The behavior of multigrid applied to some PDEs with complex coefficients

Jay Gopalakrishnan

University of Florida

Collaborator: Joe Pasciak

October 2008 Finite Element Circus

Thanks: NSF

Consider the simple boundary value problem

$$\begin{bmatrix} \mathbf{BVP} \\ u = 0 & \text{on } \partial\Omega, \end{bmatrix} = \begin{pmatrix} -\nabla \cdot \boldsymbol{\alpha}(\boldsymbol{x}) \nabla u = f & \text{in } \Omega, \\ u = 0 & \text{on } \partial\Omega, \end{bmatrix}$$

but let $\alpha : \Omega \mapsto \mathbb{C}$ be a *complex* valued coefficient.

- Many practically important problems (especially in electromagnetics) have complex coefficients.
- PML is an example, but it is more complicated (complex tensor).
- Must understand the simple problem BVP first.
- Many standard results for real valued problems do *not* carry over.

UF FLORIDA

Does multigrid work for complex coefficient PDE's?

Jay and Joe coded the V-cycle with point Gauss-Seidel smoothing:

Numerical Example A

$$\alpha(x_1, x_2) = 1 + \hat{\imath}K\sin(\pi(2x_2 - 1)/2),$$

(Here $\hat{\imath} = \text{imaginary unit.}$)

and Ω = unit square, meshed uniformly.

$h_{\rm coarse} = 1/4$			
h _{fine}	<i>K</i> = 1	<i>K</i> = 20	<i>K</i> = 100
1/8	7	20	*
1/16	7	15	*
1/32	7	13	*
1/64	7	12	*
1/128	7	12	*

Number of V-cycle iterations (to reduce error by a factor of 10^{-5}).

Does multigrid work for complex coefficient PDE's? Jay and Joe coded the V-cycle with point Gauss-Seidel smoothing:

Numerical Example A

$$\alpha(x_1, x_2) = 1 + \hat{\imath}K\sin(\pi(2x_2 - 1)/2),$$

(Here $\hat{\imath} = \text{imaginary unit.}$)

and Ω = unit square, meshed uniformly.

$h_{\rm coarse} = 1/4$			
h _{fine}	<i>K</i> = 1	<i>K</i> = 20	K = 100
1/8	7	20	*
1/16	7	15	*
1/32	7	13	*
1/64	7	12	*
1/128	7	12	*

Jay and Joe's codes gave the same results.

Number of V-cycle iterations (to reduce error by a factor of 10^{-5}).

UF FLORIDA

Does multigrid work for complex coefficient PDE's?

Jay and Joe coded the V-cycle with point Gauss-Seidel smoothing:

Numerical Example B

 $\alpha = (1 - r)^2 + r^4 \exp(4\hat{\imath}\theta)$

(Here (r, θ) = polar coordinates.)

and $\Omega =$ unit square, meshed uniformly.

Joe's code	Jay's code
diverges	
*	19
*	19
*	20
*	20
	diverges * *

Number of V-cycle iterations.

What is going on?!

UF FLORIDA

Does multigrid work for complex coefficient PDE's?

Jay and Joe coded the V-cycle with point Gauss-Seidel smoothing:

Numerical Example B

 $\alpha = (1 - r)^2 + r^4 \exp(4\hat{\imath}\theta)$

(Here (r, θ) = polar coordinates.)

and $\Omega =$ unit square, meshed uniformly.

	•
Joe's code	Jay's code
diverges	
*	19
*	19
*	20
*	20
	diverges *

Number of V-cycle iterations.

What is going on?

<u>Q:</u> Hmm ... somebody has a bug?

$$\underbrace{\underbrace{\int_{\Omega} \alpha \nabla u \cdot \nabla \bar{v}}_{\text{sesquilinear } a(u, v)} = \int_{\Omega} f \, \bar{v}, \qquad \forall v \in H_0^1(\Omega).$$

Theorem (Existence assuming uniqueness)

Assume that

if
$$a(v,w) = 0$$
 $\forall w \in H_0^1(\Omega)$, then $v = 0$.

Then there exists a *u* in $H_0^1(\Omega)$ satisfying the WeakForm above.

<u>Proof</u> uses a perturbation argument using compactness, employing ideas due to Peetre & Tartar.

Examples

- The uniqueness assumption is not easy to verify for general complex α .
- But there are many complex coefficients for which it is obvious:

Example: Uniformly positive real part

 $\exists c_0 > 0: \qquad c_0 \leq \operatorname{Re}(\alpha(x)) \quad \forall x \in \Omega.$

More general example of essentially coercive coefficients If there is a complex number β_0 and a $c_0 > 0$ satisfying

$$c_0 \leq \operatorname{Re}(\beta_0 \alpha(x)) \qquad \forall x \in \Omega,$$

then uniqueness follows, because the above implies a coercivity inequality of the form

$$c_0|w|^2_{H^1(\Omega)} \leq |a(w,ar{eta}_0w)| \quad ext{for all } w\in H^1_0(\Omega).$$

The discrete case

 $V_h = ext{standard continuous p.w. linear finite element subspace of } H_0^1(\Omega).$ **FEM** $a(u_h, v_h) = \int_{\Omega} f \, \bar{v}_h, \quad \forall v_h \in V_h.$

Basic questions:

Is this method solvable?

Is the FEM solution any good?

UF FI ORIDA

The discrete case

 V_h = standard continuous p.w. linear finite element subspace of $H_0^1(\Omega)$.

$$\underline{\mathsf{EM}} \qquad \qquad \mathsf{a}(u_h, v_h) = \int_{\Omega} f \, \bar{v}_h, \qquad \forall v_h \in V_h.$$

Assume:

F

- Uniqueness: Let the uniqueness assumption for WeakForm hold.
- **2** *Ellipticity:* $\exists \alpha_0 > 0$ such that $\alpha_0 \leq |\alpha(x)|$ for all x in Ω .
- Smoothness: The coefficient $\alpha : \Omega \mapsto \mathbb{C}$ is $C^2(\overline{\Omega})$.

Theorem (Stability and Approximation)

 $\exists h_0 > 0$ such that $\forall h \le h_0$, there is a unique solution u_h to FEM and

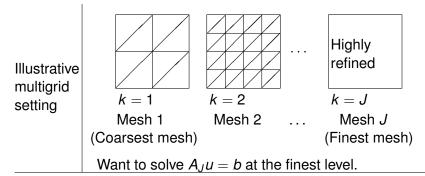
$$\|u_h\|_{H^1(\Omega)} \le C \|u\|_{H^1(\Omega)}, \|u-u_h\|_{H^1(\Omega)} \le C \inf_{w_h \in V_h} \|u-w_h\|_{H^1(\Omega)}.$$

<u>Proof</u> uses a "discrete" version of the Peetre-Tartar argument and the Schatz duality argument.

Jay Gopalakrishnan

UF FLORID

Multigrid algorithm



V-cycle: Set $MG_{k_0}(v, w) = A_{k_0}^{-1} w$. Let $k > k_0$ and $v, w \in V_k$. Assuming that $MG_{k-1}(\cdot, \cdot)$ has been defined, we define $MG_k(v, w)$ as follows:

Image: Set
$$x = v + R_k(w - A_k v).$$
(Pre-smoothing)Image: Set $y = x + MG_{k-1}(0, Q_{k-1}(w - A_k x)).$ (Coarse-grid correction)Image: Image: Set $MG_k(v, w) = y + R'_k(w - A_k y).$ (Post-smoothing)

Multigrid perturbation

- Convergence of V-cycle for many non-symmetric and indefinite applications have been proven: [Bank, 1981], [Mandel, 1986],
- Main technique of analysis is a perturbation argument:

 $\begin{array}{c} \text{Compare} \left\{ \begin{array}{l} \text{MG for non-symmetric} \\ \text{or indefinite problem} \end{array} \right\} \quad \text{with} \quad \left\{ \begin{array}{l} \text{MG for a nearby} \\ \text{SPD problem} \end{array} \right\}. \end{array}$

Previous papers handled "lower order" perturbative terms, e.g.:

Compare
$$(-\nabla \cdot A \nabla u + \underbrace{\gamma \cdot \nabla u + \eta u}_{\text{lower order}})$$
 with $(-\nabla \cdot A \nabla u)$.

But we have a perturbation in the highest order term:

Compare
$$(-\nabla \cdot \alpha \nabla u)$$
 with $(-\Delta u)$.

UF FLORIT

Bramble, Kwak & Pasciak, 1994

Convergence of multigrid

Although the perturbation is in the highest order term, we are able to prove a convergence theorem:

Theorem (Comparison of multigrid operators)

 $\exists C > 0, H > 0, s > 0$ such that whenever the coarsest meshsize in the algorithm, h_{k_0} , is less than H,

$$\|\mathbf{\mathcal{E}} - \hat{\mathcal{E}}\|_{H^1(\Omega)} \le C h_{k_0}^{s/2}.$$

• Here $\begin{cases} \boldsymbol{\mathcal{E}} = \text{Error reducer of the complex MG for } (\nabla \cdot \boldsymbol{\alpha} \nabla) \\ \hat{\boldsymbol{\mathcal{E}}} = \text{Error reducer of the standard MG for Laplacian } (-\Delta). \end{cases}$

• *C* and *H* are independent of the number of refinement levels.

Convergence of multigrid

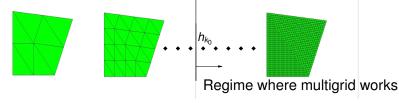
Although the perturbation is in the highest order term, we are able to prove a convergence theorem:

Theorem (Comparison of multigrid operators)

 $\exists C > 0, H > 0, s > 0$ such that whenever the coarsest meshsize in the algorithm, h_{k_0} , is less than H,

$$\|\mathbf{\mathcal{E}} - \hat{\mathcal{E}}\|_{H^1(\Omega)} \le C h_{k_0}^{s/2}.$$

 This implies that the MG for complex coefficient converges if the coarse meshsize is sufficiently small.



Return to Numerical Example A

In accordance with the theorem, we see the complex MG iteration counts approaching that of MG for Laplacian $(-\Delta)$ as the *coarse* mesh is made finer:

Numerical Example A

$$\alpha(\mathbf{x},\mathbf{y}) = \mathbf{1} + \hat{\imath}K\sin(\pi(2\mathbf{y}-\mathbf{1})/\mathbf{2}),$$

and Ω = unit square, meshed uniformly.

·				
$h_{\rm fine} = 1/256$	V-cycles	V-cycles	V-cycles	V-cycles
h _{coarse}	MG for $(-\Delta)$	(<i>K</i> = 1)	(<i>K</i> = 20)	(<i>K</i> = 100)
1/4	7	7	11	*
1/8	7	7	9	*
1/16	7	7	8	16
1/32	7	7	7	10
1/64	7	7	7	8
1/128	7	7	7	7

Return to Numerical Example B

UF FLORIDA

Why did one code diverge, while the other converged?

Numerical Example B

$$\alpha = (1 - r)^2 + r^4 \exp(4\hat{\imath}\theta)$$

and Ω = unit square, meshed uniformly.

,			
$h_{\text{coarse}} = 1/4$	Joe's code	Jay's code	
h _{fine}	diverges		Within
1/16	*	19	Gauss-
1/32	*	19	on nod
1/64	*	20	on nou
1/128	*	20	

Within the MG, Gauss-Seidel depends on node ordering.

- Jay's code is in Red-Black node ordering.
- Joe's code is in Lexicographical node ordering.

Return to Numerical Example B

UF FLORIDA

What happens if the coarse mesh is made finer?

Numerical Example B

$$\alpha = (1 - r)^2 + r^4 \exp(4\hat{\imath}\theta)$$

and $\Omega =$ unit square, meshed uniformly.

	Joe's code				
h _{fine}	$h_{\text{coarse}} = \frac{1}{4}$	•••	$h_{\text{coarse}} = \frac{1}{32}$	$h_{\text{coarse}} = \frac{1}{64}$	$h_{\text{coarse}} = \frac{1}{128}$
1/64	*	•••	*		
1/128	*	• • •	*	43	
1/256	*	• • •	*	7	7
1/512	*		*	7	7

Practically required coarse meshsize can depend on node ordering!

Conclusion

- We showed that multigrid for smooth elliptic complex coefficients converges at a mesh independent rate *if the coarse meshsize is sufficiently small.*
- This is similar to multigrid results for wave problems, where the folklore is that the "coarse grid must be small enough to resolve the wave".
- In contrast, for general complex coefficients, we have no idea how "small" the coarse meshsize needs to be.
- Our numerical experiments show that Gauss-Seidel smoother can be extremely sensitive to certain node orderings in the complex coefficient case.

UF FLORIC