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Conservation
We say that a discrete flux qh approximating the exact flux q is
conservative if the total outward flux as measured by q and qh
coincides, i.e.,

∫

∂Dh

q ·n ds =

∫

∂Dh

qh ·n ds,

for any subdomain Dh formed by
the union of some mesh elements. 0 0.2 0.4 0.6 0.8 1
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Traditional
comparisons:

CG vs. RT CG vs. DG

Conservation : ✗ X ✗ X

(RT = Raviart-Thomas mixed method, DG = a discontinuous Galerkin method like LDG.)
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Example

q · n = 0

q · n = 0

q
·
n

=
−

1
q
·
n

=
0

u
=

0

Ω = (0, 1)2

a =

{
10−3, in shaded area

1, elsewhere.

(A simple model of a

steady state porous

media flow around an

impermeable rock.)

Find flux q and u :

q + a∇u = 0, on Ω,

div q = f, on Ω,

u = 0, on ∂Ω.
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Example

(CG flux: −a∇ Uh) Department of Mathematics [Slide 3 of 12]
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Example

(RT flux: qh) Department of Mathematics [Slide 3 of 12]
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Background
[Bastian & Riviere, 2003] (local postprocessing for DG solutions)

[Hughes & Wells, 2005]
[Hughes, Engel, Mazzei & Larson, 2000] (fluxes with a conservation property)

[Brezzi, Hughes & Suli, 2001]

[Carey, 2002] (superconvergent flux postprocessing formula)

[Pehlivanov, Lazarov, Carey & Chow, 1992]
[Chow, Carey & Lazarov, 1991]

[J. Wheeler, 1973] (superconvergent fluxes in 1-D)

[M. Wheeler, 1974]
[Douglas, Dupont & Wheeler, 1974]
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Why is RT conservative?
From the second equation of the RT method

(a−1qh,v)− (uh, div v) = 0,

(w, div qh) = (f, w),

setting w = characteristic function of Dh, we find that
∫

Dh

div qh =

∫

Dh

div q

=⇒

∫

∂Dh

q · n =

∫

∂Dh

qh · n

For methods like RT and DG which discretize “div q = f ”
directly, conservation comes easy, but not for CG.
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Fluxes from CG method
re

ca
ll

Find U :

−div(a∇ U) = f on Ω,

U = 0 on ∂Ω.




 =⇒






Find Uh ∈ WCG

h satisfying

(a∇ Uh,∇ v) = (f, v),

for all v ∈ WCG

h .

Here WCG

h is the CG finite element space (of continuous functions).

If v is a continuous test function in W CG

h , then

0 = (f, v) − (a∇Uh,∇v)
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Fluxes from CG method
re

ca
ll

Find U :

−div(a∇ U) = f on Ω,

U = 0 on ∂Ω.




 =⇒






Find Uh ∈ WCG

h satisfying

(a∇ Uh,∇ v) = (f, v),

for all v ∈ WCG

h .

Here WCG

h is the CG finite element space (of continuous functions).

On one element K , the CG solution Uh satisfies

〈qK
n,h, v〉∂K = (f, v)K − (a∇Uh,∇v)K

with some boundary “flux” (approximating q · n|∂K )

qK
n,h ∈ {z|∂K : z ∈ Pk(K)}.
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Fluxes from CG method
re

ca
ll

Find U :

−div(a∇ U) = f on Ω,

U = 0 on ∂Ω.




 =⇒






Find Uh ∈ WCG

h satisfying

(a∇ Uh,∇ v) = (f, v),

for all v ∈ WCG

h .

Here WCG

h is the CG finite element space (of continuous functions).

〈qKi

n,h, v〉∂Ki
= (f, v)Ki

− (a∇ Uh,∇ v)Ki

K1

K2

In general,

qK1

n,h 6= qK2

n,h

on the shared
edge.
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Constructing a good flux
Idea: ?
• If we could find a qh such that

(a∇Uh,∇v)K︸ ︷︷ ︸
(−qh,∇v)K

+ 〈qK
n,h, v〉∂K︸ ︷︷ ︸

〈qh·n, v〉∂K

= (f, v)K ,

then
(div qh, v)K = (f, v)K ,

and conservativity will follow, provided [[qh · n]] = 0.
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Constructing a good flux
Idea: ?
• If we could find a qh such that

(a∇Uh,∇v)K︸ ︷︷ ︸
(−qh,∇v)K

+ 〈qK
n,h, v〉∂K︸ ︷︷ ︸

〈qh·n, v〉∂K

= (f, v)K ,

then
(div qh, v)K = (f, v)K ,

and conservativity will follow, provided [[qh · n]] = 0.

Such a qh can be constructed by a local postprocessing:

qh ∈ xPk−1 + P k−1︸ ︷︷ ︸
RT space

:

{
〈qh · n, v〉e = 〈qK

n,h, v〉e,

(−qh, r)K = (a∇Uh, r)K ,

for all v ∈ Pk−1(e) and r in P k−2(K).
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Constructing a good flux

Idea: ✗
• If we could find a qh such that

(a∇Uh,∇v)K︸ ︷︷ ︸
(−qh,∇v)K

+ 〈qK
n,h, v〉∂K︸ ︷︷ ︸

〈qh·n, v〉∂K

= (f, v)K ,

then
(div qh, v)K = (f, v)K ,

and conservativity will follow, provided [[qh · n]] = 0.

But, 〈qh · n, v〉e = 〈qK
n,h, v〉e 6=⇒ [[qh·n]]

∣∣
e
= 0,

K1

K2

as qK
n,h from adjacent triangles of e do

not generally coincide!
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Single valued fluxes

Idea: ✗ ?
• Is it possible to construct a single valued flux function q̂h on
mesh edges such that

〈q̂h , [[vn]]〉Eh
=

∑

K∈Th

〈qK
n,h, v〉∂K , ∀v ∈ W DG

h ?

If such a q̂h can be found, then we can get a good qh by the same local

postprocessing, but now using q̂h in place of the “bad” multivalued qK
n,h:

qh ∈ xPk−1 + P k−1 :

{
〈qh · n, v〉e = 〈q̂h · n, v〉e,

(−qh, r)K = (a∇Uh, r)K ,

for all v ∈ Pk−1(e) and r in P k−2(K).
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Single valued fluxes

Idea: ✗ ?
• Is it possible to construct a single valued flux function q̂h on
mesh edges such that

〈q̂h , [[vn]]〉Eh
=

∑

K∈Th

〈qK
n,h, v〉∂K , ∀v ∈ W DG

h ?

>> Why not choose q̂h in the space of “jumps”, namely in

Jh = { [[vn]] : v ∈ W DG

h } ?

Then obviously we can solve uniquely for q̂h. . .
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Single valued fluxes

Idea: ✗ ✗
• Is it possible to construct a single valued flux function q̂h on
mesh edges such that

〈q̂h , [[vn]]〉Eh
=

∑

K∈Th

〈qK
n,h, v〉∂K , ∀v ∈ W DG

h ?

>> Why not choose q̂h in the space of “jumps”, namely in

Jh = { [[vn]] : v ∈ W DG

h } ?

Then obviously we can solve uniquely for q̂h. . .

>> However, when we did that, we got garbage . . .
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Boundary layers

If we choose q̂h in Jh and construct the flux qh then we
observe high errors |q − qh| near the boundary, as seen in
the following plots. . .

Run parameters are a = 1, f = 0, Ω = (0, 1) × (0, 1), ΓD = {0} × (0, 1),

the polynomial degrees are k = 1 and ℓ = k − 1 (for postprocessing), and the

boundary conditions are set in such a way that the exact solution is

u(x, y) = 1 + x.
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Boundary layers
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Boundary layers
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Boundary layers
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Boundary layers
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Boundary layers
We saw that while the error is small far from the boundary,
near the boundary it remains of order one. Therefore, we
expect to see an order of convergence of 1/2 in the L2-norm.

k = 1 k = 2 k = 3

h error order error order error order

1/8 0.11E+00 0.46 0.62E-01 0.41 0.40E-01 0.46

1/16 0.77E-01 0.48 0.45E-01 0.46 0.29E-01 0.48

1/32 0.55E-01 0.49 0.32E-01 0.48 0.21E-01 0.49

1/64 0.39E-01 0.50 0.23E-01 0.49 0.15E-01 0.50

We believe that such difficulties arise because the space of
jumps do not have constant functions. (2nd attempt dashed !#&!)
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Fix?
Idea: ✗ ✗ ? (3rd attempt)
Inspired by the form of DG fluxes, we set

q̂h =






−a∇Uh + α Jh, on ∂Ω

(on Dirichlet boundary),

−{{a∇Uh}} − β [[a∇Uh · n]] + α Jh, on E
◦
h,

(on interior mesh edges).

where Jh in Jh is an unknown function to be determined by

〈q̂h , [[vn]]〉Eh
=

∑

K∈Th

〈qK
n,h, v〉∂K , ∀v ∈ W DG

h .

Here α and β are some parameters (typically β ≡ 0 and α ≡ 1), and

{{v}} =






1

2
(v+ + v−) on E

◦

h,

v on ∂Ω.
Department of Mathematics [Slide 10 of 12]
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Fix?
Idea: ✗ ✗ ? (3rd attempt)
Inspired by the form of DG fluxes, we set

q̂h =






−a∇Uh + α Jh, on ∂Ω

(on Dirichlet boundary),

−{{a∇Uh}} − β [[a∇Uh · n]] + α Jh, on E
◦
h,

(on interior mesh edges).

where Jh in Jh is an unknown function to be determined by

〈q̂h , [[vn]]〉Eh
=

∑

K∈Th

〈qK
n,h, v〉∂K , ∀v ∈ W DG

h .

Recall the space of “jumps” Jh = { [[vn]] : v ∈ WDG

h }.

>> We need to solve a global problem on Jh. . .
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Fix?
Idea: ✗ ✗ ? (3rd attempt)
Inspired by the form of DG fluxes, we set

q̂h =






−a∇Uh + α Jh, on ∂Ω

(on Dirichlet boundary),

−{{a∇Uh}} − β [[a∇Uh · n]] + α Jh, on E
◦
h,

(on interior mesh edges).

where Jh in Jh is an unknown function to be determined by

〈q̂h , [[vn]]〉Eh
=

∑

K∈Th

〈qK
n,h, v〉∂K , ∀v ∈ W DG

h .

Recall the space of “jumps” Jh = { [[vn]] : v ∈ WDG

h }.

>> We need to solve a global problem on Jh. . .
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Spaces of jumps

Idea: ✗ ✗ ? (3rd attempt)

H1(Ω)/R
grad
−→ H(curl)

curl
−→ H(div)

[[vn]] = 0 [[v × n]] = 0 [[v · n]] = 0

Basis for jumps of corresponding FE spaces without the continuity constraints:

Cone basis Wedge basis Face basis
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Spaces of jumps

Idea: ✗ ✗ X

H1(Ω)/R
grad
−→ H(curl)

curl
−→ H(div)

[[vn]] = 0 [[v × n]] = 0 [[v · n]] = 0

Basis for jumps of corresponding FE spaces without the continuity constraints:

Cone basis Wedge basis Face basis

Using the cone basis for Jh, we can solve a well-conditioned
global problem for Jh.
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Conservative flux
THEOREM. [Cockburn, G., & Wang] The flux qh obtained by our
postprocessing of the CG solution has the following properties:

1. qh is conservative.

2. [[qh · n]] = 0.

3. (div qh, v)K = (f, v)K for all v ∈ Pk−1(K).

4. ‖ div(q − qh)‖L2(Ω) ≤ Chk | f |Hk(Ω).

5. If a(x) is piecewise smooth and mesh is quasiuniform,

‖q − qh‖L2(Ω) ≤ Chk
(
| q |Hk(Ω) + |u|Hk(Ω)

)
.

Furthermore, it is possible to compute the flux qh in asymptotically optimal

computational complexity.
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