

Nédélec spaces in affine coordinates

Jay Gopalakrishnan

University of Florida

July 2005

Collaborators:

Leszek F. Demkowicz

The University of Texas at Austin

Luis E. García-Castillo

Universidad de Alcalá de Henares

The Nédélec polynomial space

The $k^{\rm th}$ Nédélec space (in any space dimension) is

$$\boldsymbol{R}_k = \boldsymbol{P}_{k-1} \oplus \boldsymbol{S}_k.$$

Notation:

 $oldsymbol{P}_k =$ set of all vector functions whose every component is a *polynomial* of degree at most k. $oldsymbol{S}_k = \{oldsymbol{q} \in \overline{oldsymbol{P}}_k : \ oldsymbol{x} \cdot oldsymbol{q}(oldsymbol{x}) = 0 \quad \text{for all } oldsymbol{x}\},$ where

 P_k = set of vector polynomials whose components are *homogeneous* of degree k.

Why Nédélec space?

- It gives H(curl)-conforming finite elements.
- Does not produce spurious modes. Provable convergence.
- Uses only degrees of freedom needed to handle curl.
 In approximating curl, gradients need not be included:

$$P_{k} = P_{k-1} \oplus \overbrace{P_{k}}^{\overline{P}_{k}}$$
[Nédélec, 1980]
$$S_{k} \oplus \nabla \overline{P}_{k+1}$$

$$\implies$$
 $\mathbf{R}_k = \mathbf{P}_{k-1} \oplus \mathbf{S}_k$

Q: Are there other ways of removing the gradients? *A:* Yes... (examples later).

An exactness property

Another reason for Nédélec space is that they arise canonically from an exactness property: [Hiptmair, 1999]

$$\nabla P_k = \operatorname{Ker}(\operatorname{curl}, \mathbf{R}_k),$$

where $\operatorname{Ker}(\operatorname{curl}, \mathbf{R}_k) = \{ \mathbf{q} \in \mathbf{R}_k : \operatorname{curl} \mathbf{q} = 0 \}.$

Consider Nédélec-type spaces $R'_k = P_{k-1} \oplus S'_k$, where S'_k is a subspace of \overline{P}_k that is linearly independent to $\nabla \overline{P}_{k+1}$.

PROPOSITION. The property

$$\nabla P_k = \operatorname{Ker}(\operatorname{curl}, \mathbf{R}'_k),$$

holds for any Nédélec-type space $oldsymbol{R}'_k$.

A related multilinear form

[Nédélec, 1980] shows that a smooth function $m{q}:\mathbb{R}^N\mapsto\mathbb{R}^N$ is in $m{R}_k$ if and only if

$$\varepsilon^k(\boldsymbol{q})(\boldsymbol{r}_1, \boldsymbol{r}_2, \dots, \boldsymbol{r}_{k+1}) = 0, \qquad \quad \forall \boldsymbol{r}_i,$$

where the multilinear form $arepsilon^k(oldsymbol{q})(\cdots)$ is defined by

$$arepsilon^k(oldsymbol{q})(oldsymbol{r}_1,oldsymbol{r}_2,\ldots,oldsymbol{r}_{k+1}) = rac{1}{(k+1)!}\sum_{\sigma}(oldsymbol{d}^koldsymbol{q})(oldsymbol{r}_{\sigma(1)},oldsymbol{r}_{\sigma(2)},\ldots,oldsymbol{r}_{\sigma(k)})\cdotoldsymbol{r}_{\sigma(k+1)}.$$

Here the sum runs over all permutations σ of the set $\{1, 2, \ldots, k+1\}$ and $d^k q$ denotes the k^{th} order Fréchet derivative of q.

Characterizations of S_k

THEOREM. A C^k -function $oldsymbol{q}\equiv (q_\ell)$ is in $oldsymbol{R}_k$ if and only if

$$\sum_{\ell=1}^{N} \beta_{\ell} \partial^{\beta-e_{\ell}} q_{\ell} = 0, \qquad \text{for all } |\beta| = k+1.$$

Notation:

- $\beta = (\beta_1, \beta_2, \dots, \beta_N)$ are multi-indices. - $|\beta| = \beta_1 + \beta_2 + \dots + \beta_N$ and $e_{\ell} = (0, \dots, 1, \dots, 0)$. - For any multi-index α , $\partial^{\alpha} = \frac{\partial^{|\alpha|}}{\partial x_1^{\alpha_1} \partial x_2^{\alpha_2} \cdots \partial x_N^{\alpha_N}}$. - All terms involving $\beta - e_{\ell}$ are considered to be zero if a component of $\beta - e_{\ell}$ is negative.

Characterizations of S_k

THEOREM. A C^k -function $oldsymbol{q}\equiv (q_\ell)$ is in $oldsymbol{R}_k$ if and only if

$$\sum_{\ell=1}^{N} \beta_{\ell} \partial^{\beta-e_{\ell}} q_{\ell} = 0, \qquad \text{for all } |\beta| = k+1.$$

COROLLARY. The polynomial $oldsymbol{q}(oldsymbol{x})=$

is in $oldsymbol{S}_k$ if and only if

 ΛT

$$\sum_{\ell=1}^{N} c_{\boldsymbol{\beta}-\boldsymbol{e}_{\ell},\ell} = 0,$$

 $s) = \begin{bmatrix} \sum_{|\alpha|=k} c_{\alpha,1} \ \boldsymbol{x}^{\alpha} \\ \vdots \\ \sum_{|\alpha|=k} c_{\alpha,N} \ \boldsymbol{x}^{\alpha} \end{bmatrix}$ for all $|\boldsymbol{\beta}| = k + 1.$

An example

1

$$\begin{split} \boldsymbol{\beta} &= (2,1,0): & c_{(1,1,0),1} + c_{(2,0,0),2} = 0, \\ \boldsymbol{\beta} &= (2,0,1): & c_{(1,0,1),1} + c_{(2,0,0),3} = 0, \\ \boldsymbol{\beta} &= (1,2,0): & c_{(0,2,0),1} + c_{(1,1,0),2} = 0, \\ \boldsymbol{\beta} &= (1,1,1): & c_{(0,1,1),1} + c_{(1,0,1),2} + c_{(1,1,0),3} = 0, \\ \boldsymbol{\beta} &= (1,0,2): & c_{(0,0,2),1} + c_{(1,0,1),3} = 0, \end{split}$$

(10 equations)

UNIVERSITY OF

An example

$$\sum_{\ell=1}^{3} c_{\beta-e_{\ell},\ell} = 0, \text{ for all } |\beta| = 2+1$$

$$\begin{array}{c} \text{Case of} \\ N = 3, \ k = 2 \end{array}$$

$$q(x) \equiv \left(\sum_{|\alpha|=2} c_{\alpha,1} x^{\alpha}\right) e_{1} + \left(\sum_{|\alpha|=2} c_{\alpha,2} x^{\alpha}\right) e_{2} + \left(\sum_{|\alpha|=2} c_{\alpha,3} x^{\alpha}\right) e_{3}$$
is in S_{2} if and only if its coefficients $\{c_{\alpha,\ell}\}$ satisfy:

$$\beta = (2,1,0): \qquad c_{(1,1,0),1} + c_{(2,0,0),2} = 0,$$

$$\vdots$$
Eg., the first equation tells us that $x_{1}x_{2}e_{1} - x_{1}^{2}e_{2} \equiv \begin{bmatrix} x_{1}x_{2} \\ -x_{1}^{2} \\ 0 \end{bmatrix}$ is in S_{2} .

More generally, observe that $x^{\beta-e_1}e_1 - x^{\beta-e_2}e_2$ is in S_2 for all $|\beta| = 3$ with positive β_1 and β_2 . Jay Gopalakrishnan

UNIVERSITY

A basis for S_k

Consider all such linearly independent two-term expressions. E.g., for a β with three nonzero entries and $|\beta| = k + 1$,

$$\boldsymbol{\beta} = (0 \cdots \times \cdots \times \cdots \times \cdots 0) = \boldsymbol{\beta}^{\mathrm{th}_{\mathrm{entry}}},$$

we have two expressions:

Jav Gopalakrishnan

$$oldsymbol{x}^{eta-oldsymbol{e}_l}oldsymbol{e}_l - oldsymbol{x}^{eta-oldsymbol{e}_m}oldsymbol{e}_m, \quad oldsymbol{x}^{eta-oldsymbol{e}_m}oldsymbol{e}_m - oldsymbol{x}^{eta-oldsymbol{e}_n}oldsymbol{e}_m.$$

THEOREM. The collection of all such expressions (for all multi-indices β with $|\beta| = k + 1$) forms a basis for S_k (for any order k and any dimension N).

Some Nédélec-type spaces

Let $oldsymbol{S}_k^{(a)}$ denote the set of all homogeneous polynomials

$$oldsymbol{q}(oldsymbol{x}) = \sum_{\ell=1}^N \sum_{|oldsymbol{lpha}|=k} c_{oldsymbol{lpha},\ell} \, oldsymbol{x}^{oldsymbol{lpha}} \, oldsymbol{e}_\ell$$

whose coefficients $\{c_{{m lpha},\ell}\}$ satisfy

$$\sum_{\ell=1}^{N} a_{\boldsymbol{\beta},\ell} c_{\boldsymbol{\beta}-\boldsymbol{e}_{\ell},\ell} = 0, \quad \text{for all } |\boldsymbol{\beta}| = k+1,$$

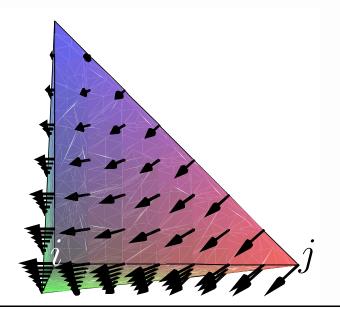
for some numbers $\{a_{\beta,\ell}\}$ such that $\sum_{\ell=1}^{N} a_{\beta,\ell}\beta_{\ell} \neq 0$.

PROPOSITION. Then,
$$\overline{P}_k = S_k^{(a)} \oplus \nabla \overline{P}_{k+1}$$
, so $R_k^{(a)} = P_{k-1} \oplus S_k^{(a)}$ is a Nédélec-type space.

Barycentric coordinates

In the lowest order case, Whitney forms give expressions in barycentric (or *affine*) coordinates that form a basis for the Nédélec space:

$$\{\lambda_i \nabla \lambda_j - \lambda_j \nabla \lambda_i\}.$$



Q: Can we systematically generalize such expressions to obtain bases for higher order Nédélec spaces? *A:* Yes, as we shall now show ...

Background

UNIVERSITY OF FLORID

Many papers have given basis expressions in affine coordinates and investigated their utility in electromagnetics.

Papers from the engineering literature in the 90's: [Lee, Sun & Csendes, 1991]
[Ahagon & Kashimoto, 1995]
[Savage & Peterson, 1996]
[Yioultsis & Tsiboukis, 1996]
[Graglia, Wilton & Peterson, 1997]
[Webb, 1999]

However, some of them do *not* span the Nédélec space (e.g. the first and the last – more remarks on this *later*).

PROPOSITION. The restriction of homogeneous polynomials of degree k in N + 1 variables $x_1, x_2, \ldots x_{N+1}$ to the hyperplane $x_{N+1} = 1$ is an isomorphism onto the space of all polynomials of degree at most k in the first N variables.

PROPOSITION. If λ_i 's are the barycentric coordinates of an N-simplex, the above indicated map X is an isomorphism from the space of homogeneous polynomials of degree k in N + 1 variables onto the space of all polynomials of degree at most k on the simplex.

For vector polynomials, we consider Y so that the following diagram commutes:

$$\begin{array}{ccc} \overline{P}_{k+1}^{(N+1)} & \xrightarrow{\boldsymbol{\nabla}_{(N+1)}} & \overline{\boldsymbol{P}}_{k}^{(N+1)} \\ & & & & \downarrow \boldsymbol{Y} \\ & & & & \downarrow \boldsymbol{Y} \\ P_{k+1}^{(N)} & \xrightarrow{\boldsymbol{\nabla}_{(N)}} & \boldsymbol{P}_{k}^{(N)} \end{array}$$

UNIVERSITY

$$\begin{array}{c} \text{Polynomial} \sum_{\ell=1}^{N+1} \sum_{|\boldsymbol{\alpha}|=k} c_{\boldsymbol{\alpha},\ell} \ \boldsymbol{x}^{\boldsymbol{\alpha}} \ \boldsymbol{e}_{\ell} & \text{in } N+1 \text{ variables} \\ \downarrow & & \\ (x_{i} \rightarrow \lambda_{i}, \quad \boldsymbol{e}_{\ell} \rightarrow \boldsymbol{\nabla} \lambda_{\ell}) \\ \downarrow \mathbf{Y} \\ \text{Polynomial} \sum_{\ell=1}^{N+1} \sum_{|\boldsymbol{\alpha}|=k} c_{\boldsymbol{\alpha},\ell} \ \boldsymbol{\lambda}^{\boldsymbol{\alpha}} \ \boldsymbol{\nabla} \lambda_{\ell} & \text{in } N \text{ variables} \\ \end{array} \right)$$

THEOREM. The map $oldsymbol{Y}$ considered as a map from

$$oldsymbol{S}_k^{(N+1)} \longrightarrow oldsymbol{R}_k^{(N)}$$

(the highest degree part of the N+1 dimensional Nédélec space)

is an isomorphism.

(N -dimensional Nédélec space)

UNIVERSIT

Basis in affine coordinates

Therefore, to get a basis for the Nédélec space R_k in 3 dimensions, we simply apply Y to the previously constructed basis for S_k in 4 dimensions.

$$oldsymbol{x}^{oldsymbol{eta}-oldsymbol{e}_l}oldsymbol{e}_l - oldsymbol{x}^{oldsymbol{eta}-oldsymbol{e}_m}oldsymbol{e}_m$$

$\downarrow Y$

$$\boldsymbol{\lambda}^{\boldsymbol{eta}-\boldsymbol{e}_l} \boldsymbol{\nabla} \lambda_l - \boldsymbol{\lambda}^{\boldsymbol{eta}-\boldsymbol{e}_m} \boldsymbol{\nabla} \lambda_m$$

Collecting such expressions for all admissible β , we can categorize them as edge, face, and interior basis functions:

Basis in affine coordinates

Basis expressions categorized: Edge, face, and interior basis functions for any order (k) follows. Let $\alpha = (\alpha_1, \alpha_2, \alpha_3, \alpha_4)$.

$ oldsymbol{lpha} =k-1$ with two	$oldsymbol{\lambda}^{oldsymbol{lpha}} (\lambda_l oldsymbol{ abla} \lambda_m - \lambda_m oldsymbol{ abla} \lambda_l).$
nonzero entries $lpha_l, lpha_m$	(Edge basis functions)
$ oldsymbol{lpha} = k-2$ with three	$oldsymbol{\lambda}^{oldsymbol{lpha}}(\lambda_l\lambda_moldsymbol{ abla}\lambda_n-\lambda_m\lambda_noldsymbol{ abla}\lambda_l),$
nonzero entries $lpha_l, lpha_m, lpha_n$	$oldsymbol{\lambda}^{oldsymbol{lpha}}(\lambda_m\lambda_noldsymbol{ abla}\lambda_l-\lambda_n\lambda_loldsymbol{ abla}\lambda_m).$
	(Face basis functions)
$ oldsymbol{lpha} = k-3$ with all four	$oldsymbol{\lambda}^{oldsymbol{lpha}}(\lambda_1\lambda_2\lambda_3oldsymbol{ abla}\lambda_4-\lambda_2\lambda_3\lambda_4oldsymbol{ abla}\lambda_1),$
entries nonzero	$oldsymbol{\lambda}^{oldsymbol{lpha}}(\lambda_2\lambda_3\lambda_4oldsymbol{ abla}_1-\lambda_3\lambda_4\lambda_1oldsymbol{ abla}_2),$
	$\boldsymbol{\lambda}^{\boldsymbol{lpha}}(\lambda_{3}\lambda_{4}\lambda_{1}\boldsymbol{ abla}\lambda_{2}-\lambda_{4}\lambda_{3}\lambda_{2}\boldsymbol{ abla}\lambda_{1}).$
	(Interior basis functions)

Jay Gopalakrishnan

Two previous works

Different expressions for the quadratic case were suggested:

- [Lee, Sun & Csendes, 1991]: Edge(i, j): $\lambda_i \nabla \lambda_j$, $\lambda_j \nabla \lambda_i$ (spans P_1) Face(i, j, k): $\lambda_i \lambda_j \nabla \lambda_k$, $\lambda_k \lambda_i \nabla \lambda_j$ (adds 8 quadratics)
- [Savage & Peterson, 1996]: Edge(i, j): $\lambda_i \nabla \lambda_j$, $\lambda_j \nabla \lambda_i$ (spans P_1) Face(i, j, k): $\lambda_i \lambda_j \nabla \lambda_k - \lambda_j \lambda_k \nabla \lambda_i$, $\lambda_j \lambda_k \nabla \lambda_i - \lambda_k \lambda_i \nabla \lambda_j$ (adds 8 quadratics)

The latter is a hierarchical rearrangement of our previously established expressions, so it spans the Nédélec space R_2 .

But the former does not span the Nédélec space ...

Two previous works

Different expressions for the quadratic case were suggested:

- [Lee, Sun & Csendes, 1991]:
 - $\begin{array}{lll} \mathsf{Edge}(i,j) &: & \lambda_i \nabla \lambda_j, \ \lambda_j \nabla \lambda_i & (\text{spans } \boldsymbol{P}_1) \\ \mathsf{Face}(i,j,k) &: & \lambda_i \lambda_j \nabla \lambda_k, \ \lambda_k \lambda_i \nabla \lambda_j & (\text{adds 8 quadratics}) \end{array}$

Using our techniques, it is easy to see why an expression like $\lambda_i \lambda_j \nabla \lambda_k$ cannot be in the Nédélec space:

$$egin{aligned} x_i x_j oldsymbol{e}_k & o ext{ this is not in } oldsymbol{S}_2^{(4)}, ext{ because } \sum_{\ell=1}^4 c_{oldsymbol{eta}-oldsymbol{e}_\ell,\ell}
eq 0, \ & oldsymbol{\lambda} oldsymbol{Y} \ & oldsymbol{\lambda}_i \lambda_j oldsymbol{
abla} \lambda_k & o ext{ so this cannot be in } oldsymbol{R}_2^{(3)}. \end{aligned}$$

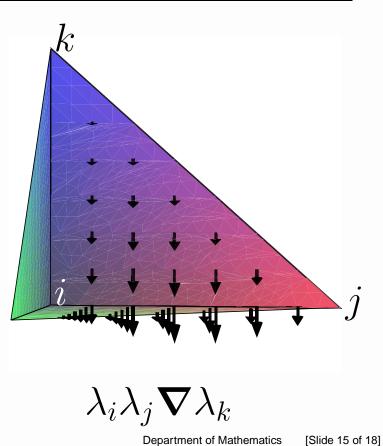
One question remains: Why does it work so well?

Jay Gopalakrishnan

Two previous works

Different expressions for the quadratic case were suggested:

- Lee, Sun & Csendes, 1991]:
- Edge(i, j): $\lambda_i \nabla \lambda_j$, $\lambda_j \nabla \lambda_i$ (spans P_1)Face(i, j, k): $\lambda_i \lambda_j \nabla \lambda_k$, $\lambda_k \lambda_i \nabla \lambda_j$ (adds 8 quadratics)
- It spans a *Nédélec-type space*,
 so standard analysis using discrete
 Helmholtz decomposition etc. holds.
- Although asymmetric, gets global tangential continuity by assigning two basis functions per face globally.
- Same approximation order as the Nédélec space $oldsymbol{R}_2$.



Hierarchical shape functions

We prefer shape functions that are hierarchical in k. But our expressions were not written out hierarchically, eg.:

 $|oldsymbol{lpha}| = k - 1$ with two

nonzero entries α_l, α_m

 $\boldsymbol{\lambda}^{\boldsymbol{\alpha}}(\lambda_{l}\boldsymbol{\nabla}\lambda_{m}-\lambda_{m}\boldsymbol{\nabla}\lambda_{l}).$

(Edge basis functions)

But we can use any hierarchical basis for polynomials of degree at most k - 1 on the edge in place of λ^{α} above. Doing this for each category of basis functions, we find:

Hierarchical shape functions for standard polynomial spaces can be used to build hierarchical shape functions for the Nédélec space.

Eg.,
$$k = 1$$

 $\mathsf{Edge}(l,m): \quad (\lambda_l \nabla \lambda_m - \lambda_m \nabla \lambda_l)$

Face(l, m, n):

Interior :

Eg.,
$$k=2$$

$$\mathsf{Edge}(l,m): \quad (\lambda_l \nabla \lambda_m - \lambda_m \nabla \lambda_l) \qquad \qquad \cdot \langle \lambda_l, \lambda_m \rangle$$

Face
$$(l, m, n)$$
: $(\lambda_m \lambda_n \nabla \lambda_l - \lambda_n \lambda_l \nabla \lambda_m)$
 $(\lambda_n \lambda_l \nabla \lambda_m - \lambda_l \lambda_m \nabla \lambda_n)$

Interior :

Jay Gopalakrishnan

Eg.,

Interior : $(\lambda_1 \lambda_2 \lambda_3 \nabla \lambda_4 - \lambda_2 \lambda_3 \lambda_4 \nabla \lambda_1)$ $(\lambda_2 \lambda_3 \lambda_4 \nabla \lambda_1 - \lambda_3 \lambda_4 \lambda_1 \nabla \lambda_2)$ $(\lambda_3 \lambda_4 \lambda_1 \nabla \lambda_2 - \lambda_4 \lambda_3 \lambda_2 \nabla \lambda_1)$

Face(l, m, n): $(\lambda_m \lambda_n \nabla \lambda_l - \lambda_n \lambda_l \nabla \lambda_m)$ $\cdot \langle \lambda_l, \lambda_m, \lambda_n \rangle$ $(\lambda_n \lambda_l \nabla \lambda_m - \lambda_l \lambda_m \nabla \lambda_n)$ $\cdot \langle \lambda_l, \lambda_m, \lambda_n \rangle$

 $\mathsf{Edge}(l,m): \ (\lambda_l \nabla \lambda_m - \lambda_m \nabla \lambda_l)$

 $\cdot \langle \lambda_l, \lambda_m \rangle \cdot \langle \text{edge bubbles} \rangle$

$$k = 3$$

Eg.,
$$k = 4$$

 $\mathsf{Edge}(l,m): \quad (\lambda_l \nabla \lambda_m - \lambda_m \nabla \lambda_l) \qquad \qquad \cdot \langle \lambda_l, \lambda_m \rangle \cdot \langle \mathsf{edge \ bubbles} \rangle$

$$\begin{array}{ll} \operatorname{Face}(l,m,n): & (\lambda_m\lambda_n\nabla\lambda_l-\lambda_n\lambda_l\nabla\lambda_m) & & \cdot\langle\lambda_l,\lambda_m,\lambda_n\rangle\cdot\langle \text{side shape fn}\rangle\\ & & (\lambda_n\lambda_l\nabla\lambda_m-\lambda_l\lambda_m\nabla\lambda_n) & & \cdot\langle\lambda_l,\lambda_m,\lambda_n\rangle\cdot\langle \text{side shape fn}\rangle \end{array}$$

Interior :
$$(\lambda_1 \lambda_2 \lambda_3 \nabla \lambda_4 - \lambda_2 \lambda_3 \lambda_4 \nabla \lambda_1) \cdot \langle \lambda_1, \lambda_2, \lambda_3, \lambda_4 \rangle$$

 $(\lambda_2 \lambda_3 \lambda_4 \nabla \lambda_1 - \lambda_3 \lambda_4 \lambda_1 \nabla \lambda_2) \cdot \langle \lambda_1, \lambda_2, \lambda_3, \lambda_4 \rangle$
 $(\lambda_3 \lambda_4 \lambda_1 \nabla \lambda_2 - \lambda_4 \lambda_3 \lambda_2 \nabla \lambda_1) \cdot \langle \lambda_1, \lambda_2, \lambda_3, \lambda_4 \rangle$

 \ldots and so on for higher k.

Conclusion

- We gave some characterizations of the Nédélec space R_k .
- This helped us identify an elementary basis for the highest degree part S_k .
- We established an isomorphism between S_k in N+1 dimensions and R_k in N dimensions.
- Using the isomorphism, we got a basis in affine coordinates for $oldsymbol{R}_k$ of any order.
- Our basis can be used to develop shape functions that are hierarchical in the degree.
- While Nédélec-type spaces offer an alternative to the Nédélec space, whether they have advantages over the Nédélec space remains unclear.