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The linear elasticity system

UF [FLORIDA

constitutive law)
equilibrium equation)

kinematic boundary condition)

~—~ ~~ ~

angular momentum conservation).

o—Ce(u)=0 in Q,
dive =f in Q,
u=20 on 01},
ocl—oc=0 in Q,
Notations:
o stress tensor (symmetric)
u displacement vector
€(u) strain tensor = (grad u + (grad u)')/2
C  elasticity tensor (fourth order)

(All differential operators are applied row-wise.)
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Traditional and mixed approaches UF [F{OR A

e Pure displacement formulation: (Eliminate o)
div(Ce(u)) =f

@ Hellinger-Reissner principle: (Solve a system for o and u.)
Do — €(u) =
dive

Here D = C~L. E.g., for an isotropic material C~'a = €(u) reads as

0
f

1—|—V0_ v
E — E

where v = Poisson ratio and E = Young's modulus.
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Why mixed approach? UF B5855A

There are several compelling reasons to pursue mixed methods:

@ Gives a direct and hopefully more accurate approximation for the
stress o, which is often the quantity of interest.

e Works for materials near the incompressible limit (does not “lock™).
[Stenberg, 1988], [Arnold, Douglas & Gupta, 1984]

@ Suited for plasticity problems where elimination of stress variable is
difficult. [Brezzi, Johnson & Mercier, 1977]

However, to quote from the recent review [Arnold, Falk & Winther, 2010],
mixed methods for linear elasticity. . .

“... proved very elusive. Indeed, one of the motivations of the pioneering
work of [Raviart & Thomas, 1977] on mixed finite elements for the
Laplacian, was the hope that the solution to this easier problem would pave
the way to such elements for elasticity, and there were many attempts to
generalize their elements to the elasticity system..."
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Symmetry via a Lagrange Multiplier UF [FiORIDA

Do — €(u) =0 in Q,  (constitutive law)
dive =f in Q,  (equilibrium equation)
u=0 ondQ, (kinematic boundary condition)
ocl—-o=0 in Q,  (angular momentum conservation)
where

o stress tensor
u displacement vector
€(u) strain tensor = (grad u + (grad u)')/2
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Symmetry via a Lagrange Multiplier UF [ GRT5A

Do — €(u) =0 in Q, — Do —grad(u)+p=0
dive =f in Q,  (equilibrium equation)
u=0 ondQ, (kinematic boundary condition)
ocl—-o=0 in Q,  (angular momentum conservation)
where

stress tensor

displacement vector

strain tensor = (gradu + (grad u)?)/2
rotation tensor = (grad u — (grad u)?)/2

c 19

i
> =
N—r
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Symmetry via a Lagrange Multiplier UF [ GRT5A

I
oo =™ o

Do — €(u
div

Q £
I

ol —

Q e
Il

— Do —grad(u)+p=0
(equilibrium equation)
(kinematic boundary condition)

(angular momentum conservation)

Variational problem with weakly imposed symmetry: Find o, u, p such that

(Dg,v) + (u, divy) +(p,v

for all v,w,n in the appropriate spaces.
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o,V € H(d1V7Q)
uw € L%(Q)
p.m € skw(L*(Q))

skw(-) = skew-symmetric part
(-,) = L?-inner product
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Two 2nd order systems

W‘UN'VEM”Y of

Laplace’s equation

Elasticity system

cq+gradp=0
divg="f

Do — e(u) =0
dive =f

ol—og=0

(cq,v) + (p,divv) =0
(divg, w) =(f, w)

(Da,v) + (u,divv) + (p,v) =0
=(

(dive,w) =(f,w)

(g,n) =0
BDM element AFW element
[Brezzi, Douglas & Marini, 1985] [Amold, Falk & Winther, 2007]
fo4 € P
a € P 2 e
u € P
p € P

(Px = polynomials of degree < k)

Jay Gopalakrishnan

p € skw(Py)

(skw(-) = skew-symmetric part)
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Two 2nd order systems

W‘UN'VEM”Y of

Laplace’s equation

Elasticity system

Do — e(u) =0
cq+gradp=0 .
di p dive =f
ivqg =
a ol—oc=0
Do,v) + (u,divv) + (p,v) =0
(ca,v) + (p,divv) =0 (e, + (. divy) + (g,v)
. (dive,w) =(f,w)
(divq, w) =(f,w)
(g,n) =0
BDM element AFW element
[Brezzi, Douglas & Marini, 1985] [Arnold, Falk & Winther, 2007]
e 2P
q € Piu z *3’§+1
€ :Pk u < k
g p € skw(Py)
RT element [Nédélec, 1980]
q € Pr+xPy o

p € Pk
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Two 2nd order systems

W‘UN!VERSITY of

Laplace’s equation

Elasticity system

Do — e(u) =0
cq+gradp=0 .
di p dive =f
ivqg =
a ol—oc=0
Do,v) + (u,divv) + (p,v) =0
(ca,v) + (p,divv) =0 (e, + (. divy) + (g,v)
. (dive,w) =(f,w)
(divq, w) =(f,w)
(g,n) =0
BDM element AFW element
[Brezzi, Douglas & Marini, 1985] [Arnold, Falk & Winther, 2007]
e 2P
q € Piu z *3’§+1
€ :Pk u < k
g p € skw(Py)
RT element [Nédélec, 1980]
q € Pr+xPy o

p € Pk
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([Stenberg, 1988] came close!)
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Two new stress elements

UF UNIVERSITY af

The purpose of this talk is to introduce two analogues of the

Raviart-Thomas element in elasticity.

Jay Gopalakrishnan

800 —
I AFW
B cGG

goof [L1GG

4007

2007

# Degrees of freedom per element

o 1 2 3 4 5
Polynomial degree (p)

Our elements have less unknowns
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The first new stress element UF [¥1 ORIDA

(Ciarlet-style) Definition: The finite element (K, V,X) is given by

K = tetrahedron, (geometry)
V = RT, + curl (curl (A ) by), (space)
Y= {ly, lv, ly}, (degrees of freedom)

where the degrees of freedom are:

(o) = /Fan -, Vi € Pr(F), Vfaces F (unit normal n),

ty(o) = / oiv, e 4 (K),
K

f,rl(g) = / o1, VT? EAk(K)a and
n P n
RT, = matrices with rows in Raviart-Thomas space Py + xPy,

Ay = skw(Py)/skw(P_y),
by = "bubble matrix” (not standard bubbles!) defined later.

8/22
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Local results UF I 5L6RT5A

Theorem (Unisolvency of the finite element)
The element (K, V,X) is unisolvent.

Theorem (Weakly symmetric commuting projection)

If IT denotes the interpolant of the new finite element, then it satisfies
divIll o = Pdivo

where P is the L?(K)-orthogonal projection into Py(K). Additionally,
(IIg—a,m) =0,

for all skew-symmetric matrices 1 in skw®.
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GIObaI error estimates W‘UN!VERSITYf

Let P denote the L2-orthogonal projection into P,.

Theorem (Optimal rates of convergence)

The error in the discrete solution components are bounded by projection
errors as follows:

lg —anlliz +llp—pylliz < C(llg — a2 + llp — Pplli2)-

o Compare with the AFW element:

lo — ayllie = O(KT) ok, since
Py C ourelement ¢ Py .

||0' O'hFW” 2 = O(hk+1) < suboptimal, as AFW uses full P ;.

@ We use AFW'’s breakthrough analysis in our proofs.
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GIObaI error estimates W‘UN!VERSITYf

Let P denote the L2-orthogonal projection into P,.

Theorem (Optimal rates of convergence)

The error in the discrete solution components are bounded by projection
errors as follows:

lg —anlliz +llp—pylliz < C(llg — a2 + llp — Pplli2)-

Theorem (Superconvergence via duality)

If, for some s > 0, the regularity estimate
lellns + llullgres < CJIF]] 2

holds for all f in L?(2), then

IPu—upll2 < CH ([le — T a2 +[lp - Ppll2)-
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How did we find the element? UF 8GR

@ These degrees of freedom are essential:

lu(o) = /Fo'n -, Vi € Pi(F), Vfaces F,

(A)
ly(o) = /KU v, Vv € P\ _4(K),

> (A) is needed for commutativity.
> (B) is needed for weak symmetry.

Jay Gopalakrishnan
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How did we find the element? UF 8GR

@ These degrees of freedom are essential:

lu(o) = /Fo'n -, Vi € Pi(F), Vfaces F,

(A)
/UZV Yv € Py_1(K),
K

)

> (A) is needed for commutativity.
> (B) is needed for weak symmetry.
@ By standard arguments, (A) controls RT,. So we are motivated to

add just enough functions o with

dive =0, on|r =0,

to allow d.o.f.s in (B). This is the “curl (curl (A ;) by )’ -component

Jay Gopalakrishnan
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The bubble matrix UF [¥1 ORIDA

RIDA

Definition of the bubble matrix:

3
b =Y Ae—shade—1 (V) (VA"
=0

@ )\, denotes the barycentric coordinates.
@ Indices on \’s are calculated mod 4.

@ b is the sum of four rank-one matrices.
Lemma

Vap € RTK(K) :

divap =0, — Jv € P Y(K) such that
Ynlgx =0 ¥ = curl (curl (v)by).

Where did this b, come from...? Motivation —

Jay Gopalakrishnan
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The bubble matrix UF 51555

o Letve ﬂ)k+1. Then [G, Garcia-Castillo & Demkowicz, 2005]
divv=0, v-njpxk=0 <= v =curl(p_1wj)
for some py_1 in Py_1 and a higher order Whitney form

Wi = Ai—3Aji—oAi—1 VA — )\j_3)\j_2)\j_1V)\j.

Jay Gopalakrishnan 13/22



The bubble matrix UF 51555

o Letve Tk_|_1. Then [G, Garcia-Castillo & Demkowicz, 2005]

divv=0, v-njpk=0 <= v =curl(p_1wj)
for some pi_1 in Py_1 and a higher order Whitney form
W) = )\,'_3)\,'_2)\,'_1V)\,' — )\J'_3/\J'_2)\J'_1V)\j.

@ But wjj can be generated as follows:

Wio = a( )\2)\3)\0V)\1(V)\1)t + )\3)\0)\1V)\2(V)\2)t ) . (V)\3 X V)\o)

Jay Gopalakrishnan
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The bubble matrix UF [¥1 ORIDA

o Letve ?k—|—1- Then [G, Garcia-Castillo & Demkowicz, 2005]

divv=0, v-njpk=0 <= v =curl(p_1wj)
for some pi_1 in Py_1 and a higher order Whitney form
wii = A\i_3Ai2Ai—1 VA — A3A 01 VA,
@ But wjj can be generated as follows:

Wio = a( )\2)\3)\0V)\1(V)\1)t + )\3)\0)\1V)\2(V)\2)t

F A0 VA(VA) + A A VA(VAo)t ) - (VA3 x Vo)

Jay Gopalakrishnan
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The bubble matrix UF 51555

o LetvePyyq. Then [G, Garcia-Castillo & Demkowicz, 2005]
divv=0, v-njpk=0 <= v =curl(p_1wj)
for some pi_1 in Py_1 and a higher order Whitney form
wii = A\i_3Ai2Ai—1 VA — A3A 01 VA,
@ But wjj can be generated as follows:

Wiy = a( )\2)\3)\0V/\1(V)\1)t + )\3)\0)\1V/\2(V)\2)t
F MMM VA(VA)E + A A VAG(VA)t ) - (VAs x Vo)

Terms in blue define the bubble matrix by.
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The bubble matrix UF [¥1 ORIDA

o Letve Py y. Then [G, Garcia-Castillo & Demkowicz, 2005]
divv=0, v-njpk=0 <= v =curl(p_1wj)
for some pi_1 in Py_1 and a higher order Whitney form
wii = A\i_3Ai2Ai—1 VA — A3A 01 VA,
@ But wjj can be generated as follows:

Wiy = a( )\2)\3)\0V)\1(V)\1)t + )\3)\0)\1V)\2(V)\2)t
F MMM VA(VA)E + A A VAG(VA)t ) - (VAs x Vo)

Terms in blue define the bubble matrix by.

@ Thus, v = curl (bkrk_1) for some vector polynomial rx_q in Py_1.
This motivates the introduction of the bubble matrix in the element.
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Some implementation aspects UF [FORIDA

@ The new element can be implemented using standard finite element
techniques. (Mappings are available for affine elements.)

@ Hybridization can be used to reduce to a small symmetric positive
definite system.

@ Postprocessing techniques can be used to enhance accuracy.
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Hybridization UF [F{ORTDA

@ Standard implementation results in a large indefinite system.
@ We recommend hybridized implementation:

(Da" v)a, +(u" divv)g, + (p",v)a,+(A", vn)sq, = 0,
(dngh,W)Qh - (faw)Qha
(c" n)a, =0,

<ghn7 M)aﬂh = 07

Notations: Differential operators are applied piecewise, and
(w,v)q, = Z / wv, (w, v)aq, = Z / wv.
KeQ, 'K KeQ, ’ oK
The new functions A" and p are on mesh faces and are in

M = {m:plre fpk(F), V mesh faces F, pu|opq = 0}.

Jay Gopalakrishnan
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Hybridization UF 058 T5A

@ Standard implementation results in a large indefinite system.
@ We recommend hybridized implementation:

(Dgh,y)gh +(uh, divv)q, + (gh,y)gh—i—()\h,yn)agh =0,
(divgh,w)gh = (f,w)q,,

(", n)a, =0,

(@"n, m)ag, =0,

Theorem (Elimination of all interior element unknowns)

There are locally computable, mesh-dependent, forms ap(p,y) and bp(p)
such that A" is the unique solution of

an(A", ) = bu(p), for all 1 € M".

The functions o, u", Bh can be computed locally (element by element)
once A" is found.
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UNIVERSITY of

Postprocessing UF [FiORIDA

We can use Stenberg’s postprocessing: [Stenberg, 1988]

Compute uf* (element by element) in P**1(K) satisfying

(gradu™*, gradw)k = (D" + p", gradw)k, Vw € PX*YK)/PH(K),
(u*, W)k = (u", W), Yw € PX(K).

Theorem (Enhanced accuracy by postprocessing)

Suppose u is in Hk+2(Q) and the full regularity assumption holds. Then

lu= w2y < Ch K2 Julpng).
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Second new Stress element W‘UNIVERS!TYf

K = tetrahedron, (geometry)
V = P* + curl (curl (A x) by), (space)
Y= {lp ly, ln}, (degrees of freedom)

where the degrees of freedom are:
lu(o) = /Fan “p, Ve Pr(F), Vfaces F (unit normal n),
ly(o) = /Ko- v, Vv e N“Y(K) = Nédélec space of the first kind
=P (K) + S(K)

En(a')—/Ko':n, VQEA;((K).

Here, as before, A, = skw(P,)/skw(P, ;) and b, = the bubble matrix.
Changes with the first element are h|gh||ghted in red.
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Results for the second element UF [¥1 ORIDA

@ The second element is _

o Like the first element, its interpolant I7, |COmMMULes:

div (I, o) = P(diveo).

@ Unlike the first element, its interpolant is _

always.
@ But when stress divergence is - it has a weak symmetry.
@ Thus we are able to push through an error analysis and obtain

lo —aulle+llp—p,llz < C(le —IL a2+ p—Ppl2).

@ The second method can be - just like the first.
o A estimate for a projection of displacement error

can be proved.

@ The _ can be used to enhance displacement accuracy.
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UNIVERSITY of

Comparison of some 3D mixed elements  UFIFfoRIDA

- (displacements) - (stresses) - (rotations)

[Stenberg 1988]

PYK) P(K) + curl (PFH(K)doAdds)  skwPh(K) k>1
[Arnold, Brezzi & Douglas 1984] continuous
PEERS POK) RTY(K) + curl (P°(K)AoAid2As)  skwP(K) k=0

[Arnold, Falk & Winther 2007]
AFW Pr(K) PH(K) skwP*(K) k>0

Our first element B
Pr(K) RT*(K) + curl ((curl A*(K))b,)  skwP*(K) k>1

Our second element .
PYK) PH(K) + curl ((curl A¥(K))by) skwP*(K) k>1

Jay Gopalakrishnan 19/22



Comparison of some 3D mixed elements  UF|

UNIVERSITY of

FLORIDA

- (displacements) - (stresses)

- (rotations)

[Stenberg 1988]

PHK)

P(K) + curl (P*H(K)AodihaAs)

[Arnold, Brezzi & Douglas 1984]

PEERS

P°(K)

RTO(K) + curl (P°(K)XoA1Aa)s)

[Arnold, Falk & Winther 2007]

AFW

PH(K)

Our first element

PH(K)

Our second element

g)k—l(K)

On special grids

Jay Gopalakrishnan

PHK)

?kJrl(K)

RTX(K) + curl ((curl A¥(K))by)

PX(K) + curl ((curl A¥(K))by)

P (K)

skwP*(K)
continuous
skwP(K)
skwP*(K)
skwP*(K)

skwP*(K)

skwP*(K)



Hseih-Clough-Toucher grids UF ¥ ORTDA

Assumption (Hseih-Clough-Toucher grids)

In either the 2D (triangular) or the 3D (tetrahedral) case, assume:

© The mesh is obtained from a quasiuniform mesh after splitting each
of its elements into four elements by connecting the vertices of the
element to its barycenter.

@ In the 2D case, assume k > 1.
© In the 3D case, assume k > 2.

Figure from [Arnold & Qin 1992] | Figure from [Zhang 2005]
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Serendipitous exact symmetry UF [FiORIDA

Theorem (Weak symmetry can yield exact symmetry)

For such grids, the mixed method with weakly imposed symmetry using
W(K) = PX1(K), V(K) = P“(K), A (K) = skwP*(K),

is stable for k > 2 (and yields optimal error estimates). Moreover, its
stress approximation o is exactly symmetric.

Thanks: Professor Rick Falk
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Serendipitous exact symmetry UF [FORIDA

Theorem (Weak symmetry can yield exact symmetry)

For such grids, the mixed method with weakly imposed symmetry using
W(K) = P“(K), V(K) = 24(K), = skwP(K),

is stable for k > 2 (and yields optimal error estimates). Moreover, its
stress approximation o is exactly symmetric.

@ We prove this theorem by exploiting a connection between the
Stokes and elasticity systems.

@ We use the fact that the "Pxy1-Px" element is a stable Stokes
element, as proved by [Arnold & Qin 1992] (2D) and [Zhang 2005] (3D).

o Further examples of grids where this phenomena occur can be found:

It is enough to avoid certain “singular” mesh objects identified in the
early papers of [Scott & Vogelius 1985] and [Vogelius 1983].
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Conclusion UFUNIVERS!TY of

@ We presented new families of triangular and tetrahedral stress
elements for mixed methods in linear elasticity.

@ They have lesser degrees of freedom than other comparable elements.
@ They have better symmetry properties.
@ They yield optimal error estimates.

@ The solution can be obtained by solving one global symmetric positive
definite system and additional local operations (due to hybridizability).

@ Postprocessing techniques are available to increase displacement
accuracy (when solution is regular).

@ There are simple meshes where weakly symmetric methods
serendipitously yield exactly symmetric numerical stresses.

Jay Gopalakrishnan 22/22



