Can the CG method yield conservative fluxes?
 Jay Gopalakrishnan

University of Florida

Finite Element Circus, Maryland, April 2007

Collaborators: B. Cockburn, H. Wang

Thanks: NSF

Conservation

We say that a discrete flux \boldsymbol{q}_{h} approximating the exact flux \boldsymbol{q} is conservative if the total outward flux as measured by \boldsymbol{q} and \boldsymbol{q}_{h} coincides, i.e.,
$\int_{\partial D_{h}} \boldsymbol{q} \cdot \boldsymbol{n} d s=\int_{\partial D_{h}} \boldsymbol{q}_{h} \cdot \boldsymbol{n} d s$,
for any subdomain D_{h} formed by the union of some mesh elements.

Traditional comparisons:

	CG vs. RT		CG vs. DG	
Conservation :	X	\checkmark	X	\checkmark

(RT = Raviart-Thomas mixed method, $D G=$ a discontinuous Galerkin method like LDG.)

Example

$$
\boldsymbol{q} \cdot \boldsymbol{n}=0
$$

$\Omega=(0,1)^{2}$
$a=\left\{\begin{array}{cc}10^{-3}, & \text { in shaded area } \\ 1, & \text { elsewhere. }\end{array}\right.$
(A simple model of a steady state porous media flow around an impermeable rock.)

Find flux \boldsymbol{q} and u :
$\boldsymbol{q}+a \boldsymbol{\nabla} u=0, \quad$ on Ω, $\operatorname{div} \boldsymbol{q}=f, \quad$ on Ω,
$u=0, \quad$ on $\partial \Omega$.

Example

$C G_{2}$ method with $h^{-1}=32$

(CG flux: $\left.-a \nabla U_{h}\right)$

Example

Mixed RT_{1} method with $\mathrm{h}^{\mathbf{- 1}} \mathbf{= 3 2}$

Background

- [Bastian \& Riviere, 2003]
(local postprocessing for DG solutions)
- [Hughes \& Wells, 2005]
[Hughes, Engel, Mazzei \& Larson, 2000]
(fluxes with a conservation property) [Brezzi, Hughes \& Suli, 2001]
- [Carey, 2002]
- [J. Wheeler, 1973]
[M. Wheeler, 1974]
[Douglas, Dupont \& Wheeler, 1974]

Why is RT conservative?

From the second equation of the RT method

$$
\begin{aligned}
\left(a^{-1} \boldsymbol{q}_{h}, \boldsymbol{v}\right)-\left(u_{h}, \operatorname{div} \boldsymbol{v}\right) & =0, \\
\left(w, \operatorname{div} \boldsymbol{q}_{h}\right) & =(f, w),
\end{aligned}
$$

setting $w=$ characteristic function of D_{h}, we find that

$$
\begin{aligned}
\int_{D_{h}} \operatorname{div} \boldsymbol{q}_{h} & =\int_{D_{h}} \operatorname{div} \boldsymbol{q} \\
\int_{\partial D_{h}} \boldsymbol{q} \cdot \boldsymbol{n} & =\int_{\partial D_{h}} \boldsymbol{q}_{h} \cdot \boldsymbol{n}
\end{aligned}
$$

For methods like RT and DG which discretize "div $\boldsymbol{q}=f$ " directly, conservation comes easy, but not for CG.

Fluxes from CG method

Here $W_{h}^{\text {CG }}$ is the CG finite element space (of continuous functions).
If v is a continuous test function in W_{h}^{CG}, then

$$
0 \quad=(f, v) \quad-\left(a \nabla U_{h}, \nabla v\right)
$$

Fluxes from CG method

Here $W_{h}^{\text {CG }}$ is the CG finite element space (of continuous functions).

On one element K, the CG solution U_{h} satisfies

$$
\left\langle q_{n, h}^{K}, v\right\rangle_{\partial K}=(f, v)_{K}-\left(a \nabla U_{h}, \nabla v\right)_{K}
$$

with some boundary "flux" (approximating $\left.\boldsymbol{q} \cdot \boldsymbol{n}\right|_{\partial K}$)

$$
q_{n, h}^{K} \in\left\{\left.z\right|_{\partial K}: z \in P_{k}(K)\right\} .
$$

Fluxes from CG method

$\left.\begin{array}{rl}\text { Find } U: \\ =\operatorname{div}(a \nabla U)=f & \text { on } \Omega, \\ U=0 & \text { on } \partial \Omega .\end{array}\right\} \Longrightarrow\left\{\begin{array}{c}\text { Find } U_{h} \in W_{h}^{\mathrm{CG}} \text { satisfying } \\ \left(a \nabla U_{h}, \nabla v\right)=(f, v), \\ \text { for all } v \in W_{h}^{\mathrm{CG}} .\end{array}\right.$

Here $W_{h}^{\text {CG }}$ is the CG finite element space (of continuous functions).

$$
\left\langle q_{n, h}^{K_{i}}, v\right\rangle_{\partial K_{i}}=(f, v)_{K_{i}}-\left(a \nabla U_{h}, \nabla v\right)_{K_{i}}
$$

In general, $q_{n, h}^{K_{1}} \neq q_{n, h}^{K_{2}}$ on the shared edge.

Constructing a good flux

Idea: ?

- If we could find a q_{h} such that

$$
\underbrace{\left(a \nabla U_{h}, \nabla v\right)_{K}}_{\left(-q_{h}, \nabla v\right)_{K}}+\underbrace{\left\langle q_{n, h}^{K}, v\right\rangle_{\partial K}}_{\left\langle q_{h} \cdot \boldsymbol{n}, v\right\rangle_{\partial K}}=(f, v)_{K},
$$

then

$$
\left(\operatorname{div} \boldsymbol{q}_{h}, v\right)_{K}=(f, v)_{K},
$$

and conservativity will follow, provided $\llbracket \boldsymbol{q}_{h} \cdot \boldsymbol{n} \rrbracket=0$.

Constructing a good flux

Idea: ?

- If we could find a q_{h} such that

$$
\underbrace{\left(a \nabla U_{h}, \nabla v\right)_{K}}_{\left(-\boldsymbol{q}_{h}, \nabla v\right)_{K}}+\underbrace{\left\langle q_{n, h}^{K}, v\right\rangle_{\partial K}}_{\left\langle\boldsymbol{q}_{h} \cdot \boldsymbol{n}, v\right\rangle_{\partial K}}=(f, v)_{K}
$$

then

$$
\left(\operatorname{div} \boldsymbol{q}_{h}, v\right)_{K}=(f, v)_{K}
$$

and conservativity will follow, provided $\llbracket \boldsymbol{q}_{h} \cdot \boldsymbol{n} \rrbracket=0$.
Such a \boldsymbol{q}_{h} can be constructed by a local postprocessing:

$$
\boldsymbol{q}_{h} \in \underbrace{\boldsymbol{x} P_{k-1}+\boldsymbol{P}_{k-1}}_{\mathrm{RT} \text { space }}: \quad\left\{\begin{array}{l}
\left\langle\boldsymbol{q}_{h} \cdot \boldsymbol{n}, v\right\rangle_{e}=\left\langle q_{n, h}^{K}, v\right\rangle_{e} \\
\left(-\boldsymbol{q}_{h}, \boldsymbol{r}\right)_{K}=\left(a \nabla U_{h}, \boldsymbol{r}\right)_{K}
\end{array}\right.
$$

for all $v \in P_{k-1}(e)$ and \boldsymbol{r} in $\boldsymbol{P}_{k-2}(K)$.

Constructing a good flux

Idea:

- If we could find a q_{h} such that

$$
\underbrace{\left(a \nabla U_{h}, \nabla v\right)_{K}}_{\left(-q_{h}, \nabla v\right)_{K}}+\underbrace{\left\langle q_{n, h}^{K}, v\right\rangle_{\partial K}}_{\left\langle q_{h} \cdot \boldsymbol{n}, v\right\rangle_{\partial K}}=(f, v)_{K},
$$

then

$$
\left(\operatorname{div} \boldsymbol{q}_{h}, v\right)_{K}=(f, v)_{K},
$$

and conservativity will follow, provided $\llbracket \boldsymbol{q}_{h} \cdot \boldsymbol{n} \rrbracket=0$.
But, $\quad\left\langle\boldsymbol{q}_{h} \cdot \boldsymbol{n}, v\right\rangle_{e}=\left.\left\langle q_{n, h}^{K}, v\right\rangle_{e} \nRightarrow \llbracket \boldsymbol{q}_{h} \cdot \boldsymbol{n} \rrbracket\right|_{e}=0$,

as $q_{n, h}^{K}$ from adjacent triangles of e do not generally coincide!

Single valued fluxes

Idea: X ?

- Is it possible to construct a single valued flux function \widehat{q}_{h} on mesh edges such that

$$
\left\langle\widehat{\boldsymbol{q}}_{h}, \llbracket v \boldsymbol{n} \rrbracket\right\rangle_{\varepsilon_{h}}=\sum_{K \in \mathcal{T}_{h}}\left\langle q_{n, h}^{K}, v\right\rangle_{\partial K}, \quad \forall v \in W_{h}^{\mathrm{DG}} ?
$$

If such a $\widehat{\boldsymbol{q}}_{h}$ can be found, then we can get a good \boldsymbol{q}_{h} by the same local postprocessing, but now using \widehat{q}_{h} in place of the "bad" multivalued $q_{n, h}^{K}$:

$$
\boldsymbol{q}_{h} \in \boldsymbol{x} P_{k-1}+\boldsymbol{P}_{k-1}:\left\{\begin{array}{l}
\left\langle\boldsymbol{q}_{h} \cdot \boldsymbol{n}, v\right\rangle_{e}=\left\langle\widehat{q}_{h} \cdot \boldsymbol{n}, v\right\rangle_{e} \\
\left(-\boldsymbol{q}_{h}, \boldsymbol{r}\right)_{K}=\left(a \nabla U_{h}, \boldsymbol{r}\right)_{K}
\end{array}\right.
$$

for all $v \in P_{k-1}(e)$ and \boldsymbol{r} in $\boldsymbol{P}_{k-2}(K)$.

Single valued fluxes

Idea: X ?

- Is it possible to construct a single valued flux function \widehat{q}_{h} on mesh edges such that

$$
\left\langle\widehat{\boldsymbol{q}}_{h}, \llbracket v \boldsymbol{n} \rrbracket\right\rangle_{\varepsilon_{h}}=\sum_{K \in \mathcal{T}_{h}}\left\langle q_{n, h}^{K}, v\right\rangle_{\partial K}, \quad \forall v \in W_{h}^{\mathrm{DG}} ?
$$

$>$ Why not choose $\widehat{\boldsymbol{q}}_{h}$ in the space of "jumps", namely in

$$
\mathfrak{J}_{h}=\left\{\llbracket v \boldsymbol{n} \rrbracket: \quad v \in W_{h}^{\mathrm{DG}}\right\} ?
$$

Then obviously we can solve uniquely for $\widehat{q}_{h} \ldots$

Single valued fluxes

Idea: X X

- Is it possible to construct a single valued flux function \widehat{q}_{h} on mesh edges such that

$$
\left\langle\widehat{\boldsymbol{q}}_{h}, \llbracket v \boldsymbol{n} \rrbracket\right\rangle_{\varepsilon_{h}}=\sum_{K \in \mathcal{T}_{h}}\left\langle q_{n, h}^{K}, v\right\rangle_{\partial K}, \quad \forall v \in W_{h}^{\mathrm{DG}} ?
$$

\gg Why not choose $\widehat{\boldsymbol{q}}_{h}$ in the space of "jumps", namely in

$$
\mathfrak{J}_{h}=\left\{\llbracket v \boldsymbol{n} \rrbracket: \quad v \in W_{h}^{\mathrm{DG}}\right\} ?
$$

Then obviously we can solve uniquely for $\widehat{q}_{h} \ldots$
\gg However, when we did that, we got garbage ...

Boundary layers

If we choose $\widehat{\boldsymbol{q}}_{h}$ in \mathfrak{J}_{h} and construct the flux \boldsymbol{q}_{h} then we observe high errors $\left|\boldsymbol{q}-\boldsymbol{q}_{h}\right|$ near the boundary, as seen in the following plots. . .

Run parameters are $a=1, f=0, \Omega=(0,1) \times(0,1), \Gamma_{D}=\{0\} \times(0,1)$, the polynomial degrees are $k=1$ and $\ell=k-1$ (for postprocessing), and the boundary conditions are set in such a way that the exact solution is $u(x, y)=1+x$.

Boundary layers

Boundary layers

$$
\left|\boldsymbol{q}-\boldsymbol{q}_{h}\right| \quad \text { Level } 2
$$

Boundary layers

$$
\left|\boldsymbol{q}-\boldsymbol{q}_{h}\right| \quad \text { Level } 3
$$

Boundary layers

Boundary layers

We saw that while the error is small far from the boundary, near the boundary it remains of order one. Therefore, we expect to see an order of convergence of $1 / 2$ in the L^{2}-norm.

	$k=1$		$k=2$		$k=3$	
h	error	order	error	order	error	order
$1 / 8$	$0.11 \mathrm{E}+00$	0.46	$0.62 \mathrm{E}-01$	0.41	$0.40 \mathrm{E}-01$	0.46
$1 / 16$	$0.77 \mathrm{E}-01$	0.48	$0.45 \mathrm{E}-01$	0.46	$0.29 \mathrm{E}-01$	0.48
$1 / 32$	$0.55 \mathrm{E}-01$	0.49	$0.32 \mathrm{E}-01$	0.48	$0.21 \mathrm{E}-01$	0.49
$1 / 64$	$0.39 \mathrm{E}-01$	0.50	$0.23 \mathrm{E}-01$	0.49	$0.15 \mathrm{E}-01$	0.50

We believe that such difficulties arise because the space of jumps do not have constant functions.
(2nd attempt dashed !\#\&!)

Fix?

Idea: $\times \times$? (3rd attempt)
Inspired by the form of DG fluxes, we set

$$
\widehat{\boldsymbol{q}}_{h}=\left\{\begin{array}{lr}
-a \nabla U_{h}+\alpha \boldsymbol{J}_{h}, & \text { on } \partial \Omega \\
-\left\{a \nabla U_{h}\right\}-\boldsymbol{\beta} \llbracket a \nabla U_{h} \cdot \boldsymbol{n} \rrbracket+\alpha \boldsymbol{J}_{h}, & \text { on } \mathcal{E}_{h}^{\circ},
\end{array}\right.
$$

(on interior mesh edges).
where J_{h} in \mathfrak{J}_{h} is an unknown function to be determined by

$$
\left\langle\widehat{\boldsymbol{q}}_{h}, \llbracket v \boldsymbol{n} \rrbracket\right\rangle_{\varepsilon_{h}}=\sum_{K \in \mathcal{T}_{h}}\left\langle q_{n, h}^{K}, v\right\rangle_{\partial K}, \quad \forall v \in W_{h}^{\mathrm{DG}} .
$$

Here α and $\boldsymbol{\beta}$ are some parameters (typically $\boldsymbol{\beta} \equiv \mathbf{0}$ and $\alpha \equiv 1$), and

$$
\{v\}= \begin{cases}\frac{1}{2}\left(v^{+}+v^{-}\right) & \text {on } \varepsilon_{h}^{\circ}, \\ v & \text { on } \partial \Omega .\end{cases}
$$

Fix?

Idea: $\times \times$? (3rd attempt)
Inspired by the form of DG fluxes, we set

$$
\widehat{\boldsymbol{q}}_{h}=\left\{\begin{array}{lr}
-a \nabla U_{h}+\alpha \boldsymbol{J}_{h}, & \text { on } \partial \Omega \\
-\left\{a \nabla U_{h}\right\}-\boldsymbol{\beta} \llbracket a \nabla U_{h} \cdot \boldsymbol{n} \rrbracket+\alpha \boldsymbol{J}_{h}, & \text { on } \mathcal{E}_{h}^{\circ},
\end{array}\right.
$$

(on interior mesh edges).
where J_{h} in \mathfrak{J}_{h} is an unknown function to be determined by

$$
\left\langle\widehat{\boldsymbol{q}}_{h}, \llbracket v \boldsymbol{n} \rrbracket\right\rangle_{\varepsilon_{h}}=\sum_{K \in \mathcal{T}_{h}}\left\langle q_{n, h}^{K}, v\right\rangle_{\partial K}, \quad \forall v \in W_{h}^{\mathrm{DG}}
$$

Recall the space of "jumps" $\mathfrak{J}_{h}=\left\{\llbracket v \boldsymbol{n} \rrbracket: \quad v \in W_{h}^{\text {DG }}\right\}$.
\gg We need to solve a global problem on $\mathfrak{J}_{h} \ldots$

Fix?

Idea: $\times \times$? (3rd attempt)
Inspired by the form of DG fluxes, we set

$$
\widehat{\boldsymbol{q}}_{h}=\left\{\begin{array}{lr}
-a \nabla U_{h}+\alpha \boldsymbol{J}_{h}, & \text { on } \partial \Omega \\
-\left\{a \nabla U_{h}\right\}-\boldsymbol{\beta} \llbracket a \nabla U_{h} \cdot \boldsymbol{n} \rrbracket+\alpha \boldsymbol{J}_{h}, & \text { on } \mathcal{E}_{h}^{\circ},
\end{array}\right.
$$

(on interior mesh edges).
where J_{h} in \mathfrak{J}_{h} is an unknown function to be determined by

$$
\left\langle\widehat{\boldsymbol{q}}_{h}, \llbracket v \boldsymbol{n} \rrbracket\right\rangle_{\varepsilon_{h}}=\sum_{K \in \mathcal{T}_{h}}\left\langle q_{n, h}^{K}, v\right\rangle_{\partial K}, \quad \forall v \in W_{h}^{\mathrm{DG}}
$$

Recall the space of "jumps" $\mathfrak{J}_{h}=\left\{\llbracket v \boldsymbol{n} \rrbracket: \quad v \in W_{h}^{\text {DG }}\right\}$.
\gg We need to solve a global problem on $\mathfrak{J}_{h} \ldots$

Spaces of jumps

Idea: $X \quad \times \quad$? (3rd attempt)

$$
\begin{array}{ccc}
H^{1}(\Omega) / \mathbb{R} \stackrel{\text { grad }}{\longrightarrow} & H(\mathbf{c u r l}) \quad \xrightarrow{\text { curl }} & H(\operatorname{div}) \\
\llbracket v \boldsymbol{n} \rrbracket=0 & \llbracket \boldsymbol{v} \times \boldsymbol{n} \rrbracket=0 & \llbracket v \cdot \boldsymbol{n} \rrbracket=0
\end{array}
$$

Basis for jumps of corresponding FE spaces without the continuity constraints:

Cone basis

Wedge basis

Face basis

Spaces of jumps

Idea:

$$
\begin{array}{rccc}
H^{1}(\Omega) / \mathbb{R} \quad \stackrel{\text { grad }}{\longrightarrow} & H(\mathbf{c u r l}) & \xrightarrow{\text { curl }} & H(\operatorname{div}) \\
\llbracket v \boldsymbol{n} \rrbracket=0 & \llbracket \boldsymbol{v} \times \boldsymbol{n} \rrbracket=0 & \llbracket \boldsymbol{v} \cdot \boldsymbol{n} \rrbracket=0
\end{array}
$$

Basis for jumps of corresponding FE spaces without the continuity constraints:

Cone basis

Wedge basis

Face basis

Using the cone basis for \mathfrak{J}_{h}, we can solve a well-conditioned global problem for \boldsymbol{J}_{h}.

Conservative flux

Theorem. [cockburn, G., \& Wang] The flux \boldsymbol{q}_{h} obtained by our postprocessing of the CG solution has the following properties:

1. \boldsymbol{q}_{h} is conservative.
2. $\llbracket \boldsymbol{q}_{h} \cdot \boldsymbol{n} \rrbracket=0$.
3. $\left(\operatorname{div} \boldsymbol{q}_{h}, v\right)_{K}=(f, v)_{K} \quad$ for all $v \in P_{k-1}(K)$.
4. $\left\|\operatorname{div}\left(\boldsymbol{q}-\boldsymbol{q}_{h}\right)\right\|_{L^{2}(\Omega)} \leq C h^{k}|f|_{H^{k}(\Omega)}$.
5. If $a(\boldsymbol{x})$ is piecewise smooth and mesh is quasiuniform,

$$
\left\|\boldsymbol{q}-\boldsymbol{q}_{h}\right\|_{L^{2}(\Omega)} \leq C h^{k}\left(|\boldsymbol{q}|_{H^{k}(\Omega)}+|u|_{H^{k}(\Omega)}\right)
$$

Furthermore, it is possible to compute the flux \boldsymbol{q}_{h} in asymptotically optimal computational complexity.

