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A domain decomposition technigue applied to CG method
Hybridization as a domain decomposition technique.

The hybridized RT method

Developing hybridizable DG methods (H-DG methods)
Previous DG methods that are H-DG methods

New H-DG methods

Coupling techniques
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The Interface problem

In standard domain decomposition with two subdomains, the
Interface problem solves for the trace of the solution:

—Au=jf onf) ()
wu=0 ondQ

A function A in HééQ(F) satisfies

A=ulr <= (VHN VHu) = (f,Hyp)  Vu

where JH o denotes the harmonic extension of L.

We call A the “Lagrange multiplier” for reasons clear later.
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The Interface problem
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In standard domain decomposition with two subdomains, the
Interface problem solves for the trace of the solution:

A function A, in M, satisfies [Bramble, Pasciak & Schatz, 1986]

—Au=jf onf) ()
wu=0 ondQ

Ap = uhlr < (Vﬂfh)\h, Vﬂ-(h,u) — (f, S{hu) \V/,LL

where Hju denotes the discrete harmonic extension of (.

This holds for the continuous Galerkin (CG) finite element
method even when subdomains reduce to mesh elements.
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Static condensation

When subdomains reduce to elements, (4 o Q4 ...
2, Q)
Local lifting Q N -
— = = h
(VI Ay VH,p) = (f, Hpp). 4
—_—— e N—_—— A
a’h(Ahnu) bh(,u)

® )\, satisfies a variational formulation involving the bilinear

form
an(An, 1) = (QAn, Q)
with the element by element lifting Q.

# The matrix for A\, is the same as what one obtains by
static condensation of the CG method.

Do other methods have such Lagrange multipliers?
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Mixed methods
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Mixed methods for —Awu ={ give such )\, after “hybridization”.

1st order reformulation: The (nonhybridized) mixed method:

g+ Vu=0, onf) (qy,,v)— (up,dive) = 0,
divg=f, onf) (w,divq,) = (f,w).

u=0, onodfl (The Raviart-Thomas (RT) method.)

Polynomial spaces:
Pi.(T) = set of all polynomials of degree < k on element T,

V' ={v e H(div) : v|, € xP(7) + Pi(7) VT1},
Wy, ={v € L*(Q) : v|, € P.(7) V7}.

Then g, and v arein V"', while u;, and w are in W,
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The non-hybridized mixed method: gy, is in VhRT C H(div), <o
i (@nv)(undive) =0, lg, -] = 0.
(UJ div qh) (fa ) Normal‘fﬂjxjump

Hybridization is the process of removing continuity constraints
of finite element spaces without altering the solution:

(@n,v) — (up, divo) + (A, [vn-n]) =0,
(w,div qh) — (fv ”LU),
<[[qh°n]]7:u> = 0.

H
Now g}, is not sought in V*"C H (div), but rather| | =

in V"' ={v:v|; € xPy(7) + Pp(1) Vr}. (lgn-m Z/“[[qh n|.
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The non-hybridized mixed method: gy, is in VhRT C H(div), <o
?E (qhv U)_ (uhv diV’U) =0, \[[qh : nﬂ — (.
(UJ, div qh) — (fa w) Normal‘fﬂjxjump

Hybridization is the process of removing continuity constraints
of finite element spaces without altering the solution:

(a5, v) — (up, divo) + (A, [vp-n]) =0,
(w, div g;,) = (f,w),
(lay - n], 1) = 0.

The functions /¢ and ), are in (compare with the CG case)

M,*" = space of the jumps = {n: nl|. € Px(e), Vinterior mesh edges e}.
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Hybridized mixed method

The non-hybridized mixed method: gy, is in VhRT C H(div), <o
?E (qhv U)_ (uhv diV’U) =0, \[[qh : nﬂ — (.
<w7 div qh) — (fa w) Normal‘fﬂjxjump

Hybridization is the process of removing continuity constraints
of finite element spaces without altering the solution:

(@n,v) — (up, divo) + (A, [vn-n]) =0,
(w,div qh) — (fv ”LU),
<[[qh°n]]7:u> = 0.

®» g, and uy, of the hybridized method coincide with that of the mixed method.
® No longer the same as static condensation (extra information in Az,).
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THEOREM. Like in the CG case, the Lagrange multiplier of the
RT method Ay, is the unique function in V/;™ that satisfies

an(An, ) = bu(p), forall pp € M7,

where the bilinear form and the right hand side are defined by

an(n, 1) = (D, Qu)  and
br(p) = (f, Up), foralln, u € My".

Here the lifting map p — (Qu, Uw) is defined as follows: —
Q Q

= =
Compare with CG case: (VHL A\, VHL 1) = (f, Hpp).
ah(:\rh,u) bh‘(ru)

Different spaces, different liftings, but same structure. O >DG case
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The lifting maps
Definition of 11 — (Qu, Uw) for RT: On each element 7 of

the mesh, Qu|, € xPy(7) + Pr(7) and Upl|, € P(7)
form the unigue solution of

/Q,u-r—/u,u divr:—/ wr-n,
T T oT\0f2
/w divQu = 0,

forall r € Ry(7) and w € Py(7).

Thus, ay (7, 1) and by (1) are locally computable.
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Why hybridization?
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Hybridization allows us to retain all the advantages of mixed
methods, while removing its disadvantages:

9

Results in a symmetric positive definite system, unlike
mixed method equations.

Results in a smaller system. (It involves just )\, instead of
q,,up, and \p.)

Good for high order elements due to dimensional
reduction.

Once Ay is found, g;, and uy, can be found locally
(element by element).

Ay, can be used to get a higher order solution by
postprocessing [Armold & Brezzi, 1985].

Jay Gopalakrishnan Department of Mathematics [Slide 9 of 25]



Hybridize DG?
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#® Motivation: Remove the criticism that discontinuous
Galerkin (DG) methods have too many unknowns,
via the reduction of unknowns by hybridization.

# Difficulty: Hybridization of mixed methods proceeded by
relaxing the continuity constraints of finite element spaces.

But DG uses spaces with no continuity constraints, so no
constraint to relax ?!

#® Solution: Identify a “conservativity condition” . ..

Jay Gopalakrishnan Department of Mathematics [Slide 10 of 25]



—Au=1f

u=2~0

on ()
ono

Transmission conditions on 1™

Jay Gopalakrishnan

[u]

lg - n]

=0

=0 < Conservativity condition.
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—A’LL p— f on Q 4 Ql F QQ
u=0 onof)
Transmission conditions on 1
[u] =0
lg-n] =0 «— Conservativity condition.

Every method has discrete versions of these conditions ...
CG method RT method DG method
[u] =0 v ? ?

lg-n] =0 ? v ?
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Elements are endowed with local solvers.

Local solver:
RT

Local solver:
CG

Local solver:CG Local solver:RT

Local solver:RT
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Local solvers & Conservativity=5e

_‘:

Elements are endowed with local solvers.
Global methods are obtained using Lagrange multipliers.

[(a flux approx) - ] ~0 lg;, - n|=0
Conservativity conditions
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Derivation of DG methods

[Arnold, Brezzi, Cockburn & Marini, 2001]

q+Vu=0 =

/q-v—/udivv+/ u(v-n) =0
T T or
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Derivation of DG methods

[Arnold, Brezzi, Cockburn & Marini, 2001]

q+Vu=0 =

/q-v—/udivv+/ u(v-n) =0
T T oT\0f2
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[Arnold, Brezzi, Cockburn & Marini, 2001]

/qh-fv—/uhdiver/ up(v-n) =0
T T o1\ 012
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[Arnold, Brezzi, Cockburn & Marini, 2001]

/qh-v—/uhdiver/ up(v-m) =0
T T o1\0f2

divg=}f =

—/Vw°q+/ wq-n:/fw
T ot T
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[Arnold, Brezzi, Cockburn & Marini, 2001]

/qh-v—/uhdiver/ up(v-m) =0
T T o1\0f2

divg=}f =

_/Vw‘Qh_l_/ wﬁh-nszw
T oT T

Jay Gopalakrishnan Department of Mathematics [Slide 13 of 25]



Derivation of DG methods

[Arnold, Brezzi, Cockburn & Marini, 2001]

g+ Vu=0 —

/qh-v—/uhdivv+/ up(v-m) =0
T T o1\0f2

divg=}f =

_/Vw'Qh_l_/ wah-nszw
T oT T

Various DG methods are obtained by setting different
expressions for the numerical fluxes 1y, and q,.

The conservativity condition is implicit in the choice of q, . ..
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Derivation of DG methods

Equations of the scheme: Lagrange multiplier

Z(/th-fv —/Tuhdivv +/67\)\£;;2v-n> =0
(- fonae i) [

T

Add conservativity condition: Z /[[?q\h -nJu =0
e

edges e

® ¢, and uy are both in discontinuous spaces.
® ¢ needs to be prescribed.

® )\, = Uy is now an unknown and no longer needs to be
prescribed.
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To hybridize DG...

To hybridize such a DG scheme we need

® Local DG solvers

# Conservativity condition (v')

# Lagrange multiplier space (v')
Local solver:DG

Let us define the local solvers (liftings) ...
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DG local solvers

The DG lifting 1 — (Qu, Up) is defined by

/Q,u-v—/(u,u)divv:—/ Uo-n,
T T or

—/Vw-Qu+/ w flux-n =0
T ot

(The functions are in the DG spaces on the element 7.)

Different prescriptions of flux give different DG local solvers.

Jay Gopalakrishnan Department of Mathematics [Slide 15 of 25]



DG local solvers

The DG lifting 1 — (Qu, Up) is defined by

/Qu-v—/(u,u)divv:—/ Uo-n,
T T or

—/Vw-Qu+/ w@,u-n:()
T ot

(The functions are in the DG spaces on the element 7.)

Different prescriptions of Q,u give different DG local solvers.
o Q,LL = Qu + 7( Up — ,u) n — (LDG local solver)

r @u = —aV Uu +v(Up — p) m — (IP local solver)
etc.
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Hybridized DG scheme

THEOREM. The conservativity condition of the DG scheme
characterizes the Lagrange multiplier (numerical trace):

Z/[[Gh nju=0 <= ap(An,p) = bn(p)

where the bilinear form now involves the DG liftings,
an(n, ) :/QQU - Qpu+ Z/[[(Uu — 1)(Qn — Qn) - n],

and by, (-) has a similar expression involving the local solvers.

Moreover, q;, and uj can be recovered locally element by

element once Ay, is computed. () <RT case
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Hybridized DG scheme

THEOREM. The conservativity condition of the DG scheme
characterizes the Lagrange multiplier (numerical trace):

Z/[[Gh nju=0 <= ap(An,p) = bn(p)

where the bilinear form now involves the DG liftings,
an(n, ) :/QQU - Qpu+ Z/[[(Uu — 1)(Qn — Qn) - n],

and by, (-) has a similar expression involving the local solvers.

IMPORTANCE: Such hybridized DG schemes yield matrices of

size and sparsity identical to that of mixed methods. () < RT case
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The theorem holds for any method in the form

Z(/th-fv —/Tuhdivv +/87\)g;2’v-n> =0
£(-fren foan) - o

| gjfeﬂah-n

Thm: Z/[@'nﬂuzo = an(An, ) = br(p).

glves a unified framework for hybridizing CG, RT, and DG
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Examples

~ 1y
Different choices of Qu m“g'tﬁ%%s‘ e
give different methods: h
® Many DG schemes 53:
v Two scales
# The CG method H-LDG| of methods
#® The RT method L
Q
® The BDM method |
o P, & other non-| HCG| 2n=—aVUurr(lu—pn 1 /7
conforming methods 0 8 = 1/70 L
T 7 £S
3
= £

(As penalty v — o0 we get the hybridized CG method.)
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H-IP method= IP method

Eg.1: H-IP method = the hybridized DG
method with local solver set to IP.

N\, Local solver:
X IP

PROPOSITION. The numerical fluxes of
the H-IP method on interior edges (with
constant single valued penalty y) are

Local solver:IP %

Local solver:IP

A = Qunft — % la Vuy, - n],
g, = —{aVu,} i [up n. H-IP method

2

up, = Jur} = W +u")/2
= —{a Vuh}}>+7[[uh n|.

athematics [Slide 19 of 25]
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Q
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|
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Eg.2: The EWY method originally motivated by:

(CL Vu, VU)K - <&VU "n, U>8K — (f7 U)K

—div(aVu)=f — { (] = 0
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Ewing-Wang-Yang method

Eg.2: The EWY method originally motivated by:
(a Vu,Vvu)g — (aVu-n,v)sx = (f,v)K

—div(aVu)=f — { ] = 0

Now
[ul =0 <= > (u,nox =0
K

for all double valued functions 77 on interior

edges with n™ + 1~ = 0. This motivates:
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Ewing-Wang-Yang method

Eg.2: The EWY method originally motivated by:
(a Vu,Vvu)g — (aVu-n,v)sx = (f,v)K

—div(aVu)=f — { ] = 0

Now

[ul =0 <= ) (u,n)ox =0
K

for all double valued functions 77 on interior
edges with n™ + 1~ = 0. This motivates:

(> (@Vu ok = (o) = (vka,

' >

Z<u7 77>8K — O, \V/T]
\ K y,
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The EWY method

The equation of the EWY method: Find uj, and £}, satisfying

Z (a Vup, VU)g — Uy, v)oax — (N, un)ox
K

—ah((ly —aVuy-n), (n—aVv-n))ex = (f,v)q.

S
e [VERSITY OF
¥ FLORIDA

® uy and v are in P(K) for all mesh elements K.

® /5, is an approximation to a Vu - m from Py (e) on all
mesh edges e. On every interior edge, it is a
double-valued function whose branches from either side
satisfy é;; + Z}: = (). (Test function 7 is in the same
space.)
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The EWY method

The equation of the EWY method: Find uj, and £}, satisfying

Z (aVup, Vo) — (L, v)ox — (0, un)ox

—ah((ly —aVuy-n), (n—aVv-n))ex = (f,v)q.

PROPOSITION. The EWY method is a H-IP method.
Specifically, the solution 1, of the EWY method coincides with

that of an H-IP method when v~! = ah. Moreover
gh — _ah N

where @, is the numerical flux of this H-IP method.
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Coupling methods

Local solver:
LDG

Local solver:RT Suppose we set different local solvers

In different elements. How can we

couple them?
Local solver:IP

Using the hybridization framework, we can generalize previous
works on coupling methods [Perugia & Schitzau, 2001],
[Cockburn & Dawson, 2002], and mortaring [Wheeler & Yotov, 1998].
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To couple methods, we only have
to set the Lagrange multiplier
space M}, A choice of M}, implies a
conservativity condition.

For all 11 in My,

0 = ap(dn i) =bn(p).
(Q)\h,Q,u)

Here, on each element T, the lifting (Q\,)|, is defjn
using the local solver set on that element (e.g. LDG, RT, IP).
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To couple methods, we only have
to set the Lagrange multiplier
space M}, A choice of M}, implies a
conservativity condition.

For all 11 in My,

0 = an(An, 1) = bnlp).

® Weakly conservative coupling: [q;, - n| ¢ M;,.

# Strongly conservative coupling: [q, - n| € Mj,.

Jay Gopalakrishnan
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Mortar techniques

meshes.

DG We can couple methods
“ even across non-matching

“VA‘ We consider one example.
(e
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Set M, as follows:

# Choose M), functions on a DG-RT interface as the traces
from either the DG or the RT side (arbitrarily).

#® On CG-DG or CG-RT interface, must choose M/}, as the
trace from CG side.
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Mortar techniques

RT

yutl Wn
TN L
vis S
‘?A%i&y Graph of a typical function in M),

%

THEOREM. With this choice of )M}, to couple CG, DG, and RT
methods, there is a unique solution \;, € M, to the composite
variational equation

ah()\h, ,u) — bh(,u), for all ©n € My,
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I Given two conservative
RT ° methods, in order to couple

\

. them across a nonmatching
\ interface conservatively, we
1
+ should enforce

lg), - n]=0.

Therefore, we should choose M}, such that
S [l nln=0. Vpe M, = [@-nl-0,

(Must use the mesh formed by vertices from both sides: expect bad conditioning.)
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Conclusion

#® Hybridization brings a new point of view to FEM.
o Traditional FEM construction: Design degrees of freedom

suitable to enforce continuity across elements.

» Hybridized FEM construction: Focus on solvers within an
element without regard to continuity. Then choose “Lagrange multipliers”

or a “conservativity condition”.

® Itis possible to hybridize some DG methods.

#® Such DG methods are competitive with mixed methods in the number of

unknowns.

#® Can couple various methods

# within a conforming mesh, or across non-matching mesh interfaces, in

exactly conservative, or weakly conservative fashion.
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