomial space

The kth Nédélec space (in any space dimension) is

Rk = P k−1 ⊕ Sk.

Notation:

P k = set of all vector functions whose every component

is a polynomial of degree at most k.

Sk ={q ∈ P k : x · q(x) = 0 for all x},

where

P k = set of vector polynomials whose components

are homogeneous of degree k.
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Why Nédélec space?

It gives H(curl)-conforming finite elements.

Does not produce spurious modes. Provable convergence.

Uses only degrees of freedom needed to handle curl.
In approximating curl, gradients need not be included:

P k = P k−1 ⊕ P k︸︷︷︸

Sk ⊕ ∇P k+1

=⇒ Rk = P k−1 ⊕ Sk

[Nédélec,1980]

Q: Are there other ways of removing the gradients?
A: Yes. . . (examples later).
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An exactness property
Another reason for Nédélec space is that they arise
canonically from an exactness property: [Hiptmair, 1999]

∇Pk = Ker(curl ,Rk),

where Ker(curl ,Rk) = {q ∈ Rk : curl q = 0}.

Consider Nédélec-type spaces R′
k = P k−1 ⊕ S′

k, where S′
k

is a subspace of P k that is linearly independent to ∇P k+1.

PROPOSITION. The property

∇Pk = Ker(curl ,R′
k),

holds for any Nédélec-type space R′
k.
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A related multilinear form

[Nédélec, 1980] shows that a smooth function q : R
N 7→ R

N is
in Rk if and only if

εk(q)(r1, r2, . . . , rk+1) = 0, ∀ri,

where the multilinear form εk(q)(· · · ) is defined by

εk(q)(r1, r2, . . . , rk+1) =

1

(k + 1)!

∑

σ

(dkq)(rσ(1), rσ(2), . . . , rσ(k)) · rσ(k+1).

Here the sum runs over all permutations σ of the set

{1, 2, . . . , k + 1} and dkq denotes the kth order Fréchet
derivative of q.
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Characterizations of Sk

THEOREM. A Ck-function q ≡ (q`) is in Rk if and only if

N∑

`=1

β` ∂β−e`q` = 0, for all |β| = k + 1.

Notation:

– β = (β1, β2, . . . , βN ) are multi-indices.
– |β| = β1 + β2 + · · · + βN and e` = (0, . . .

`t
h

en
tr

y

1, . . . 0).

– For any multi-index α, ∂α =
∂|α|

∂xα1

1 ∂xα2

2 · · · ∂xαN

N

.

– All terms involving β − e` are considered to be zero if a
component of β − e` is negative.
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Characterizations of Sk

THEOREM. A Ck-function q ≡ (q`) is in Rk if and only if

N∑

`=1

β` ∂β−e`q` = 0, for all |β| = k + 1.

COROLLARY. The polynomial q(x) =











∑

|α|=k

cα,1 xα

...
∑

|α|=k

cα,N xα









is in Sk if and only if

N∑

`=1

cβ−e`,` = 0, for all |β| = k + 1.
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An example
3∑

`=1

cβ−e`,` = 0, for all |β| = 2 + 1
Case of
N = 3, k = 2

q(x) ≡

(
∑

|α|=2

cα,1 xα

)

e1 +

(
∑

|α|=2

cα,2 xα

)

e2 +

(
∑

|α|=2

cα,3 xα

)

e3

is in S2 if and only if its coefficients {cα,`} satisfy:

β = (2, 1, 0) : c(1,1,0),1 + c(2,0,0),2 = 0,

β = (2, 0, 1) : c(1,0,1),1 + c(2,0,0),3 = 0,

β = (1, 2, 0) : c(0,2,0),1 + c(1,1,0),2 = 0,

β = (1, 1, 1) : c(0,1,1),1 + c(1,0,1),2 + c(1,1,0),3 = 0,

β = (1, 0, 2) : c(0,0,2),1 + c(1,0,1),3 = 0,

... (10 equations)
...
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An example
3∑

`=1

cβ−e`,` = 0, for all |β| = 2 + 1
Case of
N = 3, k = 2

q(x) ≡

(
∑

|α|=2

cα,1 xα

)

e1 +

(
∑

|α|=2

cα,2 xα

)

e2 +

(
∑

|α|=2

cα,3 xα

)

e3

is in S2 if and only if its coefficients {cα,`} satisfy:

β = (2, 1, 0) : c(1,1,0),1 + c(2,0,0),2 = 0,

... c(0,1,1),1 + c(1,0,1),2 + c(1,1,0),3

Eg., the first equation tells us that x1x2e1 − x2
1e2 ≡








x1x2

−x2
1

0








is in S2.

More generally, observe that xβ−e1e1 − xβ−e2e2 is in S2 for all |β| = 3

with positive β1 and β2.
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A basis for Sk

Consider all such linearly independent two-term expressions.
E.g., for a β with three nonzero entries and |β| = k + 1,

β = (0 · · ·

lt
h

en
tr

y

× · · ·

m
t
h

en
tr

y

× · · ·

n
t
h

en
tr

y

× · · · 0),

we have two expressions:

xβ−elel − xβ−emem, xβ−emem − xβ−enen.

THEOREM. The collection of all such expressions (for all
multi-indices β with |β| = k + 1) forms a basis for Sk (for
any order k and any dimension N ).
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Some Nédélec-type spaces

Let S
(a)
k denote the set of all homogeneous polynomials

q(x) =
N∑

`=1

∑

|α|=k

cα,` xα e`

whose coefficients {cα,`} satisfy

N∑

`=1

aβ,` cβ−e`,` = 0, for all |β| = k + 1,

for some numbers {aβ,`} such that
∑N

`=1 aβ,`β` 6= 0.

PROPOSITION. Then, P k = S
(a)
k ⊕ ∇P k+1, so

R
(a)
k = P k−1 ⊕ S

(a)
k is a Nédélec-type space.
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Barycentric coordinates
In the lowest order case, Whitney forms give expressions in
barycentric (or affine) coordinates that form a basis for the
Nédélec space:

{λi∇λj − λj∇λi}.

i j

Q: Can we systematically generalize such expressions to
obtain bases for higher order Nédélec spaces?
A: Yes, as we shall now show . . .
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Background
Many papers have given basis expressions in affine
coordinates and investigated their utility in electromagnetics.

Papers from the engineer-
ing literature in the 90’s:

[Lee, Sun & Csendes, 1991]
[Ahagon & Kashimoto, 1995]
[Savage & Peterson, 1996]
[Yioultsis & Tsiboukis, 1996]
[Graglia, Wilton & Peterson, 1997]
[Webb, 1999]

However, some of them do not span the Nédélec space (e.g.
the first and the last – more remarks on this later).
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Some isomorphisms

Ax2
1 + Bx2

2 + Cx2
3 + Dx1x2 + Ex1x3 + Fx2x3

↓

(x3 = 1)

↓

Ax2
1 + Bx2

2 + C + Dx1x2 + Ex1 + Fx2

x3 = 1

x3

x1

x2

PROPOSITION. The restriction of homogeneous polynomials of
degree k in N + 1 variables x1, x2, . . . xN+1 to the
hyperplane xN+1 = 1 is an isomorphism onto the space of all
polynomials of degree at most k in the first N variables.
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Some isomorphisms

Ax2
1 + Bx2

2 + Cx2
3 + Dx1x2 + Ex1x3 + Fx2x3

↓

(x1 + x2 + x3 = 1)

↓ X

Aλ2
1 + Bλ2

2 + Cλ2
3 + Dλ1λ2 + Eλ1λ3 + Fλ2λ3

x1 + x2 + x3 = 1

x3

x1

x2

PROPOSITION. If λi’s are the barycentric coordinates of an
N -simplex, the above indicated map X is an isomorphism
from the space of homogeneous polynomials of degree k in
N + 1 variables onto the space of all polynomials of degree at
most k on the simplex.
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Some isomorphisms

Ax2
1 + Bx2

2 + Cx2
3 + Dx1x2 + Ex1x3 + Fx2x3

↓

(x1 + x2 + x3 = 1)

↓ X

Aλ2
1 + Bλ2

2 + Cλ2
3 + Dλ1λ2 + Eλ1λ3 + Fλ2λ3

x1 + x2 + x3 = 1

x3

x1

x2

For vector polynomials, we consider Y so that the following diagram commutes:

P
(N+1)
k+1

∇(N+1)
−−−−→ P

(N+1)
k


yX



yY

P
(N)
k+1

∇(N)
−−−−→ P

(N)
k
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Some isomorphisms

Polynomial

N+1∑

`=1

∑

|α|=k

cα,` xα e` in N + 1 variables

↓

(xi → λi, e` → ∇λ`)

↓ Y

Polynomial

N+1∑

`=1

∑

|α|=k

cα,` λα
∇λ` in N variables

x1 + x2 + x3 = 1

x3

x1

x2

THEOREM. The map Y considered as a map from

S
(N+1)
k −→ R

(N)
k

(the highest degree part of the N +1

dimensional Nédélec space)
(N -dimensional Nédélec space)

is an isomorphism.
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Basis in affine coordinates

Therefore, to get a basis for the Nédélec space Rk in 3
dimensions, we simply apply Y to the previously constructed
basis for Sk in 4 dimensions.

xβ−elel − xβ−emem

↓ Y

λβ−el∇λl − λβ−em∇λm

Collecting such expressions for all admissible β, we can
categorize them as edge, face, and interior basis functions:
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Basis in affine coordinates
Basis expressions categorized: Edge, face, and interior basis
functions for any order (k) follows. Let α = (α1, α2, α3, α4).

|α| = k − 1 with two λα(λl∇λm − λm∇λl).

nonzero entries αl, αm (Edge basis functions)
|α| = k − 2 with three λα(λlλm∇λn − λmλn∇λl),

nonzero entries αl, αm, αn λα(λmλn∇λl − λnλl∇λm).

(Face basis functions)
|α| = k − 3 with all four λα(λ1λ2λ3∇λ4 − λ2λ3λ4∇λ1),

entries nonzero λα(λ2λ3λ4∇λ1 − λ3λ4λ1∇λ2),

λα(λ3λ4λ1∇λ2 − λ4λ3λ2∇λ1).

(Interior basis functions)
Department of Mathematics [Slide 14 of 18]
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Two previous works
Different expressions for the quadratic case were suggested:
• [Lee, Sun & Csendes, 1991]:

Edge(i, j): λi∇λj , λj∇λi (spans P 1)

Face(i, j, k): λiλj∇λk, λkλi∇λj (adds 8 quadratics)

• [Savage & Peterson, 1996]:

Edge(i, j): λi∇λj , λj∇λi (spans P 1)

Face(i, j, k): λiλj∇λk − λjλk∇λi,

λjλk∇λi − λkλi∇λj (adds 8 quadratics)

The latter is a hierarchical rearrangement of our previously
established expressions, so it spans the Nédélec space R2.

But the former does not span the Nédélec space . . .
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Two previous works
Different expressions for the quadratic case were suggested:
• [Lee, Sun & Csendes, 1991]:

Edge(i, j): λi∇λj , λj∇λi (spans P 1)

Face(i, j, k): λiλj∇λk, λkλi∇λj (adds 8 quadratics)

Using our techniques, it is easy to see why an expression like
λiλj∇λk cannot be in the Nédélec space:

xixjek → this is not in S
(4)
2 , because

4∑

`=1

cβ−e`,` 6= 0,

l Y

λiλj∇λk → so this cannot be in R
(3)
2 .

One question remains: Why does it work so well?
Department of Mathematics [Slide 15 of 18]



Jay Gopalakrishnan

Two previous works
Different expressions for the quadratic case were suggested:
• [Lee, Sun & Csendes, 1991]:

Edge(i, j): λi∇λj , λj∇λi (spans P 1)

Face(i, j, k): λiλj∇λk, λkλi∇λj (adds 8 quadratics)

– It spans a Nédélec-type space,
so standard analysis using discrete
Helmholtz decomposition etc. holds.
– Although asymmetric, gets global
tangential continuity by assigning two
basis functions per face globally.
– Same approximation order as the
Nédélec space R2.

i j

k

λiλj∇λk
Department of Mathematics [Slide 15 of 18]



Jay Gopalakrishnan

Hierarchical shape functions

We prefer shape functions that are hierarchical in k.
But our expressions were not written out hierarchically, eg.:

|α| = k − 1 with two λα(λl∇λm − λm∇λl).

nonzero entries αl, αm (Edge basis functions)

But we can use any hierarchical basis for polynomials of
degree at most k − 1 on the edge in place of λα above.
Doing this for each category of basis functions, we find:

Hierarchical shape functions for standard polynomial spaces
can be used to build hierarchical shape functions for the
Nédélec space.
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The hierarchy

Eg., k = 1

k = 2 k = 3 k = 4

Edge(l,m) : (λl∇λm − λm∇λl)

·〈λl, λm〉·〈edge bubbles〉

Face(l,m, n) :

(λmλn∇λl − λnλl∇λm) ·〈λl, λm, λn〉·〈side shape fn〉

(λnλl∇λm − λlλm∇λn) ·〈λl, λm, λn〉·〈side shape fn〉

Interior :

(λ1λ2λ3∇λ4 − λ2λ3λ4∇λ1) ·〈λ1, λ2, λ3, λ4〉

(λ2λ3λ4∇λ1 − λ3λ4λ1∇λ2) ·〈λ1, λ2, λ3, λ4〉

(λ3λ4λ1∇λ2 − λ4λ3λ2∇λ1) ·〈λ1, λ2, λ3, λ4〉
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The hierarchy

Eg.,

k = 1

k = 2

k = 3 k = 4

Edge(l,m) : (λl∇λm − λm∇λl) ·〈λl, λm〉
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The hierarchy

Eg.,

k = 1 k = 2

k = 3

k = 4

Edge(l,m) : (λl∇λm − λm∇λl) ·〈λl, λm〉 · 〈edge bubbles〉

Face(l,m, n) : (λmλn∇λl − λnλl∇λm) ·〈λl, λm, λn〉

·〈side shape fn〉

(λnλl∇λm − λlλm∇λn) ·〈λl, λm, λn〉

·〈side shape fn〉

Interior : (λ1λ2λ3∇λ4 − λ2λ3λ4∇λ1)

·〈λ1, λ2, λ3, λ4〉

(λ2λ3λ4∇λ1 − λ3λ4λ1∇λ2)
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The hierarchy

Eg.,

k = 1 k = 2 k = 3

k = 4

Edge(l,m) : (λl∇λm − λm∇λl) ·〈λl, λm〉 · 〈edge bubbles〉

Face(l,m, n) : (λmλn∇λl − λnλl∇λm) ·〈λl, λm, λn〉 · 〈side shape fn〉

(λnλl∇λm − λlλm∇λn) ·〈λl, λm, λn〉 · 〈side shape fn〉

Interior : (λ1λ2λ3∇λ4 − λ2λ3λ4∇λ1) ·〈λ1, λ2, λ3, λ4〉

(λ2λ3λ4∇λ1 − λ3λ4λ1∇λ2) ·〈λ1, λ2, λ3, λ4〉

(λ3λ4λ1∇λ2 − λ4λ3λ2∇λ1) ·〈λ1, λ2, λ3, λ4〉

. . . and so on for higher k.
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Conclusion
We gave some characterizations of the Nédélec
space Rk.

This helped us identify an elementary basis for the highest
degree part Sk.

We established an isomorphism between Sk in N + 1
dimensions and Rk in N dimensions.

Using the isomorphism, we got a basis in affine
coordinates for Rk of any order.

Our basis can be used to develop shape functions that are
hierarchical in the degree.

While Nédélec-type spaces offer an alternative to the
Nédélec space, whether they have advantages over the
Nédélec space remains unclear.
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