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Axial symmetry

Γ0

Γ1

D
Ω 0

z

r

Ω −→ D

Significant computational savings (3D to 2D domain).

But numerical analyses face difficulties due to Γ0.
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Axisymmetric Laplace equation

Dirichlet problem on Ω Reduced problem on D

−∆U = f, on Ω

U = 0, on ∂Ω

(f is axisymmetric.)
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∂z2
= f, on D

u = 0, on Γ1

??? on Γ0
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Axisymmetric Laplace equation

Dirichlet problem on Ω Reduced problem on D

−∆U = f, on Ω

U = 0, on ∂Ω

(f is axisymmetric.)
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−

∂2u

∂z2
= f, on D

u = 0, on Γ1

??? on Γ0

For smooth functions φ, since ∂rφ is an even function of r,

∂rφ|Γ0
= 0
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Axisymmetric Laplace equation

Dirichlet problem on Ω Reduced problem on D

−∆U = f, on Ω

U = 0, on ∂Ω

(f is axisymmetric.)
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∂r

)
−

∂2u

∂z2
= f, on D

u = 0, on Γ1

∂ru = 0, on Γ0

Weak formulation: Find u ∈ V such that
∫

D

r(∂ru)(∂rv) + r(∂zu)(∂zv) drdz =

∫

D

fv r drdz

∀v ∈ V .
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Axisymmetric Laplace equation

Dirichlet problem on Ω Reduced problem on D

−∆U = f, on Ω

U = 0, on ∂Ω

(f is axisymmetric.)
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(
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)
−

∂2u

∂z2
= f, on D

u = 0, on Γ1

∂ru = 0, on Γ0

Weak formulation: Find u ∈ V such that
∫

D

r(∂ru)(∂rv) + r(∂zu)(∂zv) drdz =

∫

D

fv r drdz

∀v ∈ V ≡ {w ∈ L2
r(D) : ∂rw, ∂zw ∈ L2

r(D)︸ ︷︷ ︸
H1

r (D)

, w|Γ1
= 0}.
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Bilinear elements
Mesh D by square elements. Vh = bilinear F.E. subspace of V.
Exact solution u ∈ V :

ar(u, v) = (f, v)r, ∀v ∈ V.

Finite element approximation uh ∈ Vh:

ar(uh, vh) = (f, vh)r, ∀vh ∈ Vh.

Error analysis:

|u − uh|H1
r (D) ≤ inf

vh∈Vh

|u − vh|H1
r (D) (standard)

≤ |u − Πhu|H1
r (D) (non-standard Πh)

≤ Ch|u|H2
r (D) ≤ Ch‖f‖L2

r(D) (regularity).
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The interpolation operator
To overcome the problem that standard nodal
interpolation operator is ill-defined on H2

r (D),
we used the following Πh:

On elements K intersecting Γ0, (Πhv)|K is
defined to be the unique bilinear function sat-
isfying

� � � � � � � � � � � �� � � � � � � � � � �

� � � � � � � � � � � �� � � � � � � � � � �

r
=

0

Γ0

K

r
=

r 1

(Πhv)(r1, z0) = v(r1, z0),

(Πhv)(r1, z1) = v(r1, z1),∫ r1

0

ρ1/2(∂rΠhv)(ρ, z0) dρ =

∫ r1

0

ρ1/2∂rv(ρ, z0) dρ,

∫ r1

0

ρ1/2(∂rΠhv)(ρ, z1) dρ =

∫ r1

0

ρ1/2∂rv(ρ, z1) dρ.
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Background
To solve the resulting linear system, consider using multigrid
methods. Multigrid methods for problems with singular
coefficients have been studied previously:

For −
∂

∂x

(
a(x, y)

∂u

∂x

)
−

∂

∂y

(
b(x, y)

∂u

∂y

)
= f,

with a, b > 0, a = O(1), and b arbitrarily close to zero,
V-cycle with line relaxations converges at a uniform rate
[Bramble & Zhang, 2000], [Neuss, 1998].

Our study is motivated by [Börm & Hiptmair, 2001]: They
analyzed multigrid using both line relaxations and
semicoarsening for the Laplace equation in polar
coordinates on planar domains.
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Convergence of V-cycle
Because of the singular coefficients in our axisymmetric
equation

−
1

r

∂

∂r

(
r
∂u

∂r

)
−

∂2u

∂z2
= f

multigrid algorithms with line relaxations and semicoarsening
are usually suggested.

We prove that neither is necessary:

THEOREM. Under the regularity assumption, the standard
multigrid V-cycle (with point Gauß-Seidel or Jacobi smoother)
converges at a rate independent of mesh sizes.

The proof proceeds by using our previous finite element estimate in weighted

norms together with the abstract regularity based multigrid theory.
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Azimuthal Maxwell equations

3-D problem on Ω Reduced problem on D

curl curlu = f , on Ω,

div u = 0, on Ω,

n × u = 0, on ∂Ω.

Azimuthal case:

f = f(r, z)eθ.
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Azimuthal Maxwell equations

3-D problem on Ω Reduced problem on D

curl curlu = f , on Ω,

div u = 0, on Ω,

n × u = 0, on ∂Ω.

Azimuthal case:

f = f(r, z)eθ.

〈eθ〉
curl
−→ 〈er,ez〉

curl
−→ 〈eθ〉

Hence we seek u in the form

u(r, z)eθ. Department of Mathematics [Slide 8 of 16]
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Azimuthal Maxwell equations

3-D problem on Ω Reduced problem on D

curl curlu = f ,

div u = 0,

n × u = 0.

Azimuthal case:

f = f(r, z)eθ.

−∂r

(
1

r
∂r(ru)

)
− ∂zzu = f, on D

u = 0, on Γ1

u = 0, on Γ0

〈eθ〉
curl
−→ 〈er,ez〉

curl
−→ 〈eθ〉

Hence we seek u in the form

u(r, z)eθ.

ez

eθ
er

uu
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Weak formulation
Multiply by r and a test function v and integrate by parts:
∫

D

1

r
∂r(ru)∂r(rv) + r(∂zu)(∂zv) drdz

︸ ︷︷ ︸
aθ(u,v)

=

∫

D

fv r drdz

THEOREM. The form aθ(u, v) is coercive and continuous on
the space

V θ = {v ∈ H1
r (D) ∩ L2

1/r(D) : v|∂D = 0}.

Hence there is a unique solution to the weak formulation.

Note that 1

r
∂r(ru) = ∂ru +

u

r

exists in L2
r(D) if both ∂ru and u/r are in L2

r(D). Hence the space V θ .
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Try bilinear elements

Mesh D by squares. Set V θ
h = bilinear finite element

subspace of V θ. Let Πh denote the nodal interpolant.

THEOREM. For all smooth v,

‖v−Πhv‖aθ
≤ Ch

[
‖∂rrv‖L2

r(D)+|∂zv|H1
r (D)+

∣∣∣∣
1

r
∂r(rv)

∣∣∣∣
H1

r (D)

]
.
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Try bilinear elements

Mesh D by squares. Set V θ
h = bilinear finite element

subspace of V θ. Let Πh denote the nodal interpolant.

THEOREM. For all smooth v,

‖v−Πhv‖aθ
≤ Ch

[
‖∂rrv‖L2

r(D)+|∂zv|H1
r (D)+

∣∣∣∣
1

r
∂r(rv)

∣∣∣∣
H1

r (D)

]
.

But can we control the r.h.s. by data ?!
Even with full regularity, the Maxwell solution u is only so regular:

u and curlu ∈ H1(Ω)

=⇒ ∂zv and
1

r
∂r(rv) ∈ H1

r (D).
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Non-polynomial elements
Hence, we consider an alternate finite element space:

Ṽ θ
h = {vh ∈ V θ : vh|K ∈ 〈r,

1

r
, zr,

z

r
〉,∀elements K}.

The nodal interpolant Π̃θ
h of this space now satisfies an

estimate without the offending term ‖∂rrv‖L2
r(D):

THEOREM. For all smooth v,

‖v − Π̃θ
hv‖aθ

≤ Ch

[
|∂zv|H1

r (D) +

∣∣∣∣
1

r
∂r(rv)

∣∣∣∣
H1

r (D)

]
.

COROLLARY. The finite element approximation ũh ∈ Ṽ θ
h

satisfies the error estimate ‖u − ũh‖aθ
≤ Ch‖f‖L2

r(D).
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Return to bilinear elements
Nonetheless, in all our numerical experiments, the bilinear
elements performed as well as the non-polynomial elements:

It gave optimal finite element convergence rates.

It gave optimal V-cycle convergence rates.

But a theory was missing . . .

Since we know that for the nodal bilinear interpolant Πh,

‖u−Πhu‖aθ
≤ Ch

[
‖∂rru‖L2

r(D)+|∂zu|H1
r (D)+

∣∣∣∣
1

r
∂r(ru)

∣∣∣∣
H1

r (D)

]
,

perhaps this term is controllable after all . . .
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A regularity estimate
THEOREM. If u solves the weak formulation of the azimuthal
Maxwell equation, then

‖∂rru‖L2
r(D) + ‖∂r(

u

r
)‖L2

r(D) ≤ C‖f‖L2
r(D).

The proof proceeds by applying a Hardy inequality. One delicate issue is that

although

∂r(
u

r
) =

∂ru

r
−

u

r2
,

is in L2
r(D), the two terms on the right are not separately in L2

r(D) in general.

COROLLARY. If uh is the bilinear finite element approximation
of the solution u of the azimuthal Maxwell problem, then

‖u − uh‖aθ
≤ Ch‖f‖L2

r(D).
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Multigrid convergence
The only known previous results on multigrid convergence for
the azimuthal Maxwell equation was for algorithms using line
smoothings and semicoarsening.

Using our new approximation and regularity results, we show
that neither is necessary:

THEOREM. For the azimuthal Maxwell equation, under the
regularity assumption, the standard multigrid V-cycle (with
point Gauß-Seidel or Jacobi smoother) converges at a rate
independent of mesh sizes for both

the bilinear finite element discretization and

the non-polynomial finite element discretization.
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Numerical results

Bilinear elements 〈r, 1/r, z, z/r〉-elements

Laplace equation Maxwell equation Maxwell equation

J κ(BJAJ ) ‖I − BJAJ‖ar
κ(BJAJ ) ‖I − BJAJ‖aθ

κ(BJAJ ) ‖I − BJAJ‖aθ

2 1.13 0.12 1.08 0.08 1.08 0.08

3 1.19 0.16 1.17 0.14 1.17 0.14

4 1.20 0.17 1.20 0.17 1.20 0.17

5 1.21 0.17 1.21 0.17 1.21 0.17

6 1.21 0.17 1.21 0.17 1.21 0.17

7 1.21 0.17 1.21 0.17 1.21 0.17

8 1.21 0.17 1.21 0.17 1.21 0.17

9 1.21 0.17 1.21 0.17 1.21 0.17

10 1.21 0.17 1.21 0.17 1.21 0.17
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Conclusion
We proved simple finite element convergence estimates
for two boundary values problems:

axisymmetric Laplace equation (bilinear elements),

azimuthal Maxwell equation (two different elements).

We proved uniform convergence of V-cycle multgrid
algorithm for both these problems.

Only point smoothings are needed, line smoothings are
not necessary.

Work in progress:

The meridian Maxwell problem.

Axisymmetric PML.

Multigrid algorithms for these.
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