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Complex coefficient PDE’s UF [FLORIDA

Consider the simple boundary value problem

{—V-a(x)Vu: finQ,
BVP

u=0 onoQ,

butlet a: Q+—— C be a complex valued coefficient.

@ Many practically important problems (especially in
electromagnetics) have complex coefficients.

@ PML is an example, but it is more complicated (complex tensor).
@ Must understand the simple problem first.
@ Many standard results for real valued problems do not carry over.
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Jay & Joe’s experiments

UF [FLORIDA

Does multigrid work for complex coefficient PDE’s?

Jay and Joe coded the V-cycle with point Gauss-Seidel smoothing:

Numerical Example A

a(x1, x2) = 1+ iK sin(r(2xe — 1)/2),

and Q = unit square, meshed uniformly.

Ncoarse = 1/4

Wi K=1 K=20 K=100
1/8 7 20 *
1/16 7 15 *
1/32 7 13 *
1/64 7 12 *
1/128 7 12 *

Number of V-cycle iterations (to reduce error by a factor of 10~°).
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(Here 7 = imaginary unit.)
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Jay & Joe’s experiments UF [F{ORTBA

Does multigrid work for complex coefficient PDE’s?

Jay and Joe coded the V-cycle with point Gauss-Seidel smoothing:

Numerical Example A

a(x1,x2) =1+ iKsin(m(2x2 — 1)/2), (Here 7 = imaginary unit.)
and Q = unit square, meshed uniformly.

hcoarse — 1/4

htine K=1 K=20 K=100 ,

178 = 50 " Jay and Joe’s

1/16 7 15 - codes gave

1/32 7 13 X the same

1/64 7 12 X resuits.

1/128 7 12 *

Number of V-cycle iterations (to reduce error by a factor of 10~°).
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Jay & Joe’s experiments

UF [FLORIDA

Does multigrid work for complex coefficient PDE’s?

Jay and Joe coded the V-cycle with point Gauss-Seidel smoothing:

Numerical Example B

a=(1-

and Q = unit square, meshed uniformly.

r)? + r* exp(449)

(Here (r,0) = polar coordinates.)

What is going on?!

hcoarse = 1/4 | Joe’s code Jay’s code
Nfine diverges

1/16 * 19
1/32 * 19
1/64 * 20
1/128 * 20

Number of V-cycle iterations.
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Jay & Joe’s experiments

UF [FLORIDA

Does multigrid work for complex coefficient PDE’s?

Jay and Joe coded the V-cycle with point Gauss-Seidel smoothing:

Numerical Example B

a = (1-r)?+ r*exp(4i9)

and Q = unit square, meshed uniformly.

(Here (r,0) = polar coordinates.)

hcoarse = 1/4 | Joe’s code Jay’s code
Nfine diverges

1/16 * 19
1/32 * 19
1/64 * 20
1/128 * 20

Number of V-cycle iterations.
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What is going on?
Q: Hmm ... some-
body has a bug?

A:  No, no bugs!!
(More later. .. .)
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Existence of solutions UF [FLORIDA

/aVu~VV _/fV, W e HI(Q).
Q Q

————
sesquilinear a( u, V)

Theorem (Existence assuming uniqueness)
Assume that

if a(v,w)=0 Ywe H(Q), thenv=0.
Then there exists a u in H}(Q) satisfying the above.

Proof uses a perturbation argument using compactness, employing
ideas due to Peetre & Tartar.
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Examples UF [F{OR A

@ The uniqueness assumption is not easy to verify for general
complex a.

@ But there are many complex coefficients for which it is obvious:
Example: Uniformly positive real part
dey > 0: Co < Re(a(x)) Vx € Q.

More general example of essentially coercive coefficients
If there is a complex number Gy and a ¢y > 0 satisfying

Co < Re(fpa(x))  Vx€Q,

then uniqueness follows, because the above implies a coercivity
inequality of the form

ColW[F1(qy < la(w, Bow)| for all w € Hj ().
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The discrete case UF 51 58T5A

V, = standard continuous p.w. linear finite element subspace of HJ ().

FEM a(uh, Vh) = / th, Yvh € Vp.
Q

Basic questions:
Is this method solvable?

Is the FEM solution any good?
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The discrete case UF [FLORIDA

V, = standard continuous p.w. linear finite element subspace of HJ ().

FEM a(uh, Vh) = / th, Yvh € Vp.
Assume: “

@ Uniqueness: Let the uniqueness assumption for hold.
@ Ellipticity: 3eg > 0 such that o < |a(x)] for all x in Q.

© Smoothness: The coefficient a : Q +— Cis C?(Q).

Theorem (Stability and Approximation)
Jhy > 0 such that ¥ h < hy, there is a unique solution uj, to and

lUnllHi@) < C Ul (q),
u-—u < C inf |lu—w
= ey < © i 11— Wl

Proof uses a “discrete” version of the Peetre-Tartar argument and the
Schatz duality argument.
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Multigrid algorithm UF ¥ ORTDA

Highly
lllustrative refined
multigrid
setting k=1 k=2 k=J

Mesh 1 Mesh 2 Mesh J
(Coarsest mesh) (Finest mesh)
Want to solve A u = b at the finest level.

V-cycle: Set MGy, (v, w) = A;1 w. Let k > ky and v, w € V. Assuming
that MGk_1(+, ) has been defined, we define MG, (v, w) as follows:

@ Set x = v+ Ry(w — Akv). (Pre-smoothing)
Q Sety = x+MG,_1(0,Qk_1(w — Akx)).  (Coarse-grid correction)
© Define MGk(v,w) = y + R (w — Axy). (Post-smoothing)
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Multigrid perturbation UF [$i5RTDA

@ Convergence of V-cycle for many non-symmetric and indefinite
applications have been proven: [Bank, 1981], [Mandel,1986],
[Bramble, Kwak & Pasciak, 1994].
@ Main technique of analysis is a perturbation argument:

{ MG for non-symmetric} , { MG for a nearby}
Compare

or indefinite problem SPD problem

@ Previous papers handled “lower order” perturbative terms, e.g.:
Compare (—V -AVU+~-Vu+nqu) with (=V-AVu).
N ——

lower order

@ But we have a perturbation in the highest order term:

Compare (—V-aVu) with (—Au).
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Convergence of multigrid UF [F{ORTBA

Although the perturbation is in the highest order term, we are able to
prove a convergence theorem:

Theorem (Comparison of multigrid operators)

3C > 0, H > 0, s > 0 such that whenever the coarsest meshsize in
the algorithm, hy,, is less than H,

B 2
& = Ellnay < CHY

H & = Error reducer of the complex MG for (V - aV)
@ Here
& = Error reducer of the standard MG for Laplacian (—A).

@ C and H are independent of the number of refinement levels.
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Convergence of multigrid UF [FLGRIDA

Although the perturbation is in the highest order term, we are able to
prove a convergence theorem:

Theorem (Comparison of multigrid operators)

3C > 0, H > 0, s > 0 such that whenever the coarsest meshsize in
the algorithm, hy,, is less than H,

o 2
& =&l < Chig”

@ This implies that the MG for complex coefficient converges if the
coarse meshsize is sufficiently small.

L 2N R SR 2R 2N 2NN 2NN 4

Regime where multigrid works
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Return to Numerical Example A

UF [FLORIDA

In accordance with the theorem, we see the complex MG iteration

counts approaching that of MG for Laplacian (—A) as the coarse mesh

is made finer:

Numerical Example A

a(x,y) =1+iKsin(r(2y —1)/2),

and Q = unit square, meshed uniformly.

hfine = 1/256 V-cycles V-cycles V-cycles V-cycles
hcoarse MG for (—A) (K=1) (K=20) (K=100)
1/16 7 7 8 16
1/128 7 7 7 -
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Return to Numerical Example B UF[F{GRIDA

Why did one code diverge, while the other converged?

Numerical Example B

a=(1-r)%+ r*exp(4i0)

and Q = unit square, meshed uniformly.

hcoarse = 1/4 | Joe’s code Jay’s code
h fine diverges

1/16 * 19
1/32 * 19
1/64 * 20
1/128 * 20

Within the MG,
Gauss-Seidel depends
on node ordering.

@ Jay’s code is in Red-Black node ordering.

@ Joe’s code is in Lexicographical node ordering.
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Return to Numerical Example B UF [FLGRIDA

What happens if the coarse mesh is made finer?

Numerical Example B

and Q = unit square, meshed uniformly.

—1)2 4 r* exp(410)

1
hfine hcoarse — 1

1/64 *
1/128 *
1/256 *
1/512 *

Joe’s code
hcoarse = 31—2 hcoarse = & Ncoarse = 1178
*
* 43
* 7 7
* 7 7

@ Practically required coarse meshsize can depend on

node ordering!
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Conclusion UF |[FLORIDA

@ We showed that multigrid for smooth elliptic complex coefficients

converges at a mesh independent rate . the coarse meshsize is
sufficiently small.

@ This is similar to multigrid results for wave problems, where the
folklore is that the “coarse grid must be small enough to
resolve the wave ”.

@ In contrast, for general complex coefficients, we have 'no idea
how “small” the coarse meshsize needs to be.

@ Our numerical experiments show that Gauss-Seidel smoother can
be extremely sensitive to certain [node orderings in the complex
coefficient case.
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