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Complex coefficient PDE’s

Consider the simple boundary value problem

�� ��BVP

{
−∇ · α(x)∇u = f in Ω,

u = 0 on ∂Ω,

but let α : Ω 7−→ C be a complex valued coefficient.

Many practically important problems (especially in
electromagnetics) have complex coefficients.
PML is an example, but it is more complicated (complex tensor).
Must understand the simple problem

�� ��BVP first.
Many standard results for real valued problems do not carry over.
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Jay & Joe’s experiments

Does multigrid work for complex coefficient PDE’s?

Jay and Joe coded the V-cycle with point Gauss-Seidel smoothing:

Numerical Example A

α(x1, x2) = 1 + ı̂K sin(π(2x2 − 1)/2), (Here ı̂ = imaginary unit.)

and Ω = unit square, meshed uniformly.
h coarse = 1/4
h fine K = 1 K = 20 K = 100
1/8 7 20 ?
1/16 7 15 ?
1/32 7 13 ?
1/64 7 12 ?
1/128 7 12 ?

Number of V-cycle iterations (to reduce error by a factor of 10−5).
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Jay & Joe’s experiments

Does multigrid work for complex coefficient PDE’s?

Jay and Joe coded the V-cycle with point Gauss-Seidel smoothing:

Numerical Example B

α = (1− r)2 + r4 exp(4ı̂θ) (Here (r , θ) = polar coordinates.)

and Ω = unit square, meshed uniformly.
h coarse = 1/4 Joe’s code Jay’s code
h fine diverges
1/16 ? 19
1/32 ? 19
1/64 ? 20
1/128 ? 20

Number of V-cycle iterations.

What is going on?!

Jay Gopalakrishnan 3/12



Jay & Joe’s experiments

Does multigrid work for complex coefficient PDE’s?

Jay and Joe coded the V-cycle with point Gauss-Seidel smoothing:

Numerical Example B

α = (1− r)2 + r4 exp(4ı̂θ) (Here (r , θ) = polar coordinates.)

and Ω = unit square, meshed uniformly.
h coarse = 1/4 Joe’s code Jay’s code
h fine diverges
1/16 ? 19
1/32 ? 19
1/64 ? 20
1/128 ? 20

Number of V-cycle iterations.

What is going on?

Q: Hmm . . . some-
body has a bug?

A: No, no bugs!!
(More later. . . .)

Jay Gopalakrishnan 3/12



Existence of solutions

�� ��WeakForm
∫

Ω
α∇u · ∇v̄︸ ︷︷ ︸

sesquilinear a(u, v)

=

∫
Ω

f v̄ , ∀v ∈ H1
0 (Ω).

Theorem (Existence assuming uniqueness)
Assume that

if a(v , w) = 0 ∀w ∈ H1
0 (Ω), then v = 0.

Then there exists a u in H1
0 (Ω) satisfying the

�� ��WeakForm above.

Proof uses a perturbation argument using compactness, employing
ideas due to Peetre & Tartar.
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Examples

The uniqueness assumption is not easy to verify for general
complex α.
But there are many complex coefficients for which it is obvious:

Example: Uniformly positive real part

∃c0 > 0 : c0 ≤ Re(α(x)) ∀x ∈ Ω.

More general example of essentially coercive coefficients
If there is a complex number β0 and a c0 > 0 satisfying

c0 ≤ Re(β0α(x)) ∀x ∈ Ω,

then uniqueness follows, because the above implies a coercivity
inequality of the form

c0|w |2H1(Ω) ≤ |a(w , β̄0w)| for all w ∈ H1
0 (Ω).
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The discrete case

Vh = standard continuous p.w. linear finite element subspace of H1
0 (Ω).�� ��FEM a(uh, vh) =

∫
Ω

f v̄h, ∀vh ∈ Vh.

Basic questions:

Is this method solvable?

Is the FEM solution any good?

Assume:
1 Uniqueness: Let the uniqueness assumption for

�� ��WeakForm hold.
2 Ellipticity: ∃α0 > 0 such that α0 ≤ |α(x)| for all x in Ω.
3 Smoothness: The coefficient α : Ω 7→ C is C2(Ω).

Theorem (Stability and Approximation)

∃h0 > 0 such that ∀h ≤ h0, there is a unique solution uh to
�� ��FEM and

‖uh‖H1(Ω) ≤ C ‖u‖H1(Ω),

‖u − uh‖H1(Ω) ≤ C inf
wh∈Vh

‖u − wh‖H1(Ω).

Proof uses a “discrete” version of the Peetre-Tartar argument and the
Schatz duality argument.
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Multigrid algorithm

Illustrative
multigrid
setting k = 1 k = 2

. . .

k = J

Highly
refined
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Mesh 1 Mesh 2 . . . Mesh J
(Coarsest mesh) (Finest mesh)

Want to solve AJu = b at the finest level.

V-cycle: Set MGk0(v , w) = A−1
k0

w . Let k > k0 and v , w ∈ Vk . Assuming
that MGk−1(·, ·) has been defined, we define MGk (v , w) as follows:

1 Set x = v + Rk (w − Akv). (Pre-smoothing)
2 Set y = x + MGk−1(0, Qk−1(w − Akx)). (Coarse-grid correction)
3 Define MGk (v , w) = y + R′

k (w − Aky). (Post-smoothing)
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Multigrid perturbation

Convergence of V-cycle for many non-symmetric and indefinite
applications have been proven: [Bank, 1981], [Mandel,1986],

[Bramble, Kwak & Pasciak, 1994].
Main technique of analysis is a perturbation argument:

Compare

(
MG for non-symmetric

or indefinite problem

)
with

(
MG for a nearby

SPD problem

)
.

Previous papers handled “lower order” perturbative terms, e.g.:

Compare (−∇ · A∇u + γ · ∇u + ηu| {z }
lower order

) with (−∇ · A∇u).

But we have a perturbation in the highest order term:

Compare (−∇ · α∇u) with (−∆u).
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Convergence of multigrid

Although the perturbation is in the highest order term, we are able to
prove a convergence theorem:

Theorem (Comparison of multigrid operators)
∃C > 0, H > 0, s > 0 such that whenever the coarsest meshsize in
the algorithm, hk0 , is less than H,

‖E− Ê‖H1(Ω) ≤ C hs/2
k0

.

Here

{
E = Error reducer of the complex MG for (∇ · α∇)

Ê = Error reducer of the standard MG for Laplacian (−∆).

C and H are independent of the number of refinement levels.
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Convergence of multigrid

Although the perturbation is in the highest order term, we are able to
prove a convergence theorem:

Theorem (Comparison of multigrid operators)
∃C > 0, H > 0, s > 0 such that whenever the coarsest meshsize in
the algorithm, hk0 , is less than H,

‖E− Ê‖H1(Ω) ≤ C hs/2
k0

.

This implies that the MG for complex coefficient converges if the
coarse meshsize is sufficiently small.

hk0

Regime where multigrid works
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Return to Numerical Example A

In accordance with the theorem, we see the complex MG iteration
counts approaching that of MG for Laplacian (−∆) as the coarse mesh
is made finer:

Numerical Example A

α(x , y) = 1 + ı̂K sin(π(2y − 1)/2),

and Ω = unit square, meshed uniformly.
h fine = 1/256 V-cycles V-cycles V-cycles V-cycles
h coarse MG for (−∆) (K = 1) (K = 20) (K = 100)
1/4 7 7 11 ?
1/8 7 7 9 ?
1/16 7 7 8 16
1/32 7 7 7 10
1/64 7 7 7 8
1/128 7 7 7 7
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Return to Numerical Example B

Why did one code diverge, while the other converged?

Numerical Example B

α = (1− r)2 + r4 exp(4ı̂θ)

and Ω = unit square, meshed uniformly.
h coarse = 1/4 Joe’s code Jay’s code
h fine diverges
1/16 ? 19
1/32 ? 19
1/64 ? 20
1/128 ? 20

Within the MG,
Gauss-Seidel depends
on node ordering.

Jay’s code is in Red-Black node ordering.
Joe’s code is in Lexicographical node ordering.
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Return to Numerical Example B

What happens if the coarse mesh is made finer?

Numerical Example B

α = (1− r)2 + r4 exp(4ı̂θ)

and Ω = unit square, meshed uniformly.
Joe’s code

hfine h coarse = 1
4 · · · h coarse = 1

32 h coarse = 1
64 h coarse = 1

128
1/64 ? · · · ?
1/128 ? · · · ? 43
1/256 ? · · · ? 7 7
1/512 ? · · · ? 7 7

Practically required coarse meshsize can depend on
node ordering!
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Conclusion

We showed that multigrid for smooth elliptic complex coefficients

converges at a mesh independent rate if the coarse meshsize is
sufficiently small.

This is similar to multigrid results for wave problems, where the
folklore is that the “coarse grid must be small enough to
resolve the wave ”.

In contrast, for general complex coefficients, we have no idea
how “small” the coarse meshsize needs to be.

Our numerical experiments show that Gauss-Seidel smoother can
be extremely sensitive to certain node orderings in the complex
coefficient case.
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