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The philosophy

The new:

Discontinuous Petrov-Galerkin (DPG) methods

Remarkable stability (through natural test space design)

The old:

DG methods (upwind stabilization, or stability by penalty parameters)

SUPG methods (stability through artificial streamline diffusion)
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Outline

1 How does the new compare to the old?
I Sample comparisons between DPG and DG results.

2 Elements of design of schemes.
I The example of simple 1D transport equation.

3 DPG method for the transport equation.
I Extension of the 1D idea to 2D.
I The spectral DPG method.
I The composite DPG method on a mesh.

4 Extensions.
I The DPG-X method.
I Optimal test functions.
I hp-results.
I A method for all seasons?
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Comparison: 1D, 1 element case
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Exact solution
p=1
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Experiment: Solve 1D
transport equation using
DG and DPG on one
element.

Exact solution has a
sharp layer at x = 1.

DPG solutions oscillate
an order of magnitude
less.
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Comparison: Crosswind diffusion

Pure transport should not diffuse
materials crosswind.

But most numerical methods do.

Experiment: Use DG and DPG for simulating vertically upward transport
of linearly varying density from the bottom of the unit square.
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DPG doesn’t. DG has crosswind diffusion.

Experiment: Use DG and DPG for simulating vertically upward transport
of linearly varying density from the bottom of the unit square.
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Comparison: Convergence rates

Brief history of finite element methods for stationary transport:

[Reed & Hill 1973]: First DG method proposed

[Lasaint & Raviart 1974]: First analysis, proved O(hp)-rate

[Hughes & Brooks 1979]: Invented SUPG

[Johnson & Pitkäranta 1986]: Proved O(hp+1/2)-rate

[Richter 1988]: Showed O(hp+1)-rate for special meshes

[Peterson 1991]: On general meshes O(hp+1/2) is the best possible

[Bey & Oden 1996]: First generalization to hp (adding reaction)

[Falk 1998]: A nice review

[Houston, Schwab & Süli 2000]: Improved hp analysis

[Cockburn, Dong & Guzmán 2008]: O(hp+1)-rate on other special meshes

[Nguyen, Peraire & Cockburn 2009]: HDG scheme for convection-diffusion

DPG: 1st method with provably optimal h and p rates.
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[Houston, Schwab & Süli 2000]: Improved hp analysis

[Cockburn, Dong & Guzmán 2008]: O(hp+1)-rate on other special meshes

[Nguyen, Peraire & Cockburn 2009]: HDG scheme for convection-diffusion

DPG: 1st method with provably optimal h and p rates.

Jay Gopalakrishnan 6/31



Comparison: Convergence rates
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Experiment: Apply DG and three different DPG methods (with p = 1) to
Peterson’s transport example.
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Next

1 How does the new compare to the old?
I Sample comparisons between DPG and DG results.

2 Elements of design of schemes.
I The example of simple 1D transport equation.

3 DPG method for the transport equation.
I Extension of the 1D idea to 2D.
I The spectral DPG method.
I The composite DPG method on a mesh.

4 Extensions.
I The DPG-X method.
I Optimal test functions.
I A method for all seasons?
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“Petrov-Galerkin” schemes

Petrov-Galerkin schemes are distinguished by different trial and test spaces.

The problem:

[
P.D.E.+

boundary conditions.

↓

Variational form:




Find u in a trial space satisfying

b(u, v) = l(v)

for all v in a test space.

↓

Discretization:




Find un in a discrete trial space Xn satisfying

b(un, vn) = l(vn)

for all vn in a discrete test space Vn.

Petrov-Galerkin schemes have Xn 6= Vn.
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Designing a simple PG scheme

Example: A simple continuous Petrov-Galerkin (CPG) scheme

1D transport eq.

[
u′ = f in (0, 1),

u(0) = u0 (inflow b.c.)

Variational form:




Find u in H1, satisfying u(0) = u0,&
∫ 1

0
u′v

︸ ︷︷ ︸
b(u,v)

=

∫ 1

0
fv ,

︸ ︷︷ ︸
l(v)

for all v in L2.

Spectral method:

[
Find up ∈ Pp, satisfying up(0) = u0,&

b(up, v) = l(v), ∀v ∈ Pp−1.

up : trial fn.

v : test fn.

(Notation: Pp = set of polynomials of degree at most p.)
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Babuška’s theorem

Let u ∈ X and un ∈ Xn ≡ trial space be exact and approximate solutions,

b(u − un, vn) = 0 ∀vn ∈ Vn ≡ test space,

and b(·, ·) be bounded in X × Vn.

Theorem (A simple version of Babuška’s theorem)

If

C1‖wn‖X ≤ sup
vn∈Vn

b(wn, vn)

‖vn‖Vn

∀wn ∈ Xn,

then
‖u − un‖X ≤ C2 inf

wn∈Xn

‖u − wn‖X .

Guiding principle: While we must choose trial spaces with good
approximation properties, we may design test spaces solely to obtain good
stability properties.
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Choice of spaces

Example: The 1D spectral CPG scheme (contd.)

Spectral method:

[
Find up ∈ Pp, satisfying up(0) = u0,&

b(up, v) = l(v), ∀v ∈ Pp−1.

up : trial fn.

v : test fn.

Q: Why the choice of spaces Pp and Pp−1?
A:

Since b(u, v) =

∫ 1

0
u′ v , the fraction

b(u, v)

‖v‖L2

is maximized by v = u′,

which we call the the optimal test function for the given u.

If u is in Pp, then v = u′ is in Pp−1.

Babuška’s theorem =⇒ stability, for these choice of spaces.

Jay Gopalakrishnan 12/31



What is DPG?

DPG schemes (Discontinuous Petrov-Galerkin schemes) uses nonequal
DG spaces (no interlement continuity) for trial and test spaces.

The name “DPG” was used previously for methods with DG test
spaces augmented with bubbles etc:

I [Bottasso, Micheletti & Sacco 2002]: DPG for elliptic problems
I [Bottasso, Micheletti & Sacco 2005]: Multiscale DPG
I [Causin, Sacco & Bottasso, 2005]: DPG for advection diffusion.
I [Causin & Sacco 2005]: Hybridized DPG for Laplace’s equation

The DPG methods of this talk differs from the above works in our
approach to the test space design.
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A simple DPG method

Example: DPG for 1D transport equation

1D transport eq.

[
u′ = f in (0, 1),

u(0) = u0 (inflow b.c.)

L2 variational form:




Find u ∈ L2, and a number û1, satisfying

−
∫ 1

0
uv ′ + û1v(1)

︸ ︷︷ ︸
b( (u,û1), v)

=

∫ 1

0
fv + u0v(0)

︸ ︷︷ ︸
l(v)

, ∀v ∈ H1.

Spectral method:

[
Find up ∈ Pp, and a number û1 satisfying

b( (up, û1), v) = l(v), ∀v ∈ Pp+1.

This leads to a stable discontinuous Petrov-Galerkin (DPG) scheme.

Q: Why did we set the trial space to Pp+1?
Jay Gopalakrishnan 14/31



A simple DPG method

Q: Why is the trial space Pp+1? b((up, û1), v) = −
∫ 1

0
upv ′ + û1v(1)

A: Because inf-sup condition is then satisfied.

In more detail:

Choose a test space norm, say ‖v‖2
V = ‖v ′‖2

L2 + |v(1)|2.

Then, sup
v∈H1

b( (up, û1), v)

‖v‖V
is attained by ṽ = û1 +

∫ 1

x
up(s) ds.

transport direction

û1integrate

ṽ

This maximizing ṽ is the optimal test function.

If up ∈ Pp, then ṽ is in Pp+1. Hence our trial space choice.

Jay Gopalakrishnan 14/31



A simple DPG method

Q: Why is the trial space Pp+1? b((up, û1), v) = −
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û1integrate

ṽ
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What have we gained?

Even in the simplest 1D 1-element case, we see that DPG makes a
difference. Recall the initial results:
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DG DPG

DPG exhibits enhanced stability.
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Next

1 How does the new compare to the old?
I Sample comparisons between DPG and DG results.

2 Elements of design of schemes.
I The example of simple 1D transport equation.

3 DPG method for the transport equation.
I Extension of the 1D idea to 2D.
I The spectral DPG method.
I The composite DPG method on a mesh.

4 Extensions.
I The DPG-X method.
I Optimal test functions.
I A method for all seasons?
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The 2D, one element case

∂inK

K

~β

The 2D transport equation on one element K :

[
~β · ~∇ u = f on K ,

u = g on ∂inK (inflow boundary).

=⇒ −
∫

K
u ~β · ~∇ v +

∫

∂outK

~β · ~nuv +

∫

∂inK

~β · ~nuv =

∫

K
f v
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[
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u = g on ∂inK (inflow boundary).

=⇒ −
∫

K
u ~β · ~∇ v +

∫

∂outK
φ v +

∫

∂inK

~β · ~ngv =

∫

K
f v

︸ ︷︷ ︸
b( (u,φ), v)

Variational formulation

Find solution u ∈ L2(K ) and “outflux”φ ∈ L2(∂outK ) satisfying

b( (u, φ), v) = l(v), for all v ∈ L2(K ) with ~β · ~∇ v ∈ L2(K ).
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How to construct 2D test space?

1D case: v = û1 +

∫ 1

x
u(s) ds

flow direction

û1
integral

v

The optimal test function v

2D case:

∂inK

K

~β
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v

v = extension + integral

= Eout(û1) + higher degree

2D case:

∂inK

K
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v = Eout(φ) + higher degree in ~β-direction

Eout extends from outflow boundary, constantly along streamlines.

Even if φ is polynomial on each edge, Eout(φ) need not be!
Eout(φ) can be discontinuous inside K .
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A new test space

The new finite element that forms the test space is composed of:

K = interval/triangle/tetrahedron, (geometry),

Vp(K ) = Eout(Mp+1(∂outK ))⊕ η1Pp(K ) (space),

Σ = the following set of moments: (degrees of freedom),2664
Z

K

(~β · ~∇ v)q for all q ∈ Pp(K),Z
F

vµ for all µ ∈ Pp+1(F ) for all faces of K .

Possible to implement with standard finite element technology.

Note:

Mp+1(∂outK ) = set of functions that are
polynomials of degree ≤ p + 1 on each edge
of ∂outK .

η1 = streamline coordinate.
K

~β

η 1

η2
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The 2D spectral method

Trial space = Xp(K ) = Pp(K )×Mp+1(∂outK ),
• solution u approximated in Pp(K ),
• outflux φ approximated in Mp+1(∂outK ).

Test space = Vp(K ), introduced in the previous slide.

The spectral method on one element

Find (up, φp+1) ∈ Xp(K ) satisfying

−
∫

K
up
~β · ~∇ v +

∫

∂outK
φp+1v =

∫

K
fv −

∫

∂inK

~β · ~n g , v ,

for all v ∈ Vp(K ).

Theorem

The solution of the method (both up and φp+1) coincides with the (L2)
best possible approximations of the exact solution in the trial space.
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The composite DPG method

On a mesh of triangles, construct the composite method as follows:

On each triangle K , set test and trial space to Xp(K ) and Vp(K ) (no
interelement continuity).

Elements are coupled through single-valued outflux φh in

Mh = {µ : µ|E ∈ Pp+1(E ) for all mesh edges E not on ∂inΩ},

The DPG-1 method

∑

K

(
−
∫

K
uh
~β ·~∇ vh+

∫

∂outK
φhvh−

∫

∂inK\∂inΩ
φhvh

)
=

∫

Ω
f vh−

∫

∂inΩ

~β ·~n gvh.

~β

We can solve the system by marching
from the inflow boundary.
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Discretization errors of DPG-1

Theorem (Optimal error estimates)

There is a constant C independent of h and p such that

‖u − uh‖L2(Ω) ≤ C
hs

ps
‖u‖Hs+1(Ω)

for all 0 ≤ s ≤ p + 1.

This is the first known error estimate (for any FEM) for the transport
equation that is optimal in h and p on general meshes.

Yet, our techniques of proof need improvement:
I We did not obtain estimates with the usual regularity assumption on u.
I We could prove only suboptimal estimates for φh (although all our

numerical experiments indicate that φh converges optimally).
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Recall Peterson’s example

101 102 103 10410 4

10 3

10 2

10 1

1/h2 (approx # degrees of freedom)

L2  e
rro

r i
n 

u

 

 

rate O(h1.5)

rate O(h2)

DG
DPG 1
DPG A
DPG X

Experiment: Apply DG and three different DPG methods (with p = 1) to
Peterson’s transport example.
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Example with a discontinuous solution

We consider an example of [Houston, Schwab & Süli 2000]. (They used it
to show that DG methods work better than SUPG in the presence of
shock-like discontinuities when mesh is aligned with shocks.)

Mesh Exact solution

Experiment: Compare DPG and DG applied to this example.
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Example with a discontinuous solution

Results:

101 102 103 104 105
10 10

10 8

10 6

10 4

10 2

100

Degrees of Freedom

L2  e
rro

r i
n 

u

 

 

DPG
DG

DPG outperforms DG.

Solid lines indicate h-
refinement.

Dotted lines indicate p-
refinement.

hp optimal convergence
rates are observed.
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Next

1 How does the new compare to the old?
I Sample comparisons between DPG and DG results.

2 Elements of design of schemes.
I The example of simple 1D transport equation.

3 DPG method for the transport equation.
I Extension of the 1D idea to 2D.
I The spectral DPG method.
I The composite DPG method on a mesh.

4 Extensions.
I The DPG-X method.
I Optimal test functions.
I A method for all seasons?
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The optimal test functions in 2D

We constructed the test functions of the DPG-1 method heuristically
(by simply generalizing the form of the optimal expression in 1D).

But, they turn out to be not the optimal test functions in 2D . . .
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tion on an edge.

The corresponding test
function Eout(φ) in DPG-1.
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Calculating the optimal test function

Recall the variational formulation for the transport equation:X
K

„
−
Z

K

u~β · ~∇ v +

Z
∂outK

φv −
Z

∂inK\∂inΩ

φv

«
| {z }

b( (u, φ), v)

=

Z
Ω

fv −
Z

∂inΩ

~β · ~n gv .

To maximize
b( (u, φ), v)

‖v‖V
,

first set ‖ · ‖V -norm by ‖v‖2
V =

∑

K

(∫

K
|~β · ~∇ v |2 +

∫

∂outK
|v |2
)
,

and then solve a local problem for the optimal test function v :

Find v : (v , δv )V = b( (u, φ), δv ), ∀ δv .
The hand-calculated solution with u = 0,

and φ =indicator function of an edge, was
shown on the previous slide:
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DPG-X

The use of the exactly optimal
test functions leads to a new
method, which we call the
DPG-X method.

Its performance is comparable
to DPG-1 method.

While DPG-1 can be solved by
marching from the inflow,
DPG-X requires the solution of
a symmetric positive definite
system!

101 102 103 10410 4

10 3

10 2

10 1

1/h2 (approx # degrees of freedom)
L2  e

rro
r i

n 
u

 

 

rate O(h1.5)

rate O(h2)

DG
DPG 1
DPG A
DPG X

DG & DPG on Peterson’s mesh
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The abstract idea

For any bilinear form b(u, v) in the DPG setting, the optimal test
functions can be locally computed:

v i = Tui : (Tui , δv )V = b(ui , δv ), ∀ δv .

This idea is not restricted to the transport equation. Methods now
immediately generalize to

I variable ~β,
I convection-diffusion,
I and all other problems which can be formulated in DPG form!

We only need to approximate the optimal test function problem.

Stiffness matrix is symmetric (even for the pure transport problem).

Bij = b(uj , vi ) = (Tuj , vi )V = (Tuj ,Tui )V

= (Tui ,Tuj)V = b(vi , uj) = Bji .
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Stability

The method is of least squares type. The novelty is in the potential
for local computation of optimal test functions.

With the optimal test space, inf-sup condition is obvious in the norm

‖u‖E = sup
v∈V

b(u, v)

‖v‖V
.

Error estimates follow immediately in ‖ · ‖E .

It can be a theoretically difficult problem to obtain error estimates in
other norms.

However, hp-adaptivity can proceed by estimators in the ‖ · ‖E -norm.

All our numerical experiments show extraordinary stability with h and
p variations.
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Conclusions

We presented a DPG method for transport equation.

The DPG method outperforms DG in computations.

We proved optimal theoretical convergence estimates.

The concept of optimal test functions leads to a new paradigm in
designing numerical schemes. Methods are waiting to be discovered.
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