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The linear elasticity system

σ − Cε(u) = 0 in Ω, (constitutive law)

divσ = f in Ω, (equilibrium equation)

u = 0 on ∂Ω, (kinematic boundary condition)

σt − σ = 0 in Ω, (angular momentum conservation).

Notations:

σ stress tensor (symmetric)
u displacement vector
ε(u) strain tensor = (grad u + (grad u)t)/2

C elasticity tensor (fourth order)

(All differential operators are applied row-wise.)
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Traditional and mixed approaches

Pure displacement formulation: (Eliminate σ.)

div (Cε(u) ) = f

Hellinger-Reissner principle: (Solve a system for σ and u.)

{
Dσ − ε(u) = 0

divσ = f

Here D = C−1. E.g., for an isotropic material C−1σ = ε(u) reads as

ε(u) =
1 + ν

E
σ − ν

E
(trσ)δ ≡ Dσ

where ν = Poisson ratio and E = Young’s modulus.
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Why mixed approach?

There are several compelling reasons to pursue mixed methods:

Gives a direct and hopefully more accurate approximation for the
stress σ, which is often the quantity of interest.

Works for materials near the incompressible limit (does not “lock”).
[Stenberg, 1988], [Arnold, Douglas & Gupta, 1984]

Suited for plasticity problems where elimination of stress variable is
difficult. [Brezzi, Johnson & Mercier, 1977]

However, to quote from the recent review [Arnold, Falk & Winther, 2010],
mixed methods for linear elasticity. . .

“. . . proved very elusive. Indeed, one of the motivations of the pioneering
work of [Raviart & Thomas, 1977] on mixed finite elements for the
Laplacian, was the hope that the solution to this easier problem would pave
the way to such elements for elasticity, and there were many attempts to
generalize their elements to the elasticity system. . . ”
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Symmetry via a Lagrange Multiplier

Dσ − ε(u) = 0 in Ω, (constitutive law)

divσ = f in Ω, (equilibrium equation)

u = 0 on ∂Ω, (kinematic boundary condition)

σt − σ = 0 in Ω, (angular momentum conservation)

where

σ stress tensor
u displacement vector
ε(u) strain tensor = (grad u + (grad u)t)/2
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Symmetry via a Lagrange Multiplier

Dσ − ε(u) = 0 in Ω, → Dσ − grad (u) + ρ = 0

divσ = f in Ω, (equilibrium equation)

u = 0 on ∂Ω, (kinematic boundary condition)

σt − σ = 0 in Ω, (angular momentum conservation)

where

σ stress tensor
u displacement vector
ε(u) strain tensor = (grad u + (grad u)t)/2
ρ rotation tensor = (grad u− (grad u)t)/2
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Symmetry via a Lagrange Multiplier

Dσ − ε(u) = 0 in Ω, → Dσ − grad (u) + ρ = 0

divσ = f in Ω, (equilibrium equation)

u = 0 on ∂Ω, (kinematic boundary condition)

σt − σ = 0 in Ω, (angular momentum conservation)

Variational problem with weakly imposed symmetry: Find σ,u,ρ such that

(Dσ, v) + (u, div v) + (ρ, v) =0,

(divσ,ω) =(f,ω),

(σ,η) =0,

∣∣∣∣∣∣∣

σ, v ∈ H (div,Ω)

u,ω ∈ L2(Ω)

ρ,η ∈ skw(L2(Ω))

for all v,ω,η in the appropriate spaces.
skw(·) = skew-symmetric part

(·, ·) = L2-inner product
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Two 2nd order systems

Laplace’s equation Elasticity system

c q + grad p = 0

div q = f

Dσ − ε(u) = 0

divσ = f

σt − σ = 0

(c q, v) + (p, div v) =0

(div q,w) =(f ,w)

(Dσ, v) + (u,div v) + (ρ, v) =0

(divσ,ω) =(f,ω)

(σ,η) =0

BDM element AFW element
[Brezzi, Douglas & Marini, 1985] [Arnold, Falk & Winther, 2007]

q ∈ Pk+1

p ∈ Pk

σ ∈ Pk+1

u ∈ Pk

ρ ∈ skw(Pk)

(Pk = polynomials of degree ≤ k) (skw(·) = skew-symmetric part)
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c q + grad p = 0
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Dσ − ε(u) = 0

divσ = f

σt − σ = 0

(c q, v) + (p, div v) =0

(div q,w) =(f ,w)

(Dσ, v) + (u,div v) + (ρ, v) =0

(divσ,ω) =(f,ω)

(σ,η) =0

BDM element AFW element
[Brezzi, Douglas & Marini, 1985] [Arnold, Falk & Winther, 2007]

q ∈ Pk+1

p ∈ Pk

σ ∈ Pk+1

u ∈ Pk

ρ ∈ skw(Pk)

RT element [Nédélec, 1980]
q ∈ Pk + xPk

p ∈ Pk
??

([Stenberg, 1988] came close!)
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Two new stress elements

The purpose of this talk is to introduce two analogues of the
Raviart-Thomas element in elasticity.
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The first new stress element

(Ciarlet-style) Definition: The finite element (K ,V ,Σ) is given by

K = tetrahedron, (geometry)

V = RTk + curl (curl (Ã k) bK ), (space)

Σ = {`µ, `ν, `η}, (degrees of freedom)

where the degrees of freedom are:

`µ(σ) =

∫

F
σn · µ, ∀µ ∈ Pk(F ), ∀ faces F (unit normal n),

`ν(σ) =

∫

K
σ : ν, ∀ν ∈ Pk−1(K ),

`η(σ) =

∫

K
σ : η, ∀η ∈ Ã k(K ), and

RTk = matrices with rows in Raviart-Thomas space Pk + xPk ,

Ã k = skw(Pk)/skw(Pk−1),

bK = “bubble matrix” (not standard bubbles!) defined later.
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Local results

Theorem (Unisolvency of the finite element)

The element (K ,V ,Σ) is unisolvent.

Theorem (Weakly symmetric commuting projection)

If Π denotes the interpolant of the new finite element, then it satisfies

divΠσ = Pdivσ

where P is the L2(K )-orthogonal projection into Pk(K ). Additionally,

(Πσ − σ,η) = 0,

for all skew-symmetric matrices η in skwPk .
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Global error estimates

Let P denote the L2-orthogonal projection into Pk .

Theorem (Optimal rates of convergence)

The error in the discrete solution components are bounded by projection
errors as follows:

‖σ − σh‖L2 + ‖ρ− ρ
h
‖L2 ≤ C

(
‖σ −Πσ‖L2 + ‖ρ− Pρ‖L2

)
.

Compare with the AFW element:

‖σ − σh‖L2 = O(hk+1) ← ok, since

Pk ⊂ our element ( Pk+1.

‖σ − σAFW
h ‖L2 = O(hk+1) ← suboptimal, as AFW uses full Pk+1.

We use AFW’s breakthrough analysis in our proofs.
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Global error estimates

Let P denote the L2-orthogonal projection into Pk .

Theorem (Optimal rates of convergence)

The error in the discrete solution components are bounded by projection
errors as follows:

‖σ − σh‖L2 + ‖ρ− ρ
h
‖L2 ≤ C

(
‖σ −Πσ‖L2 + ‖ρ− Pρ‖L2

)
.

Theorem (Superconvergence via duality)

If, for some s > 0, the regularity estimate

‖σ‖Hs + ‖u‖H1+s ≤ C‖f‖L2

holds for all f in L2(Ω), then

‖Pu− uh‖L2 ≤ C hs
(
‖σ −Πσ‖L2 + ‖ρ− Pρ‖L2

)
.
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How did we find the element?

These degrees of freedom are essential:

(A)





`µ(σ) =

∫

F
σn · µ, ∀µ ∈ Pk(F ), ∀ faces F ,

`ν(σ) =

∫

K
σ : ν, ∀ν ∈ Pk−1(K ),

(B)

{
`η(σ) =

∫

K
σ : η, ∀η ∈ Ã k(K ).

I (A) is needed for commutativity.
I (B) is needed for weak symmetry.

By standard arguments, (A) controls RTk . So we are motivated to
add just enough functions σ with

divσ = 0, σn|F = 0,

to allow d.o.f.s in (B). This is the “curl (curl (Ã k) bK )”-component.
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The bubble matrix

Definition of the bubble matrix:

bK =
3∑

`=0

λ`−3λ`−2λ`−1 (∇λ`) (∇λ`)t .

λ` denotes the barycentric coordinates.

Indices on λ’s are calculated mod 4.

bK is the sum of four rank-one matrices.

Lemma

∀ψ ∈ RTk(K ) :
divψ = 0,
ψ n|∂K = 0

}
⇐⇒

{
∃ v ∈ Pk−1(K ) such that
ψ = curl (curl (v)bK ).

Where did this bK come from. . . ? Motivation →
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The bubble matrix

Let v ∈ Pk+1. Then [G, Garćıa-Castillo & Demkowicz, 2005]

div v = 0, v · n|∂K = 0 ⇐⇒ v = curl (pk−1wij)

for some pk−1 in Pk−1 and a higher order Whitney form

wij = λi−3λi−2λi−1∇λi − λj−3λj−2λj−1∇λj .

But wij can be generated as follows:

Thus, v = curl (bK rk−1) for some vector polynomial rk−1 in Pk−1.

This motivates the introduction of the bubble matrix in the element.
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Some implementation aspects

The new element can be implemented using standard finite element
techniques. (Mappings are available for affine elements.)

Hybridization can be used to reduce to a small symmetric positive
definite system.

Postprocessing techniques can be used to enhance accuracy.
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Hybridization

Standard implementation results in a large indefinite system.

We recommend hybridized implementation:

(Dσh, v)Ωh
+(uh,div v)Ωh

+ (ρh, v)Ωh
+〈λh, vn〉∂Ωh

= 0,

(divσh,ω)Ωh
= (f,ω)Ωh

,

(σh,η)Ωh
= 0,

〈σhn,µ〉∂Ωh
= 0,

Notations: Differential operators are applied piecewise, and

(ω, v)Ωh
=
∑

K∈Ωh

∫

K
ωv , 〈ω, v〉∂Ωh

=
∑

K∈Ωh

∫

∂K
ωv .

The new functions λh and µ are on mesh faces and are in

Mh = {µ : µ|F ∈ Pk(F ), ∀ mesh faces F ,µ|∂Ω = 0}.
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Hybridization

Standard implementation results in a large indefinite system.

We recommend hybridized implementation:

(Dσh, v)Ωh
+(uh,div v)Ωh

+ (ρh, v)Ωh
+〈λh, vn〉∂Ωh

= 0,

(divσh,ω)Ωh
= (f,ω)Ωh

,

(σh,η)Ωh
= 0,

〈σhn,µ〉∂Ωh
= 0,

Theorem (Elimination of all interior element unknowns)

There are locally computable, mesh-dependent, forms ah(µ,γ) and bh(µ)
such that λh is the unique solution of

ah(λh,µ) = bh(µ), for all µ ∈Mh.

The functions σh,uh,ρh can be computed locally (element by element)

once λh is found.
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Postprocessing

We can use Stenberg’s postprocessing: [Stenberg, 1988]

Compute uh,? (element by element) in Pk+1(K ) satisfying

(grad uh,?, gradω)K = (Dσh + ρh, gradω)K , ∀ω ∈ Pk+1(K )/Pk(K ),

(uh,?,w)K = (uh,w)K , ∀w ∈ Pk(K ).

Theorem (Enhanced accuracy by postprocessing)

Suppose u is in Hk+2(Ω) and the full regularity assumption holds. Then

‖u− uh,? ‖L2(Ω) ≤ C h k+2 |u|Hk+2(Ω).
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Second new stress element

K = tetrahedron, (geometry)

V = Pk + curl (curl (Ã k) bK ), (space)

Σ = {`µ, `ν, `η}, (degrees of freedom)

where the degrees of freedom are:

`µ(σ) =

∫

F
σn · µ, ∀µ ∈ Pk(F ), ∀ faces F (unit normal n),

`ν(σ) =

∫

K
σ : ν, ∀ν ∈ Nk−1(K ) ≡ Nédélec space of the first kind

≡ P`−1(K ) + S`(K )

`η(σ) =

∫

K
σ : η, ∀η ∈ Ã k(K ).

Here, as before, Ã k = skw(Pk)/skw(Pk−1) and bK = the bubble matrix.
Changes with the first element are highlighted in red.
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Results for the second element

The second element is unisolvent .

Like the first element, its interpolant Π2 commutes :

div (Π2 σ) = P(divσ).

Unlike the first element, its interpolant is not weakly symmetric
always.

But when stress divergence is discrete , it has a weak symmetry.

Thus we are able to push through an error analysis and obtain
optimal error estimates :

‖σ − σh‖L2 + ‖ρ− ρ
h
‖L2 ≤ C

(
‖σ −Π2 σ‖L2 + ‖ρ− Pρ‖L2

)
.

The second method can be hybridized , just like the first.

A superconvergence estimate for a projection of displacement error
can be proved.

The postprocessing can be used to enhance displacement accuracy.
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Comparison of some 3D mixed elements

W(K) (displacements) V(K) (stresses) A (K) (rotations)

[Stenberg 1988]
Pk−1(K) Pk(K) + curl (Pk−1(K)λ0λ1λ2λ3) skwPk(K) k ≥ 1

[Arnold, Brezzi & Douglas 1984] continuous
peers P0(K) RT0(K) + curl (P0(K)λ0λ1λ2λ3) skwP1(K) k = 0

[Arnold, Falk & Winther 2007]
afw Pk(K) Pk+1(K) skwPk(K) k ≥ 0

Our first element
Pk(K) RTk(K) + curl ((curl Ã k(K))bK ) skwPk(K) k ≥ 1

Our second element
Pk−1(K) Pk(K) + curl ((curl Ã k(K))bK ) skwPk(K) k ≥ 1

Jay Gopalakrishnan 19/22



Comparison of some 3D mixed elements

W(K) (displacements) V(K) (stresses) A (K) (rotations)

[Stenberg 1988]
Pk−1(K) Pk(K) + curl (Pk−1(K)λ0λ1λ2λ3) skwPk(K) k ≥ 1

[Arnold, Brezzi & Douglas 1984] continuous
peers P0(K) RT0(K) + curl (P0(K)λ0λ1λ2λ3) skwP1(K) k = 0

[Arnold, Falk & Winther 2007]
afw Pk(K) Pk+1(K) skwPk(K) k ≥ 0

Our first element
Pk(K) RTk(K) + curl ((curl Ã k(K))bK ) skwPk(K) k ≥ 1
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Hseih-Clough-Toucher grids

Assumption (Hseih-Clough-Toucher grids)

In either the 2D (triangular) or the 3D (tetrahedral) case, assume:

1 The mesh is obtained from a quasiuniform mesh after splitting each
of its elements into four elements by connecting the vertices of the
element to its barycenter.

2 In the 2D case, assume k ≥ 1.

3 In the 3D case, assume k ≥ 2.

and the P2–P1 element is stable. The triangulation Th is determined by from the uniform
square partition Qh of the unit square by subdividing each 1-square into four triangles by
connecting its vertices to the point midway between the center of the subsquare and its
bottom edge. See figure 4. Then the stability constant γh is positive and can be bounded
below independent of h.

Figure 4. Two triangulations for which the P2–P1

element is stable and a typical macroelement for the
first triangulation. The macroelements boundaries are
marked with dark lines for the second triangulation.

To prove this we shall use the macroelement covering theorem. As macroelement
covering we do not use Qh, but rather take Uh to be the set of all 2-squares. Note that Uh

satisfies the overlap property. For U ∈ Uh, we have dimV U
h = 50 and dim PU

h = 48. Direct
algebraic calculation (assisted by a computer algebra package) shows that NU

h consists only
of the trivial mode χU . Now if q ∈ Nh, then χUq ∈ NU

h , and hence q is constant on U .
Since this must be true for every U ∈ Uh, and they overlap, we conclude that q is constant
on Ω. This establishes the claim that there are no spurious pressure modes.

Since the local inf-sup constant γ̄U
h is clearly invariant under translation and dilation

of U , it is immediate that it is independent of U and h. To apply the macroelement
covering theorem it remains to verify the hypothesis (7). This is trivial in this case, since
MU

h + RχU = MU
h + NU

h = PU
h . Thus we obtain optimal convergence of both the velocity

approximation and the raw (unfiltered) pressure approximation.

Another stable mesh configuration can be obtained from any triangulation by connect-
ing the vertices of each triangle to the barycenter, thereby subdividing the triangle into
three. A simple computation shows that there are no spurious pressure modes. Taking
the triangles of the original triangulation as macroelements it is easy to deduce stability
from the macroelement partition theorem, and then optimal convergence of velocity and
pressure. Optimal convergence of the velocity for this element can be obtained using a
stream function since the C1 cubics on this mesh form the Clough-Tocher finite element
space, which has optimal approximation properties.
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Figure 1. The reference macro-element M0 (a unit tetrahedron).

It is understood that boldface letter P stands for a continuous piecewise-polynomial
space while the letter P stands for a discontinuous one. Let

o

Pk = Pk ∩H1
0 (Ω) = {v ∈ P0

k,h,Ω | v = 0 on ∂Ω},
o

P k = Pk ∩ L2
0(Ω) = {p ∈ P−1

k,h,Ω |
∫

Ω

p = 0}.

The mixed elements approximation to (1) in weak formulation is: Find uh ∈
o

Pk

and ph ∈
o

P k−1 such that

(2)
ν(∇uh,∇v)− (divv, ph) = (f,v)

(divuh, µ) = 0
∀v ∈

o

Pk,

∀µ ∈
o

P k−1.

The Babuška-Brezzi stability condition reads: there exists a constant C > 0 such
that

(3) sup
v∈

o
Pk,v#=0

(divv, p)
|v|1

≥ C‖p‖0 ∀p ∈
o

P k−1,

which ensures the convergence of the mixed elements solutions. In [11], it is shown
that the following “macro-element condition” is sufficient for (3) to be valid:

dim(NM ) = 1 for all M ∈Mh,(4)

where NM
def= {p ∈ P−1

k−1,h,Ω |(divv, p) = 0 ∀v ∈
o

P
0

k,h,M},
if k ≥ 3. The condition k ≥ 3 is only to guarantee that there is at least one degree
of freedom for the discrete velocity functions in the interior of each face triangle
of tetrahedron (cf. Lemma 3.3 in [11]). Under this condition, the analysis for the
2D case in [11] remains the same in 3D. In particular, to be rigorous, we can use
the polynomial interpolation result in [9] which defines precisely the interpolation
operator needed in the proof of Lemma 3.3 in [11]. We now verify the condition
(4), which only needs to be done on the reference macro-element.

Let M0 be the unit reference tetrahedron abcd at the origin, as depicted in Figure
1. We denote the bary-center (1

4 , 1
4 , 1

4 ) by e. To use bary-centric coordinates, we

Figure from [Arnold & Qin 1992] Figure from [Zhang 2005]
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Serendipitous exact symmetry

Theorem (Weak symmetry can yield exact symmetry)

For such grids, the mixed method with weakly imposed symmetry using

W(K ) = Pk−1(K ), V(K ) = Pk(K ), A (K ) = skwPk(K ),

is stable for k ≥ 2 (and yields optimal error estimates). Moreover, its
stress approximation σh is exactly symmetric.

Thanks: Professor Rick Falk

We prove this theorem by exploiting a connection between the
Stokes and elasticity systems.

We use the fact that the “Pk+1-Pk” element is a stable Stokes
element, as proved by [Arnold & Qin 1992] (2D) and [Zhang 2005] (3D).

Further examples of grids where this phenomena occur can be found:
It is enough to avoid certain “singular” mesh objects identified in the
early papers of [Scott & Vogelius 1985] and [Vogelius 1983].
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Conclusion

We presented new families of triangular and tetrahedral stress
elements for mixed methods in linear elasticity.

They have lesser degrees of freedom than other comparable elements.

They have better symmetry properties.

They yield optimal error estimates.

The solution can be obtained by solving one global symmetric positive
definite system and additional local operations (due to hybridizability).

Postprocessing techniques are available to increase displacement
accuracy (when solution is regular).

There are simple meshes where weakly symmetric methods
serendipitously yield exactly symmetric numerical stresses.
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