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Traces

Traces of Sobolev spaces are well studied.

Scalar trace: trc ¢ = gb|aK

Normal trace:  trc, ¢ = (¢ - n) |8K,

Tangential trace: tre, @ = (qb — (¢ - n)n) |8K,

Ranges: Trace maps are continuous:
H'P(OK) =tre H(K) | HY(K) 2 HY2(9K)

H Y2(0K) = trc,, H(div) H (div) LN H12(0K)

X POK) = tre, H(curl)| H(curl) 2 H-12(9K)
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Extensions b

# Extension operators are right inverses of trace maps.

# Traditionally they appear in Sobolev space theory in
proving the surjectivity of trace maps. | |

#® A polynomial extension operator is an extension with the
additional property that whenever the function on 0K to
be extended is the trace of a polynomial on /£, the
extended function is also a polynomial. (Many standard
extensions — e.g., [Lions]'s — are not polynomial extensions.)

#® Polynomial extensions are important in high order finite
elements (hp FEM).
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Background

» 1%polynomial extension [sabuska & suri1987] for H! (triangle).

® Used later by [vaday, 1989] (for interpolation), and
[Babuska, Craig, Mandel & Pitkaranta, 1991] (preconditioning).

® Polynomial extension for H!(cube): [Ben Belgacem, 1994].
® For H'(tetrahedron): [Mufoz-Sola, 1997].

® Two-dimensional H (curl): [Demkowicz & Babuska, 2002],
[Ainsworth & Demkowicz, 2007] (Hardy integral operators).

» Tetrahedral H (curl ) case? H (div) case?

We develop a new technique of constructing commuting
polynomial extensions for all first order Sobolev spaces

HY(K), H(curl), and H(div), on a tetrahedron.
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H'(K) polynomial extension

e VERSITY OF
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Problem in (K ): For any tetrahedron K, construct a map
gt HY2(9K) — HY(K)
with the following properties:

# Extension property: trc ccﬁgadu = Uu.

o d . .
& Continuity: 8%(1:& IS a continuous operator.

#® Polynomial preservation: (P, = polynomials of degree < p.)

u = trc ¢, for some ¢, € P, = &%y e P,
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H (curl) polynomial extension ““jaess

Problem in H (curl): Construct an operator

gl . X-Y2(9K) — H(curl)
with the following properties:

® Extension property: trc, 8%ﬂu — u.

» Continuity: €™ is a continuous operator.

#® Polynomial preservation: (IN, = Nédeélec space.)

u = trc; ¢, forsome ¢, € N, — gy € N,,.

u = trc; ¢, forsome ¢, € B, — E%rlu c B,

Jay Gopalakrishnan Department of Mathematics [Slide 6 of 19]



Commutative diagram

Goal: Construct polynomial extension operators satisfying

grad
-

H'Y2(0K) X 20K) X H12(0K)

HY(K) grad, (curl) CUEN H (div)

and establish the continuity estimates.
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Overview of techniques .
¥ FLORIDA

#® Primary extensions: Extensions from a plane.
#® Correction operators: to fix traces on multiple faces.

» Commutativity: to move from left to right in the sequence

HY(K) &2 H(curl) % H(div) &% 12(K).

® Regular decomposition of traces: to obtain negative norm
continuity from positive norm continuity.

#® Weighted norm estimates: for integral operators defining
the extensions.
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Extensions from a plane

grad _ = x+y+z—x’ / / / /

13
= // uw(x + sz,y +tz) dt ds.

as
z
(z,y,2)
0 Y
ay
T
Region of integration Extension mapped to a general tetrahedron /K
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How to define &'
Motivation: We’d like to have commutativity

(WU) — grad(E8™y) ...

i 1 t
Qgrad// u(x + sz,y + tz) dsdt—Q// gradTu(:C+sz,y+tz) ds dt

Hence, define

C/JOH
H-r—*O

1 p1—tf1 0
Scuﬂfv(x,y,z):2// 0 1| v(x+sz,y+tz) dsdt.
0J0
s 1
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Properties

The operator ™! has the following properties:

o grad(&#2dy) = €™ (grad. u) for all smooth .

a0 %
ey (z,y,2) = 2/ / 0 1]|v(r+sz,y+tz)dsdt
0

sy
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Properties

The operator £°*! has the following properties:
o grad(&¥2dy) = £ (grad. u) for all smooth w.

® Ifvisin P,(F), then its extension Ev is in P,(K).
if v isin IN,(F), then its extension & v is in N,(K).

a0 A;
ey (z,y, 2) = / / 0 1|v(x+sz,y+tz)dsdt
0J0

\s 1)
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Properties

The operator £°*! has the following properties:
o grad(&¥2dy) = £ (grad. u) for all smooth w.

® Ifvisin P,(F), then its extension Ev is in P,(K).
if v isin IN,(F), then its extension & v is in N,(K).
)

» (tre, £ | = v, for all smooth v.

F

(1 0)

1 pl—t
ey (z,y, 2) = 2/ / 0 1|v(x+sz,y+tz)dsdt £
0

sy
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Properties

& FLORIDA

The operator £°*! has the following properties:
o grad(&¥2dy) = £ (grad. u) for all smooth w.

» Ifvisin P,(F), then its extension Ev is in P,(K).
if v isin IN,(F), then its extension & v is in N,(K).
)

» (tre, £ | = v, for all smooth v.

F

o E£"is a continuous map from HY?(F) into H'(K).
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Properties

® FLORIDA

The operator £°*! has the following properties:
o grad(&¥2dy) = £ (grad. u) for all smooth w.

» Ifvisin P,(F), then its extension Ev is in P,(K).
if v isin IN,(F), then its extension & v is in N,(K).
)

» (tre, £ | = v, for all smooth v.

F

] . : :
o E£"is a continuous map from HY?(F) into H* (K
S —
m;we norm estimates and Peetre’s K -functional.

But, we need continuity from the negative norm trace space ...
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ProposiTion. X ~Y2(9K) admits the stable decomposition

X Y2(0K) = grad. HY/?(0K) + tre. HY(K).
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Trace space decompositions

ProposiTion. X ~Y2(9K) admits the stable decomposition

X Y2(0K) = grad. HY*(0K) + tre. HY(K).

N ——
C H1/2 on faces

® Thus, even though X 1/2 C H /2 negative norm),
analysis Is possible using HY2-norm (positive norm).

® Restrictions of traces to faces are well defined:
X 12(F) = grad. H/*(F) + HY*(F).

® Itis also possible to similarly characterize traces of
H (curl) functions that weakly vanish on some faces.
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Primary extension theorem

% U
¥ FLORIDA
Nulgss

THEOREM. The primary extension &' satisfies the following:

1. Continuity: £ is a continuous map from X ~1/2(F)
into H (curl ).

2. Commutativity: grad(€#2dy) = £ (grad,, u) for all
win HY2(F).

3. Extension property: The tangential trace of E“*'v on F
equals v for all v in X ~/2(F).

4. Polynomial preservation:
if v isin P,(F), then its extension £™v is in P,(K).

If v isin IN,(F), then its extension & is in N,(K).
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Two face problem
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Two face problem
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Two face problem

spoiled trace
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F3

U1 — 8gradu (U — U1)|F1

Note: This difference is zero on the
edge that F shares with F3.
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Two face problem

F3

U2 — é%md(u — Ul)

Zero preserving 2-face extension: We

 agrad
need an extension £ v of v from F)
that has zero trace on Fj.

Jay Gopalakrishnan Department of Mathematics [Slide 14 of 19]



Two face problem

U, + U,

achieves correct traces on two faces F7 U F3.
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Three face problem

The previous extension process that obtains correct traces on
F7 and F3 does not produce the right trace on F5.

spoiled trace

\/

Fs

)
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Three face problem v

The previous extension process that obtains correct traces on
F7 and F3 does not produce the right trace on F5.

spoiled trace

Uy + Us (uw— Uy — Us)|R,

Note: This difference is zero on the two
edges that F5 shares with F3 and F7.
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Three face problem

The previous extension process that obtains correct traces on
F7 and F3 does not produce the right trace on F5.

spoiled trace

\/

Fs

5

U1 UQ Ug = égrad(u — U1 — U2)|F2

The extension

Ui + Uy + Us

obtains correct traces on 3 faces (F7 U F5 U F3), provided we
have the zero preserving 3-face extension 8§rad.
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Zero preserving extensions

The two-face, three-face, and finally a four-face problem, can

be solved, provided we have the required zero preserving
extensions.

Thus, the whole extension from 0K can be constructed
provided we have the following zero preserving extensions.

’\
! ! El T
] ] ; i ~.
! ! ! ’
! ! !
f f f
i i i
i i i
' r({ r({
¢ & e i = ! S K
p - G/- .'// G/- a/ G/-'
i I "”K"'-
s s i e

o grad B grad o grad
c 1 c 2 c 3

We will only discuss the construction of the first operator €%rad.
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The extension £5™

grad, = __ grad,, _ cgrad
81 v=2¢C U gcorrv

8gradv 7 .
First apply 84 from F3. corr (Z’y’ )

— 8gradv 0 T+ 2
Then, we must fix face [, T+ z 0,9, )

as €8y £ 0 on F).
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The extension €8¢

cgrad _ cgrad,,  cgrad
cy v = &% — E& v

Whenever v is a polyno-

mial, the correction €&
IS also a polynomial.

The denominator x + 2 —
cancels out because srad
x divides v(x, y). Eoorr (2, Y, 2)

7
_ e grad 0
P v(0,y, T + 2)
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Construction motivated by commutativity.

Recall: ggrady, (x vy, 2) = - e&rady (0, y, z + 2)

corr T _|_ >

Want ¢! satisfying: —grad(£82dy) = 5! (grad. u).
( e grad £84(0, y, x + z) + £8(0, y, z + 2) grad (x i z)

= ... (technical) ... = expression depending only on grad. _ u.

9, [flri-t,
Elly = // (0 )v(s(x+z),y+t(x+z)) ds dt
0J0

_:1:+z

| : (_o) /01/0175(15) w(s(z+ 2),y +tlx + 2)) dsdt.

xr+z\z
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Main result

THEOREM. By the above described techniques we can
construct ' : X V2(9K) — H (curl) satisfying:

1.

2.

Jay Gopalakrishnan

Continuity: £ is continuous.

Commutativity: grad(£%°%u) = £ (grad,, u) for al
win H'2(0K).

Extension property: The tangential trace trCT(chﬂ )

coincides with v for all v in X /2,

Full polynomial preservation: If v Is the tangential trace of
a function in P,(K), then £ v is in P,(K).

Nédélec polynomial preservation: If v is the tangential
trace of a function in IN,,(K), then £ v is in IN,, (K).
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