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The philosophy UF 058 T5A

The new:
@ Discontinuous Petrov-Galerkin (DPG) methods
@ Remarkable stability (through natural test space design)

The old:
@ DG methods (upwind stabilization, or stability by penalty parameters)

@ SUPG methods (stability through artificial streamline diffusion)

Jay Gopalakrishnan 2/31



Outline UF UNIVERS[TY f

@ How does the new compare to the old?
» Sample comparisons between DPG and DG results.

@ Elements of design of schemes.
» The example of simple 1D transport equation.

© DPG method for the transport equation.
» Extension of the 1D idea to 2D.
» The spectral DPG method.
» The composite DPG method on a mesh.

@ Extensions.

The DPG-X method.
Optimal test functions.
hp-results.

A method for all seasons?

v

v vy
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Comparison: 1D, 1 element case
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The spectral DG solutions

@ Experiment: Solve 1D
transport equation using

DG and DPG on one
element.

1@ Exact solution has a

sharp layer at x = 1.
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Comparison: 1D, 1 element case UF 6t

The spectral DPG solutions

0
05 Experiment: Solve 1D
transport equation using
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Comparison: Crosswind diffusion UF FLORIDA

Pure transport should not diffuse| But most numerical methods do.
materials crosswind.

Experiment: Use DG and DPG for simulating vertically upward transport
of linearly varying density from the bottom of the unit square.
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Comparison: Crosswind diffusion UF [FiGRIBA

DG has crosswind diffusion.

Experiment: Use DG and DPG for simulating vertically upward transport
of linearly varying density from the bottom of the unit square.
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Comparison: Convergence rates UF [F{ORTDA

Brief history of finite element methods for stationary transport:
@ [Reed & Hill 1973]: First DG method proposed
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Comparison: Convergence rates UF [F{ORTDA

Brief history of finite element methods for stationary transport:
@ [Reed & Hill 1973]: First DG method proposed
@ [Lasaint & Raviart 1974]: First analysis, proved O(hP)-rate
[Hughes & Brooks 1979]: Invented SUPG
[Johnson & Pitkiranta 1986]: Proved O(hP+1/2)-rate
[Richter 1988]: Showed O(hPT1)-rate for special meshes
[Peterson 1991]: On general meshes O(hP*1/2) is the best possible

[Bey & Oden 1996]: First generalization to hp (adding reaction)

[Falk 1998]: A nice review

[Houston, Schwab & Siili 2000]: Improved hp analysis

[Cockburn, Dong & Guzmén 2008]: O(hP*1)-rate on other special meshes

[Nguyen, Peraire & Cockburn 2009]: HDG scheme for convection-diffusion

e DPG: 15 method with provably optimal h and p rates.
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Comparison: Convergence rates UF [F{ORTDA

-1

10
—e— DG
—»— DPG-1
—*— DPG-A
—8— DPG-X
107k
£ _-.rate O(h'?)
o T
o
N_l
10} RRITRE T
(- rate O(k?)
107 : :
10’ 10° 10° 10"

1/h? (approx # degrees of freedom)

Experiment: Apply DG and three different DPG methods (with p = 1) to
Peterson’s transport example.
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Next W UNIVERSITY f
o
>
@ Elements of design of schemes.
» The example of simple 1D transport equation.
© DPG method for the transport equation.
» Extension of the 1D idea to 2D.
» The spectral DPG method.
» The composite DPG method on a mesh.
© Extensions.
» The DPG-X method.
» Optimal test functions.
» A method for all seasons?
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“Petrov-Galerkin” schemes UF ¥1ORIDA

Petrov-Galerkin schemes are distinguished by different trial and test spaces.

PD.E.+
The problem: o
boundary conditions.
|
[ Find v in a trial space satisfying
Variational form: b(u,v) =1(v)
i for all v in a test space.
l
[ Find u,, in a discrete trial space X, satisfying
Discretization: b(un,vn) = I(vn)
i for all v, in a discrete test space V,,.

Petrov-Galerkin schemes have X, # V,,.

Jay Gopalakrishnan 9/31



Designing a simple PG Scheme ml‘umvﬁnsn'yf

Example: A simple continuous Petrov-Galerkin (CPG) scheme

e . J=f in(0,1),
ransport eq.
P a u(0) = up (inflow b.c.)

[Find u in H', satisfying u(0) = uo, &
Variational form: / u'v —/ fv, for all v in L2.

b(u v) I

[ Find up € Pp, satisfying up(0) = up, & |up : trial fn.

Spectral method:
b(up, v) = I(v), Vv € Pp_y. v : test fn.

(Notation: P, = set of polynomials of degree at most p.)
v

Jay Gopalakrishnan 10/31



Babugka’s theorem ml‘umvlmsn‘y of

Let v € X and u, € X,, = trial space be exact and approximate solutions,
b(u— up,vy) =0 Vv, € V, = test space,
and b(-,-) be bounded in X x V.

Theorem (A simple version of Babuska's theorem)

If

b(w,, v

Yw, € X,
Vn€Vp ”Vn”Vn

then

= < G inf — .
lu = unllx < G inf [lu—walx

n

_ While we must choose trial spaces with good

approximation properties, we may design test spaces solely to obtain good
stability properties.

Jay Gopalakrishnan 11/31



Choice of spaces UF a8

Example: The 1D spectral CPG scheme (contd.)

Find up € Pp, satisfying up(0) = up, & |up : trial fn.

Spectral method:
b(up, v) = I(v), Vv e Pp_1. v : test fn.

Q: Why the choice of spaces P, and P,_17
A:

1
b
@ Since b(u,v) = / ' v, the fraction ||(u|,| V) is maximized by v = o/,
L2
which we call the the optimal test function for the given w.

o If uisin Pp, then v =u"is in Pp_.

@ Babuska's theorem = stability, for these choice of spaces.

Jay Gopalakrishnan 12/31



What is DPG? UF [FLORIDA

@ DPG schemes (Discontinuous Petrov-Galerkin schemes) uses nonequal
DG spaces (no interlement continuity) for trial and test spaces.

@ The name “"DPG" was used previously for methods with DG test
spaces augmented with bubbles etc:
> [Bottasso, Micheletti & Sacco 2002]: DPG for elliptic problems
[Bottasso, Micheletti & Sacco 2005]: Multiscale DPG
[Causin, Sacco & Bottasso, 2005]: DPG for advection diffusion.
[Causin & Sacco 2005]: Hybridized DPG for Laplace’s equation

vV vy

@ The DPG methods of this talk differs from the above works in our
approach to the test space design.
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A simple DPG method

UF UNIVERS[TY f

Example: DPG for 1D transport equation

1D transport eq.

L2 variational form:

Spectral method:

This leads to a stable discontinuous Petrov-Galerkin (DPG) scheme.

W =f in(0,1),

| u(0) = uo (inflow b.c.)

[Find v € L2, and a number {1, satisfying

1 1
—/ uv'—l—ﬁlv(l):/ fv + uov(0),
0 0

b( (u,01), v) I(v)

[ Find up € Pp, and a number {; satisfying

b((up, 1), v) = I(v), Vv € Ppy1.

Vv e HL.

Q: Why did we set the trial space to Pp17?

Jay Gopalakrishnan
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A simple DPG method UF FLORIDA

1
Q: Why is the trial space P, 1?7  b((up, 1), v) = —/ upv' + G1v(1)
0

A: Because inf-sup condition is then satisfied.

In more detail:

Jay Gopalakrishnan 14/31
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A simple DPG method UF FLORIDA

1
Q: Why is the trial space P, 1?7  b((up, 1), v) = —/ upv' + d1v(1)
0

A: Because inf-sup condition is then satisfied.
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o Choose a test space norm, say [|v||2, = [|V/||%, + |v(1)].
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UF [FLORIDA

A simple DPG method

1
Q: Why is the trial space P, 1?7  b((up, 1), v) = —/ upv' + d1v(1)
0

A: Because inf-sup condition is then satisfied.

In more detail:
o Choose a test space norm, say [|v||2, = [|V/||%, + |v(1)].

b n 1
@ Then, sup b((tp, 0n), v) is attained by v = 0y +/ up(s) ds.
el Iviiv x

v \_
integrate ¢<- - -===—= a1

y
1

I
L

transport direction
@ This maximizing ¥ is the optimal test function.
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A simple DPG method UF FLORIDA

1
Q: Why is the trial space P, 1?7  b((up, 1), v) = —/ upv' + d1v(1)
0

A: Because inf-sup condition is then satisfied.

In more detail:
o Choose a test space norm, say [|v||2, = [|V/||%, + |v(1)].

b n 1
@ Then, sup b((tp, 0n), v) is attained by v = 0y +/ up(s) ds.
el Iviiv x

v \_
integrate ¢<- - -===—= a1

y
1

I
L

transport direction

@ This maximizing ¥ is the optimal test function.

o If u, € Py, then ¥ is in P,y 1. Hence our trial space choice.
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What have we gained? W‘UNIVERSITYaf

Even in the simplest 1D 1-element case, we see that DPG makes a

difference. Recall the initial results:

The spectral DG solutions

The spectral DPG solutions

0 0
-0.5 -0.5
-1 _ 1
- ~
Y N
— ’ o
= y
X -15 /\ ) S =
Y] , N /
/ 7 ~ 4
. ~
-2, L - -2
/ P Exact solution Exact solution
2.5}/ L7 - - —p=1 -25 -~ —p=l
i -, — = p=3 — = p=3
e p=8 p=8
-3 -3
0 0.2 0.4 0.6 0.8 1 0 0.2 0.4 0.6 0.8 1
X X

DPG exhibits enhanced stability.
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Next

W‘UNIVERS!TY of

© DPG method for the transport equation.

» Extension of the 1D idea to 2D.
» The spectral DPG method.

» The composite DPG method on a mesh.

© Extensions.

» The DPG-X method.
» Optimal test functions.
» A method for all seasons?

Jay Gopalakrishnan
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The 2D, one element case UF 6t

K
The 2D transport equation on one element K:

=

E~ Vu=f onK,
=g on J, /K (inflow boundary).

()illK

\’Ql

@
=1
<
<
I

~
-
<

= —/uﬁ-ﬁv—i— ﬁ-ﬁuv+/
K OoutK ainK
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The 2D, one element case UF 6t

K
The 2D transport equation on one element K:
E~ Vu=f on K,
u=g on J, /K (inflow boundary).

()illK

= —/uﬁ-ﬁv—i—/ 0] v—|—/
K OoutK 6inl(

\’Ql

@Dy
S

o
<
I

~

-
<
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The 2D, one element case UF 6t

K
The 2D transport equation on one element K:
E~ Vu=f on K,
u=g on J, K (inflow boundary).

OimK

= —/uﬁ-ﬁv—i—/ 0] v—|—/
K OoutK ainl{

b( (1,6), )

\’Ql

@Dy
S

o
<
I

~

-
<
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The 2D, one element case UF 6t

K
The 2D transport equation on one element K:
E- Vu=f on K,
g u=g on (inflow boundary).

b( (u,), v)
Variational formulation

Find solution u € L2(K) and “outflux’ ¢ € L?(0ouK) satisfying

b((u,),v)=1I(v), forall vel?(K)with §-Vv e [2(K).

Jay Gopalakrishnan 17/31



How to construct 2D test space? UF [£16RT5A

v \_‘
iy

flow direction

2D case:
K

OimK

\Tﬁm

The optimal test function v

Jay Gopalakrishnan 18/31



How to construct 2D test space? UF [£16RT5A

1
1D case: v =i +/ u(s) ds

v \—.
extension ¢ ==== ﬁl

|ntegra| __________

flow direction

v = extension + integral

= Eout(01) + higher degree

Jay Gopalakrishnan

2D case:

Qy

K

OinK
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How to construct 2D test space? UF [£16RT5A

1
1D case: v =1 +/ u(s) ds 2D case:

"4 \—.
-~ . _extension §==== i

integral ™~ ----______

flow direction ' 3

]\ OmK
v = extension + integral

v = Eout(@) + higher degree in ﬁ direction

= Eout(071) + higher degree

@ C.yt extends from outflow boundary, constantly along streamlines.
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How to construct 2D test space? UF 51 5R15A

1
1D case: v =i +/ u(s) ds

"4 \—.
-~ . _extension §==== i

integral ™~ ----______

flow direction

v = extension + integral

= Eout(071) + higher degree

2D case:

0y

7 OinK 7 '

v = Eout(@) + higher degree in 6 direction

@ C.yt extends from outflow boundary, constantly along streamlines.

@ Even if ¢ is polynomial on each edge, Eout(p) need not be!
Eout(®) can be discontinuous inside K.

Jay Gopalakrishnan
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A new test space UF [F{ORTDA

The new finite element that forms the test space is composed of:

K = interval /triangle/tetrahedron, (geometry),
Vo(K) = Eout(Mp11(00uiK)) @ mPp(K)  (space),
> = the following set of moments: (degrees of freedom),

/(5 Vv)g forall g€ Py(K),
K

/ viL for all pu € Ppy1(F) for all faces of K.
F

Possible to implement with standard finite element technology.

Note: N

® My 1(0ouiK) = set of functions that are

polynomials of degree < p+ 1 on each edge

of aoutK. 3 K
@ 11 = streamline coordinate.

Jay Gopalakrishnan 19/31



The 2D spectral method UFI56RT5A

Trial space = X,(K) = Pp(K) X Mp11(0outK),

e solution u approximated in Pp(K),

e outflux ¢ approximated in Mp41(0outK).
Test space = V,(K), introduced in the previous slide.

The spectral method on one element
Find (up, ¢pt+1) € Xp(K) satisfying

—/upﬁ_'-%v—i—/ ¢p+1v:/ fv — g-ﬁg,v,
K DoutK K DK
for all v € V,(K).

Theorem

The solution of the method (both u, and ¢p+1) coincides with the (L?)
best possible approximations of the exact solution in the trial space.

Jay Gopalakrishnan 20/31



The composite DPG method UF [E16R A

On a mesh of triangles, construct the composite method as follows:

@ On each triangle K, set test and trial space to X,(K) and V,(K) (no
interelement continuity).

@ Elements are coupled through single-valued outflux ¢, in

My = {p: ple € Ppi1(E) for all mesh edges E not on 0,2},

The DPG-1 method

Z <—/ Uhg'ﬁvh+/ OnVh— / th) /th / 3-7i gvp.
K aou.'cK 6mK\am

K

We can solve the system by marching
from the inflow boundary.

Jay Gopalakrishnan 21/31
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The composite DPG method UF 85855

On a mesh of triangles, construct the composite method as follows:

@ On each triangle K, set test and trial space to X,(K) and V,(K) (no
interelement continuity).
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The composite DPG method UF 85855

On a mesh of triangles, construct the composite method as follows:
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Discretization errors of DPG-1 UF 51 5815A

Theorem (Optimal error estimates)
There is a constant C independent of h and p such that

hs
|u— unll2(@) < CE”““HS“(Q)

forall 0 <s<p+1.

@ This is the first known error estimate (for any FEM) for the transport
equation that is optimal in h and p on general meshes.

@ Yet, our techniques of proof need improvement:

» We did not obtain estimates with the usual regularity assumption on wu.
» We could prove only suboptimal estimates for ¢y (although all our
numerical experiments indicate that ¢ converges optimally).

Jay Gopalakrishnan 22/31



Recall Peterson’s example UF [38RIBA

10
—o— DG
—»— DPG-1
—+— DPG-A
—8— DPG-X
1072}
= .rate O(h'"®)
S e
@
N_I
107}
"",r'ate O(hz)
107 . :
10’ 10 10° 10*

1/h? (approx # degrees of freedom)

Experiment: Apply DG and three different DPG methods (with p = 1) to
Peterson's transport example.
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Example with a discontinuous solution UF FLORIDA

e We consider an example of [Houston, Schwab & Siili 2000]. (They used it
to show that DG methods work better than SUPG in the presence of
shock-like discontinuities when mesh is aligned with shocks.)

fe

Mesh Exact solution

@ Experiment: Compare DPG and DG applied to this example.

Jay Gopalakrishnan 24/31



Example with a discontinuous solution UF FLORIDA

Results:

10°

10

10

L2 errorinu

10

10

-10

——DPG
DG

10
10

Jay Gopalakrishnan

2

10

10° 10°
Degrees of Freedom

10

DPG outperforms DG.

Solid lines indicate h-
refinement.

Dotted lines indicate p-
refinement.

hp optimal convergence
rates are observed.
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Next ml‘umvlmsrn of

o
2]
o

© Extensions.

» The DPG-X method.
» Optimal test functions.
» A method for all seasons?
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The optimal test functions in 2D UF ¥ ORTDA

@ We constructed the test functions of the DPG-1 method heuristically
(by simply generalizing the form of the optimal expression in 1D).

]
0.5
0
-0.5
-1
-15

An outflux trial func-  The corresponding  test
tion on an edge. function Eout(®) in DPG-1.
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The optimal test functions in 2D UF ¥ ORTDA

@ We constructed the test functions of the DPG-1 method heuristically
(by simply generalizing the form of the optimal expression in 1D).

@ But, they turn out to be not the optimal test functions in 2D ...

1
0.5
0
-0.5
-1
-1.5

An outflux trial func-  The  corresponding  test The actual optimal test
tion on an edge. function €out(¢) in DPG-1.  function.

Jay Gopalakrishnan 26/31



Calculating the optimal test function UF [FiORIDA

Recall the variational formulation for the transport equation:

o e R S B

K
b((u,¢), v)
b((u, ), v)

Iviiv

o first set || - |[y-norm by ||v|3 = Z (/ G-V v[? +/ ]v\z),
K K 8outK

To maximize
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o e R S B

K
b((u,¢), v)
b((u, ), v)

Iviiv

o first set || - |[y-norm by ||v|3 = Z (/ G-V v[? +/ ]v\z),
K K 8out’<

@ and then solve a local problem for the optimal test function v:

Find v : (v,dv)v = b((u,9), dv), v dy.

To maximize

@ The hand-calculated solution with u = 0,

and ¢ =indicator function of an edge, was
shown on the previous slide: o
-15
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D PG—X lIPl‘UvaERsn'Y of

@ The use of the exactly optimal

.
test functions leads to a new ’ o
method, which we call the S DFG-A
DPG-X method. 10"

£ - rate O(')

@ lts performance is comparable Nfg’ |

to DPG-1 method. "0 -
rate O(h®)
10:0‘ 10° 10° 10*

1/h? (approx # degrees of freedom)

DG & DPG on Peterson’s mesh
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@ The use of the exactly optimal

071

test functions leads to a new —ne
method, which we call the —+— DPG-A
—&— DPG-X
DPG-X method. 10"
E & “r‘a‘te b(hm)
o Its performance is comparable &
i

to DPG-1 method. 107

N rate O(h’)

@ While DPG-1 can be solved by
marching from the inflow, 10' 102 10° 10°

2 T m
DPG_X requires the SOIUtiOﬂ Of 1/h (approx#degreesoffeedoy)
a symmetric positive definite DG & DPG on Peterson’s mesh

system!
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The abstract idea UF [¥1 ORIDA

@ For any bilinear form b(u, v) in the DPG setting, the optimal test
functions can be locally computed:

vi= Tu;: (Tuiyfsv)V = b(ui75V)7 Vy.

@ This idea is not restricted to the transport equation. Methods now
immediately generalize to

> variable 5
» convection-diffusion,
» and all other problems which can be formulated in DPG form!

We only need to approximate the optimal test function problem.

o Stiffness matrix is symmetric (even for the pure transport problem).
B,'J' = b(uj, V,') = (TUJ'7 Vi)V = (TUJ', Tu,')\/
= (Tu;, TUJ')\/ = b(V,', UJ') = Bj,'.
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Stability UF a8

@ The method is of least squares type. The novelty is in the potential
for local computation of optimal test functions.

@ With the optimal test space, inf-sup condition is obvious in the norm

b(u, v

Jule = sup 2%

veVv ||VHV

@ Error estimates follow immediately in || - ||£.

@ It can be a theoretically difficult problem to obtain error estimates in
other norms.

@ However, hp-adaptivity can proceed by estimators in the || - ||g-norm.

@ All our numerical experiments show extraordinary stability with h and
p variations.
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Conclusions WUNIVERS!TYaf

@ We presented a DPG method for transport equation.
@ The DPG method outperforms DG in computations.
@ We proved optimal theoretical convergence estimates.

@ The concept of optimal test functions leads to a new paradigm in
designing numerical schemes. Methods are waiting to be discovered.

Full manuscripts:

@ L. DEMKOWICZ AND J. GOPALAKRISHNAN, A class of discontinuous
Petrov-Galerkin methods. Part I: The transport equation, Submitted, (2009).

@ L. DEMKOWICZ AND J. GOPALAKRISHNAN, A class of discontinuous
Petrov-Galerkin methods. Part Il: Optimal test functions, Submitted, (2009).
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