

Polynomial extensions in H(curl)

Jay Gopalakrishnan

University of Florida

Finite Element Circus, March 2008, Baton Rouge

Collaborators: Leszek Demkowicz

UT Austin

Joachim Schöberl

RWTH Aachen

Jay Gopalakrishnan Department of Mathematics [Slide 1 of 19]

Traces

Traces of Sobolev spaces are well studied.

Scalar trace:
$$\operatorname{trc} \phi = \phi|_{\partial K}$$

Normal trace:
$$\operatorname{trc}_n \boldsymbol{\phi} = (\boldsymbol{\phi} \cdot \boldsymbol{n})\big|_{\partial K}$$

Tangential trace:
$$\operatorname{trc}_{ au} oldsymbol{\phi} = ig(oldsymbol{\phi} - (oldsymbol{\phi} \cdot oldsymbol{n})ig|_{\partial K},$$

Ranges:

$$H^{1/2}(\partial K) = \operatorname{trc} H^1(K)$$
 $H^1(K) \xrightarrow{\operatorname{trc}} H^{1/2}(\partial K)$
 $H^{-1/2}(\partial K) = \operatorname{trc}_n \boldsymbol{H}(\operatorname{div})$ $\boldsymbol{H}(\operatorname{div}) \xrightarrow{\operatorname{trc}_n} H^{-1/2}(\partial K)$
 $\boldsymbol{X}^{-1/2}(\partial K) = \operatorname{trc}_{\tau} \boldsymbol{H}(\operatorname{curl})$ $\boldsymbol{H}(\operatorname{curl}) \xrightarrow{\operatorname{trc}_{\tau}} H^{-1/2}(\partial K)$

Trace maps are continuous:

$$H^1(K) \xrightarrow{\operatorname{trc}} H^{1/2}(\partial K)$$
 $oldsymbol{H}(\operatorname{div}) \xrightarrow{\operatorname{trc}_n} H^{-1/2}(\partial K)$
 $oldsymbol{H}(\operatorname{\mathbf{curl}}) \xrightarrow{\operatorname{trc}_{ au}} H^{-1/2}(\partial K)$

Extensions

- Extension operators are right inverses of trace maps.
- Traditionally they appear in Sobolev space theory in proving the surjectivity of trace maps.
 [Lions, 1972]
- A *polynomial extension* operator is an extension with the additional property that whenever the function on ∂K to be extended is the trace of a polynomial on K, the extended function is also a polynomial. (Many standard extensions e.g., [Lions]'s are not polynomial extensions.)
- Polynomial extensions are important in high order finite elements (hp FEM).

Jay Gopalakrishnan Department of Mathematics [Slide 3 of 19]

Background

- ullet 1st polynomial extension [Babuška & Suri,1987] for H^1 (triangle).
- Used later by [Maday, 1989] (for interpolation), and [Babuška, Craig, Mandel & Pitkäranta, 1991] (preconditioning).
- ullet Polynomial extension for $H^1({\rm cube})$: [Ben Belgacem, 1994].
- \blacksquare For $H^1(\text{tetrahedron})$: [Muñoz-Sola, 1997].
- Two-dimensional $H(\operatorname{curl})$: [Demkowicz & Babuška, 2003], [Ainsworth & Demkowicz, 2007] (Hardy integral operators).
- ullet Tetrahedral $oldsymbol{H}(\mathbf{curl})$ case? $oldsymbol{H}(\mathrm{div})$ case?

We develop a new technique of constructing *commuting* polynomial extensions for all first order Sobolev spaces $H^1(K)$, $\boldsymbol{H}(\boldsymbol{\operatorname{curl}})$, and $\boldsymbol{H}(\operatorname{div})$, on a tetrahedron.

$H^1(K)$ polynomial extension

Problem in $H^1(K)$: For any tetrahedron K, construct a map

$$\mathcal{E}_K^{\mathrm{grad}}: H^{1/2}(\partial K) \mapsto H^1(K)$$

with the following properties:

- Extension property: $\operatorname{trc} \mathcal{E}_K^{\operatorname{grad}} u = u$.
- Continuity: $\mathcal{E}_K^{\mathrm{grad}}$ is a continuous operator.
- **▶** Polynomial preservation: $(P_p = \text{polynomials of degree} \le p.)$

$$u = \operatorname{trc} \phi_p \text{ for some } \phi_p \in P_p \implies \mathcal{E}_K^{\operatorname{grad}} u \in P_p.$$

H(curl) polynomial extension

Problem in H(curl): Construct an operator

$$\mathcal{E}_K^{\mathrm{curl}}: \boldsymbol{X}^{-1/2}(\partial K) \mapsto \boldsymbol{H}(\mathbf{curl})$$

with the following properties:

- ullet Extension property: $\operatorname{trc}_{ au} oldsymbol{\mathcal{E}}_K^{\operatorname{curl}} oldsymbol{u} = oldsymbol{u}.$
- Continuity: ${f \mathcal E}_K^{
 m curl}$ is a continuous operator.
- ullet Polynomial preservation: ($N_p = ext{N\'ed\'elec space.})$

$$egin{aligned} oldsymbol{u} &= \operatorname{trc}_{ au} oldsymbol{\phi}_p ext{ for some } oldsymbol{\phi}_p \in oldsymbol{N}_p & \Longrightarrow & oldsymbol{\mathcal{E}}_K^{\operatorname{curl}} oldsymbol{u} \in oldsymbol{N}_p. \ oldsymbol{u} &= \operatorname{trc}_{ au} oldsymbol{\phi}_p ext{ for some } oldsymbol{\phi}_p \in oldsymbol{P}_p & \Longrightarrow & oldsymbol{\mathcal{E}}_K^{\operatorname{curl}} oldsymbol{u} \in oldsymbol{P}_p. \end{aligned}$$

Commutative diagram

Goal: Construct polynomial extension operators satisfying

$$H^{1/2}(\partial K) \xrightarrow{\operatorname{\mathbf{grad}}_{\tau}} \mathbf{X}^{-1/2}(\partial K) \xrightarrow{\operatorname{curl}_{\tau}} H^{-1/2}(\partial K)$$

$$\downarrow \mathcal{E}_{K}^{\operatorname{grad}} \qquad \qquad \downarrow \mathcal{E}_{K}^{\operatorname{div}} \qquad \qquad \downarrow \mathcal{E}_{K}^{\operatorname{div}}$$
 $H^{1}(K) \xrightarrow{\operatorname{\mathbf{grad}}} \mathbf{H}(\operatorname{\mathbf{curl}}) \xrightarrow{\operatorname{\mathbf{curl}}} \mathbf{H}(\operatorname{\mathrm{div}})$

and establish the continuity estimates.

Overview of techniques

- Primary extensions: Extensions from a plane.
- Correction operators: to fix traces on multiple faces.
- Commutativity: to move from left to right in the sequence

$$H^1(K) \stackrel{\mathbf{grad}}{\longrightarrow} H(\mathbf{curl}) \stackrel{\mathbf{curl}}{\longrightarrow} H(\mathrm{div}) \stackrel{\mathrm{div}}{\longrightarrow} L^2(K).$$

- Regular decomposition of traces: to obtain negative norm continuity from positive norm continuity.
- Weighted norm estimates: for integral operators defining the extensions.

Extensions from a plane

$$\mathcal{E}^{\text{grad}}u(x,y,z) = \frac{2}{z^2} \int_x^{x+z} \int_y^{x+y+z-x'} u(x',y') \, dy' \, dx'$$
$$= 2 \int_0^1 \int_0^{1-s} u(x+sz,y+tz) \, dt \, ds.$$

Extension mapped to a general tetrahedron K

Department of Mathematics [Slide 9 of 19]

H(curl) primary extension

How to define $\mathcal{E}^{\mathrm{curl}}$?

Motivation: We'd like to have commutativity

$$\mathcal{E}^{\operatorname{curl}}(\operatorname{\mathbf{grad}}_{\tau} u) = \operatorname{\mathbf{grad}}(\mathcal{E}^{\operatorname{\mathbf{grad}}} u) \dots$$

$$2\operatorname{\mathbf{grad}} \int_{0}^{1} \int_{0}^{1-t} u(x+sz, y+tz) \, ds \, dt = 2\int_{0}^{1} \int_{0}^{1-t} \binom{1}{0} \frac{0}{s} \frac{1}{t} \operatorname{\mathbf{grad}}_{\tau} u(x+sz, y+tz) \, ds \, dt$$

Hence, define

$$\mathbf{\mathcal{E}}^{\text{curl}}\mathbf{v}(x,y,z) = 2\int_0^1 \int_0^{1-t} \begin{pmatrix} 1 & 0 \\ 0 & 1 \\ s & t \end{pmatrix} \mathbf{v}(x+sz,y+tz) \ ds \ dt.$$

Jay Gopalakrishnan Department of Mathematics [Slide 10 of 19]

The operator $\mathcal{E}^{\mathrm{curl}}$ has the following properties:

• $\operatorname{grad}(\mathcal{E}^{\operatorname{grad}}u) = \mathcal{E}^{\operatorname{curl}}(\operatorname{grad}_{\tau}u)$ for all smooth u.

$$\mathcal{E}^{\text{curl}} \boldsymbol{v} (x, y, z) = 2 \int_0^1 \int_0^{1-t} \begin{pmatrix} 1 & 0 \\ 0 & 1 \\ s & t \end{pmatrix} \boldsymbol{v}(x + sz, y + tz) \, ds \, dt$$

The operator ${f \mathcal{E}}^{curl}$ has the following properties:

- $\operatorname{grad}(\mathcal{E}^{\operatorname{grad}}u) = \mathcal{E}^{\operatorname{curl}}(\operatorname{grad}_{\tau}u)$ for all smooth u.
- If ${\boldsymbol v}$ is in ${\boldsymbol P}_p(F)$, then its extension ${\boldsymbol {\mathcal E}}^{{\rm curl}}{\boldsymbol v}$ is in ${\boldsymbol P}_p(K)$. If ${\boldsymbol v}$ is in ${\boldsymbol N}_p(F)$, then its extension ${\boldsymbol {\mathcal E}}^{{\rm curl}}{\boldsymbol v}$ is in ${\boldsymbol N}_p(K)$.

$$\mathcal{E}^{\text{curl}} \mathbf{v} (x, y, z) = 2 \int_0^1 \int_0^{1-t} \begin{pmatrix} 1 & 0 \\ 0 & 1 \\ s & t \end{pmatrix} \mathbf{v}(x + sz, y + tz) \, ds \, dt$$

The operator ${f \mathcal{E}}^{curl}$ has the following properties:

- $\operatorname{grad}(\mathcal{E}^{\operatorname{grad}}u) = \mathcal{E}^{\operatorname{curl}}(\operatorname{grad}_{\tau}u)$ for all smooth u.
- If ${\boldsymbol v}$ is in ${\boldsymbol P}_p(F)$, then its extension ${\boldsymbol {\mathcal E}}^{{\rm curl}}{\boldsymbol v}$ is in ${\boldsymbol P}_p(K)$. If ${\boldsymbol v}$ is in ${\boldsymbol N}_p(F)$, then its extension ${\boldsymbol {\mathcal E}}^{{\rm curl}}{\boldsymbol v}$ is in ${\boldsymbol N}_p(K)$.
- $(\operatorname{trc}_{\tau} \boldsymbol{\mathcal{E}}^{\operatorname{curl}} \boldsymbol{v})|_{F} = \boldsymbol{v}$, for all smooth \boldsymbol{v} .

$$\mathcal{E}^{\text{curl}}\mathbf{v}(x,y,z) = 2\int_0^1 \int_0^{1-t} \begin{pmatrix} 1 & 0 \\ 0 & 1 \\ s & t \end{pmatrix} \mathbf{v}(x+sz,y+tz) \, ds \, dt$$

The operator ${f \mathcal{E}}^{
m curl}$ has the following properties:

- $\operatorname{grad}(\mathcal{E}^{\operatorname{grad}}u) = \mathcal{E}^{\operatorname{curl}}(\operatorname{grad}_{\tau}u)$ for all smooth u.
- If ${\boldsymbol v}$ is in ${\boldsymbol P}_p(F)$, then its extension ${\boldsymbol {\mathcal E}}^{{\rm curl}}{\boldsymbol v}$ is in ${\boldsymbol P}_p(K)$. If ${\boldsymbol v}$ is in ${\boldsymbol N}_p(F)$, then its extension ${\boldsymbol {\mathcal E}}^{{\rm curl}}{\boldsymbol v}$ is in ${\boldsymbol N}_p(K)$.
- $(\operatorname{trc}_{\tau} \boldsymbol{\mathcal{E}}^{\operatorname{curl}} \boldsymbol{v}) \big|_{F} = \boldsymbol{v}$, for all smooth \boldsymbol{v} .
- $\mathcal{E}^{\mathrm{curl}}$ is a continuous map from $\mathbf{H}^{1/2}(F)$ into $\mathbf{H}^1(K)$.

Jay Gopalakrishnan Department of Mathematics [Slide 11 of 19]

The operator ${f \mathcal{E}}^{{
m curl}}$ has the following properties:

- ullet $\operatorname{grad}(\mathcal{E}^{\operatorname{grad}}u)=\mathbf{\mathcal{E}}^{\operatorname{curl}}(\operatorname{grad}_{\tau}u)$ for all smooth u.
- If ${\boldsymbol v}$ is in ${\boldsymbol P}_p(F)$, then its extension ${\boldsymbol {\mathcal E}}^{{\rm curl}}{\boldsymbol v}$ is in ${\boldsymbol P}_p(K)$. If ${\boldsymbol v}$ is in ${\boldsymbol N}_p(F)$, then its extension ${\boldsymbol {\mathcal E}}^{{\rm curl}}{\boldsymbol v}$ is in ${\boldsymbol N}_p(K)$.
- $(\operatorname{trc}_{\tau} \boldsymbol{\mathcal{E}}^{\operatorname{curl}} \boldsymbol{v}) \big|_{F} = \boldsymbol{v}$, for all smooth \boldsymbol{v} .
- $m{\mathcal{E}}^{\mathrm{curl}}$ is a continuous map from $m{H}^{1/2}(F)$ into $m{H}^1(K)$

 \rightarrow This can be proved using positive norm estimates and Peetre's K-functional.

But, we need continuity from the negative norm trace space ...

Trace space decompositions

PROPOSITION. $oldsymbol{X}^{-1/2}(\partial K)$ admits the stable decomposition

$$\boldsymbol{X}^{-1/2}(\partial K) = \operatorname{\mathbf{grad}}_{\tau} H^{1/2}(\partial K) + \operatorname{trc}_{\tau} \boldsymbol{H}^{1}(K).$$

Jay Gopalakrishnan Department of Mathematics [Slide 12 of 19]

Trace space decompositions

PROPOSITION. $oldsymbol{X}^{-1/2}(\partial K)$ admits the stable decomposition

$$m{X}^{-1/2}(\partial K) = \mathbf{grad}_{ au} \, H^{1/2}(\partial K) + \underbrace{\operatorname{trc}_{ au} \, m{H}^1(K)}_{\subseteq m{H}^{1/2} \, \text{on faces}}$$

- Thus, even though $X^{-1/2}\subseteq H^{-1/2}$ (negative norm), analysis is possible using $H^{1/2}$ -norm (positive norm).
- Restrictions of traces to faces are well defined:

$$X^{-1/2}(F) = \operatorname{grad}_{\tau} H^{1/2}(F) + H^{1/2}(F).$$

• It is also possible to similarly characterize traces of $H(\mathbf{curl})$ functions that weakly vanish on some faces.

Jay Gopalakrishnan Department of Mathematics [Slide 12 of 19]

Primary extension theorem

THEOREM. The primary extension $\mathcal{E}^{\mathrm{curl}}$ satisfies the following:

- 1. Continuity: $\mathbf{\mathcal{E}}^{\mathrm{curl}}$ is a continuous map from $\mathbf{X}^{-1/2}(F)$ into $\mathbf{H}(\mathbf{curl})$.
- 2. Commutativity: $\operatorname{grad}(\mathcal{E}^{\operatorname{grad}}u) = \mathcal{E}^{\operatorname{curl}}(\operatorname{grad}_{\tau}u)$ for all u in $H^{1/2}(F)$.
- 3. Extension property: The tangential trace of $\mathbf{E}^{\mathrm{curl}} \mathbf{v}$ on F equals \mathbf{v} for all \mathbf{v} in $\mathbf{X}^{-1/2}(F)$.
- 4. Polynomial preservation:

If ${\boldsymbol v}$ is in ${\boldsymbol P}_p(F)$, then its extension ${\boldsymbol {\mathcal E}}^{{\rm curl}}{\boldsymbol v}$ is in ${\boldsymbol P}_p(K)$. If ${\boldsymbol v}$ is in ${\boldsymbol N}_p(F)$, then its extension ${\boldsymbol {\mathcal E}}^{{\rm curl}}{\boldsymbol v}$ is in ${\boldsymbol N}_p(K)$.

Jay Gopalakrishnan Department of Mathematics [Slide 13 of 19]

$$U_1 = \mathcal{E}^{\mathrm{grad}} u$$

$$U_1 = \mathcal{E}^{\mathrm{grad}} u$$

Note: This difference is zero on the edge that F_1 shares with F_3 .

$$U_1 = \mathcal{E}^{\mathrm{grad}} u$$

$$U_2 = \mathring{\mathcal{E}}_1^{\mathrm{grad}}(u - U_1)\big|_{F_1}$$

Zero preserving 2-face extension: We need an extension $\mathring{\mathcal{E}}_1^{\mathrm{grad}}v$ of v from F_1 that has zero trace on F_3 .

$$U_1 = \mathcal{E}^{\mathrm{grad}} u$$

$$U_2 = \mathring{\mathcal{E}}_1^{\mathrm{grad}}(u - U_1)\big|_{F_1}$$

If we have such a $\mathring{\mathcal{E}}_1^{\mathrm{grad}}$, then the combined extension process

$$U_1 + U_2 \longleftarrow$$

achieves correct traces on **two faces** $F_1 \cup F_3$.

Three face problem

The previous extension process that obtains correct traces on F_1 and F_3 does not produce the right trace on F_2 .

$$U_1 + U_2$$

Three face problem

The previous extension process that obtains correct traces on F_1 and F_3 does not produce the right trace on F_2 .

Note: This difference is zero on the two edges that F_2 shares with F_3 and F_1 .

Jay Gopalakrishnan Department of Mathematics [Slide 15 of 19]

Three face problem

The previous extension process that obtains correct traces on F_1 and F_3 does not produce the right trace on F_2 .

$$U_1 + U_2$$

$$U_3 = \mathcal{E}_2^{\text{grad}}(u - U_1 - U_2)|_{F_2}$$

The extension

$$U_1 + U_2 + U_3$$

obtains correct traces on 3 faces ($F_1 \cup F_2 \cup F_3$), provided we have the zero preserving 3-face extension $\mathring{\mathcal{E}}_2^{\mathrm{grad}}$.

Zero preserving extensions

The two-face, three-face, and finally a four-face problem, can be solved, provided we have the required zero preserving extensions.

Thus, the whole extension from ∂K can be constructed provided we have the following zero preserving extensions.

We will only discuss the construction of the first operator $\mathring{\mathcal{E}}_1^{\mathrm{grad}}$.

Jay Gopalakrishnan Department of Mathematics [Slide 16 of 19]

The extension $\mathring{\mathcal{E}}_1^{\mathrm{grad}}$

$$\mathring{\mathcal{E}}_1^{\mathrm{grad}}v = \mathcal{E}^{\mathrm{grad}}v - \mathcal{E}_{\mathrm{corr}}^{\mathrm{grad}}v$$

First apply $\mathcal{E}^{\mathrm{grad}}$ from F_3 .

Then, we must fix face F_1 , as $\mathcal{E}^{\operatorname{grad}}v \neq 0$ on F_1 .

$$\mathcal{E}_{\text{corr}}^{\text{grad}} v(x, y, z)$$

$$= \frac{z}{x+z} \mathcal{E}^{\text{grad}} v(0, y, x+z)$$

The extension $\mathcal{E}_1^{\text{grad}}$

$$\mathring{\mathcal{E}}_{1}^{\mathrm{grad}}v = \mathcal{E}^{\mathrm{grad}}v - \mathcal{E}_{\mathrm{corr}}^{\mathrm{grad}}v$$

Whenever v is a polynomial, the correction $\mathcal{E}_{corr}^{grad}v$ is also a polynomial.

The denominator x + zcancels out because x divides v(x,y).

$$\mathcal{E}_{\text{corr}}^{\text{grad}} v(x, y, z)$$

$$= \frac{z}{x+z} \mathcal{E}^{\text{grad}} v(0, y, x+z)$$

The H(curl) correction

Construction motivated by commutativity.

Recall:
$$\mathcal{E}_{corr}^{grad}v(x,y,z) = \frac{z}{x+z}\mathcal{E}^{grad}v(0,y,x+z)$$

Want $\mathcal{E}_{\text{corr}}^{\text{curl}}$ satisfying: $-\mathbf{grad}(\mathcal{E}_{\text{corr}}^{\text{grad}}u) = \mathcal{E}_{\text{corr}}^{\text{curl}}(\mathbf{grad}_{\tau}u)$.

$$= \frac{z}{x+z} \operatorname{\mathbf{grad}} \mathcal{E}^{\operatorname{grad}} u(0,y,x+z) + \mathcal{E}^{\operatorname{grad}} u(0,y,x+z) \operatorname{\mathbf{grad}} \left(\frac{z}{x+z}\right) \\ = \dots \text{ (technical)} \dots = \operatorname{expression depending only on } \operatorname{\mathbf{grad}}_{\tau} u.$$

$$\mathcal{E}_{\text{corr}}^{\text{curl}} \boldsymbol{v} \stackrel{\text{def}}{=} \frac{2z}{x+z} \int_0^1 \int_0^{1-t} {s \atop s \atop t} \boldsymbol{v} \boldsymbol{v}(s(x+z), y+t(x+z)) \, ds \, dt$$
$$+ \frac{1}{x+z} {t-z \choose s} \int_0^1 \int_0^{1-t} {t-s \choose -t} \cdot \boldsymbol{v}(s(x+z), y+t(x+z)) \, ds \, dt.$$

Main result

THEOREM. By the above described techniques we can construct $\mathcal{E}_K^{\mathrm{curl}}: \boldsymbol{X}^{-1/2}(\partial K) \mapsto \boldsymbol{H}(\mathbf{curl})$ satisfying:

- 1. Continuity: $\mathbf{\mathcal{E}}_{K}^{\mathrm{curl}}$ is continuous.
- 2. Commutativity: $\operatorname{grad}(\mathcal{E}_K^{\operatorname{grad}}u)=\mathbf{E}_K^{\operatorname{curl}}(\operatorname{grad}_\tau u)$ for all u in $H^{1/2}(\partial K)$.
- 3. Extension property: The tangential trace $\mathrm{trc}_{\tau}(\boldsymbol{\mathcal{E}}_{K}^{\mathrm{curl}}\boldsymbol{v})$ coincides with \boldsymbol{v} for all \boldsymbol{v} in $\boldsymbol{X}^{-1/2}$.
- 4. Full polynomial preservation: If v is the tangential trace of a function in $P_p(K)$, then $\mathcal{E}_K^{\operatorname{curl}} v$ is in $P_p(K)$.
- 5. Nédélec polynomial preservation: If v is the tangential trace of a function in $N_p(K)$, then $\mathcal{E}_K^{\operatorname{curl}} v$ is in $N_p(K)$.

Jay Gopalakrishnan Department of Mathematics [Slide 19 of 19]