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Traces
Traces of Sobolev spaces are well studied.

Scalar trace: trc φ = φ
∣
∣
∂K

Normal trace: trcn φ = (φ · n)
∣
∣
∂K

,

Tangential trace: trcτ φ =
(
φ − (φ · n)n

)∣
∣
∂K

,

Ranges:

H1/2(∂K) = trc H1(K)

H−1/2(∂K) = trcn H(div)

X−1/2(∂K) = trcτ H(curl)

Trace maps are continuous:

H1(K)
trc

−−→ H1/2(∂K)

H(div)
trcn−−→ H−1/2(∂K)

H(curl)
trcτ−−→ H−1/2(∂K)
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Extensions

Extension operators are right inverses of trace maps.

Traditionally they appear in Sobolev space theory in
proving the surjectivity of trace maps. [Lions, 1972]

A polynomial extension operator is an extension with the
additional property that whenever the function on ∂K to
be extended is the trace of a polynomial on K , the
extended function is also a polynomial. (Many standard
extensions – e.g., [Lions]’s – are not polynomial extensions.)

Polynomial extensions are important in high order finite
elements (hp FEM).
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Background

1stpolynomial extension [Babuška & Suri,1987] for H1(triangle).

Used later by [Maday, 1989] (for interpolation), and
[Babuška, Craig, Mandel & Pitkäranta, 1991] (preconditioning).

Polynomial extension for H1(cube): [Ben Belgacem, 1994].

For H1(tetrahedron): [Muñoz-Sola, 1997].

Two-dimensional H(curl): [Demkowicz & Babuška, 2003],
[Ainsworth & Demkowicz, 2007] (Hardy integral operators).

Tetrahedral H(curl ) case? H(div) case?

We develop a new technique of constructing commuting
polynomial extensions for all first order Sobolev spaces
H1(K),H(curl ), and H(div), on a tetrahedron.
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H1(K) polynomial extension

Problem in H1(K): For any tetrahedron K , construct a map

E
grad
K : H1/2(∂K) 7→ H1(K)

with the following properties:

Extension property: trc E
grad
K u = u.

Continuity: E
grad
K is a continuous operator.

Polynomial preservation: (Pp = polynomials of degree ≤ p.)

u = trc φp for some φp ∈ Pp =⇒ E
grad
K u ∈ Pp.
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H(curl ) polynomial extension

Problem in H(curl): Construct an operator

E
curl
K : X−1/2(∂K) 7→ H(curl)

with the following properties:

Extension property: trcτ E
curl
K u = u.

Continuity: E
curl
K is a continuous operator.

Polynomial preservation: (Np = Nédélec space.)

u = trcτ φp for some φp ∈ Np =⇒ E
curl
K u ∈ Np.

u = trcτ φp for some φp ∈ Pp =⇒ E
curl
K u ∈ Pp.
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Commutative diagram

Goal: Construct polynomial extension operators satisfying

H1/2(∂K)
grad

τ−−−→ X−1/2(∂K)
curlτ−−→ H−1/2(∂K)



yE

grad
K



yE

curl
K



yE

div
K

H1(K)
grad
−−−→ H(curl)

curl
−−→ H(div)

and establish the continuity estimates.
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Overview of techniques
Primary extensions: Extensions from a plane.

Correction operators: to fix traces on multiple faces.

Commutativity: to move from left to right in the sequence

H1(K)
grad
−→ H(curl)

curl
−→ H(div)

div
−→ L2(K).

Regular decomposition of traces: to obtain negative norm
continuity from positive norm continuity.

Weighted norm estimates: for integral operators defining
the extensions.
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Extensions from a plane

E
gradu (x, y, z) =

2

z2

∫ x+z

x

∫ x+y+z−x′

y

u(x′, y′) dy′ dx′

= 2

∫ 1

0

∫ 1−s

0

u(x + sz, y + tz) dt ds.

(x, y, z)

0

x

y

z

a0

a1

a2

a3

Region of integration Extension mapped to a general tetrahedron K

F

K
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H(curl ) primary extension

How to define E
curl?

Motivation: We’d like to have commutativity

E
curl(gradτ u) = grad(Egradu) . . .

[

2grad

Z

1

0

Z

1−t

0

u(x + sz, y + tz) ds dt = 2

Z

1

0

Z

1−t

0

“

1 0

0 1

s t

”

grad
τ

u(x + sz, y + tz) ds dt

Hence, define

E
curlv(x, y, z) = 2

∫ 1

0

∫ 1−t

0





1 0

0 1

s t



 v(x+sz, y+tz) ds dt.
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Properties

The operator E
curl has the following properties:

grad(Egradu) = E
curl(gradτ u) for all smooth u.

E
curlv (x, y, z) = 2

∫ 1

0

∫ 1−t

0








1 0

0 1

s t








v(x + sz, y + tz) ds dt F

K
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Properties

The operator E
curl has the following properties:

grad(Egradu) = E
curl(gradτ u) for all smooth u.

If v is in Pp(F ), then its extension E
curlv is in Pp(K).

If v is in Np(F ), then its extension E
curlv is in Np(K).

E
curlv (x, y, z) = 2

∫ 1

0

∫ 1−t

0








1 0

0 1

s t








v(x + sz, y + tz) ds dt F

K
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Properties

The operator E
curl has the following properties:

grad(Egradu) = E
curl(gradτ u) for all smooth u.

If v is in Pp(F ), then its extension E
curlv is in Pp(K).

If v is in Np(F ), then its extension E
curlv is in Np(K).

(trcτ E
curlv)

∣
∣
F

= v, for all smooth v.

E
curlv (x, y, z) = 2

∫ 1

0

∫ 1−t

0








1 0

0 1

s t








v(x + sz, y + tz) ds dt F

K
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Properties

The operator E
curl has the following properties:

grad(Egradu) = E
curl(gradτ u) for all smooth u.

If v is in Pp(F ), then its extension E
curlv is in Pp(K).

If v is in Np(F ), then its extension E
curlv is in Np(K).

(trcτ E
curlv)

∣
∣
F

= v, for all smooth v.

E
curl is a continuous map from H1/2(F ) into H1(K).
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Properties

The operator E
curl has the following properties:

grad(Egradu) = E
curl(gradτ u) for all smooth u.

If v is in Pp(F ), then its extension E
curlv is in Pp(K).

If v is in Np(F ), then its extension E
curlv is in Np(K).

(trcτ E
curlv)

∣
∣
F

= v, for all smooth v.

E
curl is a continuous map from H1/2(F ) into H1(K).

This can be proved using positive norm estimates and Peetre’s K-functional.

But, we need continuity from the negative norm trace space . . .
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Trace space decompositions

PROPOSITION. X−1/2(∂K) admits the stable decomposition

X−1/2(∂K) = gradτ H1/2(∂K) + trcτ H1(K).
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Trace space decompositions

PROPOSITION. X−1/2(∂K) admits the stable decomposition

X−1/2(∂K) = gradτ H1/2(∂K) + trcτ H1(K).
︸ ︷︷ ︸

⊆ H1/2
on faces

Thus, even though X−1/2 ⊆ H−1/2 (negative norm),

analysis is possible using H1/2-norm (positive norm).

Restrictions of traces to faces are well defined:

X−1/2(F ) = gradτ H1/2(F ) + H1/2(F ).

It is also possible to similarly characterize traces of
H(curl ) functions that weakly vanish on some faces.
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Primary extension theorem

THEOREM. The primary extension E
curl satisfies the following:

1. Continuity: E
curl is a continuous map from X−1/2(F )

into H(curl ).

2. Commutativity: grad(Egradu) = E
curl(gradτ u) for all

u in H1/2(F ).

3. Extension property: The tangential trace of Ecurlv on F

equals v for all v in X−1/2(F ).

4. Polynomial preservation:

If v is in Pp(F ), then its extension E
curlv is in Pp(K).

If v is in Np(F ), then its extension E
curlv is in Np(K).
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Two face problem

F3

F1

F2
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Two face problem

F3

F1

U1 = E
gradu
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Two face problem

F3

F1

U1 = E
gradu

spoiled trace
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Two face problem

F3

F1

U1 = E
gradu

F1

F3

(u − U1)
∣
∣
F1

Note: This difference is zero on the
edge that F1 shares with F3.
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Two face problem

F3

F1

U1 = E
gradu

F1

F3

F1

F3

U2 = E̊
grad
1 (u − U1)

∣
∣
F1

Zero preserving 2-face extension: We

need an extension E̊
grad
1 v of v from F1

that has zero trace on F3. F3

F1

v
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Two face problem

F3

F1

U1 = E
gradu

F1

F3

F1

F3

U2 = E̊
grad
1 (u − U1)

∣
∣
F1

If we have such a E̊
grad
1 , then the combined extension process

U1 + U2

achieves correct traces on two faces F1 ∪ F3.
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Three face problem
The previous extension process that obtains correct traces on
F1 and F3 does not produce the right trace on F2.

F3

F1

F2

spoiled trace

U1 + U2
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Three face problem
The previous extension process that obtains correct traces on
F1 and F3 does not produce the right trace on F2.

F3

F1

F2

spoiled trace

U1 + U2

F3

F1

F2

(u − U1 − U2)|F2

Note: This difference is zero on the two
edges that F2 shares with F3 and F1.
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Three face problem
The previous extension process that obtains correct traces on
F1 and F3 does not produce the right trace on F2.

F3

F1

F2

spoiled trace

U1 + U2

F3

F1

F2 F2

U3 = E̊
grad
2 (u − U1 − U2)|F2

The extension
U1 + U2 + U3

obtains correct traces on 3 faces (F1 ∪ F2 ∪ F3), provided we

have the zero preserving 3-face extension E̊
grad
2 .
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Zero preserving extensions
The two-face, three-face, and finally a four-face problem, can
be solved, provided we have the required zero preserving
extensions.

Thus, the whole extension from ∂K can be constructed
provided we have the following zero preserving extensions.

0

E̊
grad
1

0
0

E̊
grad
2

0
0 0

E̊
grad
3

We will only discuss the construction of the first operator E̊
grad
1 .
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The extension E̊
grad
1

E̊
grad
1 v = E

gradv − E
grad
corr v

v

v = 0

F3

F1

First apply E
grad from F3.

Then, we must fix face F1,
as E

gradv 6= 0 on F1.

(x + z, y, 0)

x y

z

(0, y, x + z)

(x, y, z)

0

E
gr

ad
u

in
te

rp
ol

at
e

E
grad
corr v(x, y, z)

=
z

x + z
E

gradv(0, y, x + z)
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The extension E̊
grad
1

E̊
grad
1 v = E

gradv − E
grad
corr v

Whenever v is a polyno-

mial, the correction E
grad
corr v

is also a polynomial.

The denominator x + z
cancels out because
x divides v(x, y).

(x + z, y, 0)

x y

z

(0, y, x + z)

(x, y, z)

0

E
gr

ad
u

in
te

rp
ol

at
e

E
grad
corr v(x, y, z)

=
z

x + z
E

gradv(0, y, x + z)
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The H(curl ) correction
Construction motivated by commutativity.

Recall: E
grad
corr v(x, y, z) =

z

x + z
E

gradv(0, y, x + z)

Want Ecurl
corr satisfying: grad(Egrad

corr u) = E
curl
corr(gradτ u).






=
z

x + z
gradE

gradu(0, y, x + z) + E
gradu(0, y, x + z)grad

(
z

x + z

)

= . . . (technical) . . . = expression depending only on gradτ u.

E
curl
corrv

def

=
2z

x + z

∫ 1

0

∫ 1−t

0

(
s t
0 1
s t

)

v(s(x + z), y + t(x + z)) ds dt

+
1

x + z

(
−z
0
x

)∫ 1

0

∫ 1−t

0

(
1−s
−t

)
·v(s(x + z), y + t(x + z)) ds dt.
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Main result
THEOREM. By the above described techniques we can

construct Ecurl
K : X−1/2(∂K) 7→ H(curl ) satisfying:

1. Continuity: E
curl
K is continuous.

2. Commutativity: grad(Egrad
K u) = E

curl
K (gradτ u) for all

u in H1/2(∂K).

3. Extension property: The tangential trace trcτ(E
curl
K v)

coincides with v for all v in X−1/2.

4. Full polynomial preservation: If v is the tangential trace of

a function in Pp(K), then E
curl
K v is in Pp(K).

5. Nédélec polynomial preservation: If v is the tangential

trace of a function in Np(K), then E
curl
K v is in Np(K).
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