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Stokes equations

−∆u+ grad p = f , on Ω,

divu = 0, on Ω,

u = 0, on ∂Ω.

Since −∆u = curl curlu− grad divu, the Stokes
equations can be rewritten using vorticity ω:

ω − curlu = 0, on Ω,

curlω + grad p = f , on Ω,

divu = 0, on Ω.
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Velocity-vorticity formulation

ω − curlu = 0 =⇒ (ω, τ )Ω − (u, curl τ )Ω= 0

curlω + grad p = f =⇒ (v, curlω)Ω = (f ,v)Ω

ω, τ ∈ W := H(curl )

u,v ∈ V̊ := {v ∈ H(div) : div v = 0, v · n|∂Ω=0}.

Find ω ∈ W and u ∈ V̊ satisfying

(ω, τ )Ω − (u, curl τ )Ω = 0, ∀τ ∈ W,

(v, curlω)Ω = (f ,v)Ω, ∀v ∈ V̊.
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Velocity-vorticity formulation

ω − curlu = 0 =⇒ (ω, τ )Ω − (u, curl τ )Ω= 0

curlω + grad p = f =⇒ (v, curlω)Ω = (f ,v)Ω

ωh ∈ Wh := Nédélec subspace of H(curl )

uh ∈ V̊h := divergence free subspace of Raviart-Thomas space

Find ωh ∈ Wh and uh ∈ V̊h satisfying

(ωh, τ )Ω − (uh, curl τ )Ω = 0, ∀τ ∈ Wh,

(v, curlωh)Ω = (f ,v)Ω, ∀v ∈ V̊h.
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Difficulties

Can one construct a basis for the divergence free space Vh?

−e1n1

e1

e2

e2n2

There is a constant function φ
on every triangle such that

φ · n1e1 = −1,

φ · n2e2 = 1,

φ · n3e3 = 0.

Problems:

These functions are not linearly independent.

They do not span Vh when Ω is not simply connected.
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Difficulties

Can one construct a basis for the divergence free space Vh?

∂ΩProblems:

These functions are not linearly independent.

They do not span Vh when Ω is not simply connected.
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Why incompressible elements?
Pressure disappears from the formulation.

Can impose physically relevant (but as yet non-standard)
boundary conditions:

u = g on Γ1,

n× ω = r

u · n = gn

}

on Γ2,

p = s

uᵀ = g
ᵀ

}

on Γ3.

When fluid velocity is coupled with convection problems,
some schemes are more stable if the numerical velocity is
exactly divergence free.
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Background
Stream function approach: Write divergence free finite
element functions as curl of functions in the Nédélec
space: [Girault & Raviart, 1986]

uh = curlψh.

Our approach: Since the inter-element continuity
constraints of div-free spaces makes it hard to work with,
remove the constraint from the spaces and impose it as an
equation of the method, i.e., hybridize.
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First hybridization

Mixed method: Find ωh ∈ Wh and uh ∈ V̊h satisfying

(ωh, τ )Ω − (uh, curl τ )Ω = 0, ∀τ ∈ Wh,

(v, curlωh)Ω = (f ,v)Ω, ∀v ∈ V̊h.

First hybridization: Break H(div)-continuity of uh and
reimpose it as an equation of the method. (Now uh,v ∈ Vh.)

(ωh, τ )Ω − (uh, curl τ )Ω = 0, ∀τ ∈ Wh,

(v, curlωh)Ω + ( [[v · n]], ph)E = (f ,v)Ω, ∀v ∈ Vh,

( [[uh · n]], q)E = 0, ∀q ∈ Ph.

Notations:

Vh = {v : v|K ∈ Pk(K)3, div(v|K) = 0, ∀ elements K}.

E = union of all mesh faces.
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First hybridization

Mixed method: Find ωh ∈ Wh and uh ∈ V̊h satisfying

(ωh, τ )Ω − (uh, curl τ )Ω = 0, ∀τ ∈ Wh,

(v, curlωh)Ω = (f ,v)Ω, ∀v ∈ V̊h.

First hybridization: Break H(div)-continuity of uh and
reimpose it as an equation of the method. (Now uh,v ∈ Vh.)

(ωh, τ )Ω − (uh, curl τ )Ω = 0, ∀τ ∈ Wh,

(v, curlωh)Ω + ( [[v · n]], ph)E = (f ,v)Ω, ∀v ∈ Vh,

( [[uh · n]], q)E = 0, ∀q ∈ Ph.

[[v · n]]
∣

∣

F
=

{

jump of v · n across F, for interior faces F,

v · n|F , for boundary faces F.

F
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First hybridization

Mixed method: Find ωh ∈ Wh and uh ∈ V̊h satisfying

(ωh, τ )Ω − (uh, curl τ )Ω = 0, ∀τ ∈ Wh,

(v, curlωh)Ω = (f ,v)Ω, ∀v ∈ V̊h.

First hybridization: Break H(div)-continuity of uh and
reimpose it as an equation of the method. (Now uh,v ∈ Vh.)

(ωh, τ )Ω − (uh, curl τ )Ω = 0, ∀τ ∈ Wh,

(v, curlωh)Ω + ( [[v · n]], ph)E = (f ,v)Ω, ∀v ∈ Vh,

( [[uh · n]], q)E = 0, ∀q ∈ Ph.

The Lagrange multiplier ph approximates pressure on mesh faces and lies in

Ph = {q : q = [[v · n]] for some v ∈ Vh}.
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First hybridization

Mixed method: Find ωh ∈ Wh and uh ∈ V̊h satisfying

(ωh, τ )Ω − (uh, curl τ )Ω = 0, ∀τ ∈ Wh,

(v, curlωh)Ω = (f ,v)Ω, ∀v ∈ V̊h.

First hybridization: Break H(div)-continuity of uh and
reimpose it as an equation of the method. (Now uh,v ∈ Vh.)

(ωh, τ )Ω − (uh, curl τ )Ω = 0, ∀τ ∈ Wh,

(v, curlωh)Ω + ( [[v · n]], ph)E = (f ,v)Ω, ∀v ∈ Vh,

( [[uh · n]], q)E = 0, ∀q ∈ Ph.

Advantage: Need only implement div-free polynomials within an element.

Disadvantage: Increased degrees of freedom (cannot eliminate any of the

variables easily). The next hybridization will remove this disadvantage. . .
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Second hybridization
Method after first hybridization: Find ωh ∈ Wh, uh ∈ Vh, and ph ∈ Ph:

(ωh, τ )Ω − (uh, curl τ )Ω = 0, ∀τ ∈ Wh,

(v, curlωh)Ω + (ph, [[v · n]]) � = (f ,v)Ω, ∀v ∈ Vh,

(q, [[uh · n]]) � = 0, ∀q ∈ Ph.

Second hybridization: Break H(curl )-continuity of ωh.

(ωh, τ )Ω − (uh, curl τ )Ω − (λh, [[n× τ ]])E = 0,

(v, curlωh)Ω + (ph, [[v · n]])E = (f ,v)Ω,

(q, [[uh · n]])E = 0,

(µh, [[n× ωh]])E = 0.

Now ωh is sought in

Wh = {w : w|K ∈ Nédélec space of degree k+1 on K, ∀ elements K}

and curl is applied element by element.
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Second hybridization
Method after first hybridization: Find ωh ∈ Wh, uh ∈ Vh, and ph ∈ Ph:

(ωh, τ )Ω − (uh, curl τ )Ω = 0, ∀τ ∈ Wh,

(v, curlωh)Ω + (ph, [[v · n]]) � = (f ,v)Ω, ∀v ∈ Vh,

(q, [[uh · n]]) � = 0, ∀q ∈ Ph.

Second hybridization: Break H(curl )-continuity of ωh.

(ωh, τ )Ω − (uh, curl τ )Ω − (λh, [[n× τ ]])E = 0,

(v, curlωh)Ω + (ph, [[v · n]])E = (f ,v)Ω,

(q, [[uh · n]])E = 0,

(µh, [[n× ωh]])E = 0.

[[n×w]]
∣

∣

F
=

{

jump of n×w across F, for interior faces F,

0, for boundary faces F.

F
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Second hybridization
Method after first hybridization: Find ωh ∈ Wh, uh ∈ Vh, and ph ∈ Ph:

(ωh, τ )Ω − (uh, curl τ )Ω = 0, ∀τ ∈ Wh,

(v, curlωh)Ω + (ph, [[v · n]]) � = (f ,v)Ω, ∀v ∈ Vh,

(q, [[uh · n]]) � = 0, ∀q ∈ Ph.

Second hybridization: Break H(curl )-continuity of ωh.

(ωh, τ )Ω − (uh, curl τ )Ω − (λh, [[n× τ ]])E = 0,

(v, curlωh)Ω + (ph, [[v · n]])E = (f ,v)Ω,

(q, [[uh · n]])E = 0,

(µh, [[n× ωh]])E = 0.

The second Lagrange multiplier λh approximates the tangential component of

velocity on mesh faces and lies in

Mh = {µ : µ = [[n× v]] for some v ∈ Wh}.
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Hybridized method

Method after both hybridizations: Find (ωh,uh, ph,λh) in
Wh × Vh × Ph × Mh satisfying

(ωh, τ )Ω − (uh, curl τ )Ω − (λh, [[n× τ ]])E = 0,

(v, curlωh)Ω + (ph, [[v · n]])E = (f ,v)Ω,

(q, [[uh · n]])E = 0,

(µ, [[n× ωh]])E = 0,

for all test functions (τ ,v, q,µ) in Wh × Vh × Ph × Mh.

PROPOSITION. There is a unique solution to this hybridized
method. Moreover, its velocity and vorticity approximations
coincide with that of the mixed method.

(Problem: Method has too many unknowns . . . )
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Lagrange multipliers

THEOREM. The Lagrange multipliers (λh, ph) ∈ Mh × Ph of
the hybridized mixed method form the unique solution of

a(λh,µ) + b(µ, ph) = `1(µ), ∀µ ∈ Mh and

b(λh, q) − c(ph, q) = `2(q), ∀q ∈ Ph.

Moreover, ωh and uh can be computed locally (element by
element) once λh and ph are determined from the above
system.

Thus we have a tangential velocity–pressure discretization on
the mesh faces for the Stokes problem. (This discretization
also yields interior velocity and vorticity locally).

Definitions of a, b, c . . . −→
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Lifting maps
Define the result of two local lifting maps

Mh 7→ Wh × Vh Ph 7→ Wh × Vh,

λ 7→ (w(λ), u(λ) ) p 7→ ( W(p), u(p) ),

element by element, as the solutions of the equations
{

(w(λ), τ )K − (u(λ), curl τ )K = (λ,n× τ )∂K ,

(v, curl w(λ))K = 0,
{

(W(p), τ )K − (u(p), curl τ )K = 0,

(v, curl W(p))K = −(p,n · v)∂K ,

for all τ ∈ Wh and v ∈ Vh. (Here K is any mesh element.)

Department of Mathematics [Slide 11 of 16]



Jay Gopalakrishnan

Bilinear forms
The forms are defined using the lifting maps:

a(λ,µ) = (w(λ),w(µ))Ω,

c(p, q) = (W(p), W(q))Ω,

b(µ, p) = −(u(µ), curl W(p))Ω

`1(µ) = (f ,u(µ))Ω

`2(q) = (f ,u(q))Ω.

Thus the forms can be computed locally.

In fact, assembly of matrices can proceed using standard finite
element techniques by computing local element matrices once
local bases for the Lagrange multiplier spaces are developed.
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Bases for multiplier spaces
Recall the definitions of the multiplier spaces:

Ph = {q : q = [[n · v]] for some v ∈ Vh}.

Mh = {µ : µ = [[n× v]] for some v ∈ Wh}.

THEOREM. The space Ph is characterized as follows:

Ph =

{

p : p|F ∈ Pk(F ) for all faces F and

∫

E

p ds = 0

}

.

Thus, in computations, we can represent functions of Ph by a
basis for the polynomial spaces Pk(F ) on each mesh face F .

To represent functions of Mh, we need a local basis for Mh. . .
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Wedge basis

We define a basis for Mh in the lowest order case using
“wedges” of a mesh. A wedge Λ is the union of the two faces
of a tetrahedron that share an edge.

Λ

KΛ

KL
KR

j

i
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Wedge basis

We define a basis for Mh in the lowest order case using
“wedges” of a mesh. A wedge Λ is the union of the two faces
of a tetrahedron that share an edge.

Λ

KΛ

KL
KR

j

i

φΛ =

{

βi ∇βj − βj ∇βi, on KΛ,

0, on all other elements.

(βi = barycentric coordinates on KΛ)

ψΛ = [[n× φΛ]].

The basis is constructed using ψΛ. But not all of them are
linearly independent.
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Wedge basis

We define a basis for Mh in the lowest order case using
“wedges” of a mesh. A wedge Λ is the union of the two faces
of a tetrahedron that share an edge.

Λ omit

THEOREM. Collect the mesh wedges, omitting one wedge per
edge, into a set Υ. Then the set B = {ψΛ : Λ ∈ Υ} is a
basis for Mh.
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Implementation
The Lagrange multiplier system gives the matrix equation

[

A Bt

B −C

] [

Λ

P

]

=

[

L1

L2

]

where Λ and P are the vectors of coefficients of λh and ph in
their local basis expansions. We can solve this equation by
solving two symmetric positive definite systems:

Solve for tangential velocity using the Schur complement

(Bt
C
−1

B + A) Λ = L1 + B
t
C
−1

L2.

Solve for pressure next:

C P = L2 − BΛ.
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Conclusion
Our method for Stokes flow gives

exactly divergence free numerical velocity,

H(curl )–conforming vorticity in 3D (or

H1(Ω)–conforming vorticity in 2D), and

pressure approximations (generally discontinuous).

The above approximations are obtained locally after
solving one global “tangential velocity-pressure” system.

This system is relatively small since it only couples
unknowns on mesh faces (good for high order elements).

The method has no topology dependence.

We have shown that it is possible to hybridize methods
that have edge (or vertex) degrees of freedom.
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