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Abstract This note describes an implementation of a discontinuous Petrov Galerkin
(DPG) method for acoustic waves within the framework of high order finite el-
ements provided by the software package NGSolve. A technique to impose the
impedance boundary condition weakly is indicated. Numerical results from this im-
plementation show that a multiplicative Schwarz algorithm, with no coarse solve,
provides a p-preconditioner for solving the DPG system. The numerical observa-
tions suggest that the condition number of the preconditioned system is independent
of the frequency k and the polynomial degree p.

1 A Petrov Galerkin formulation

We consider the Helmholtz equation modeling time harmonic acoustic waves in a
homogenous medium,

−∆u− k2u = f on Ω (1a)
u = 0 on ∂Ω , (1b)

Here we have considered the simplest Dirichlet boundary condition (postponing the
discussion of impedance boundary condition to later), and Ω is a polygonal (2D)
or polyhedral (3D) domain, partitioned into a simplicial finite element mesh Ωh.
When k2 is not an eigenvalue of −∆ , this problem has a unique solution. We want
to study its approximation by the so-called primal discontinuous Petrov Galerkin
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(DPG) method [4] (also cf. [1] and [2]). This approximation is based on a Petrov
Galerkin weak formulation.

The derivation of the formulation begins, as in other standard finite element for-
mulations, by multiplying the equation by a smooth enough complex-valued test
function v and integrating by parts. The difference in the DPG case is that v is
allowed to be discontinuous across element interfaces. Hence the appearance of in-
terelement fluxes is inevitable, i.e.,

∑
K∈Ωh

(∫
K

gradu ·gradv−
∫

K
k2uv−

∫
∂K

(n ·gradu)v
)
= ∑

K∈Ωh

∫
K

f v.

Here, n generically denotes the unit outward normal of any domain under consid-
eration, f is assumed to be square integrable (although this can be relaxed), and as
usual, the integral over ∂K must be interpreted as a duality pairing if u is not suffi-
ciently regular. Letting n ·gradu be an independent unknown, denoted by n ·q, this
leads to the following weak formulation: Find u ∈U and q ∈ Q such that

(gradu,gradv)Ωh − k2(u,v)Ωh −〈n ·q,v〉∂Ωh
= ( f ,v)Ω , ∀v ∈ Y, (2)

where (r,s)Ωh = ∑K∈Ωh
(r,s)K and (·, ·)D, for any domain D, denotes the complex

L2(D)-inner product, 〈`,w〉∂Ωh
= ∑K∈Ωh

〈`,w〉1/2,∂K where 〈`, ·〉1/2,∂K denotes the
action of a functional ` in H−1/2(∂K),

U = H1
0 (Ω), Y = ∏

K∈Ωh

H1(K), Q = H(div,Ω)
/

∏
K∈Ωh

H0(div,K).

Formulation (2) is clearly of the Petrov-Galerkin kind as the trial space X =U×Q is
different from the test space Y . Adapting the techniques in [3] and [4], it is possible
to prove that this weak formulation has a unique solution whenever k2 is not a cavity
resonance. However, the focus of this note is on practical implementation.

The method we shall implement is not based on the above Petrov-Galerkin form,
but rather on an equivalent mixed Bubnov-Galerkin form. To describe it, first let us
set the sesquilinear form b(·, ·) by

b((u,q),v) = (gradu,gradv)Ωh − k2(u,v)Ωh −〈n ·q,v〉∂Ωh

and the Y -inner product by

(y,v)Y = (grady,gradv)Ωh + k2(y,v)Ωh .

The equivalent mixed formulation is to find (ε,u,q) ∈ Y ×X such that

(ε,y)Y +b((u,q),y) = ( f ,y)Ωh (3a)
b((w,r),ε) = 0, (3b)

for all (y,w,r) ∈ Y ×X . One can show (see e.g., [5]) that the solution (u,q) of (2)
together with ε = 0 is the unique solution of (3).
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2 A DPG method for the Helmholtz equation

The DPG method we want to study is a Galerkin method obtained directly from (3),
i.e., the DPG approximation (εh,uh,qh) is in a discrete subspace Yh×Uh×Qh of
Y ×U×Q and satisfies

(εh,y)Y +b((uh,qh),y) = ( f ,y)Ωh (4a)
b((w,r),εh) = 0 (4b)

for all (y,w,r)∈Yh×Uh×Qh. (A different DPG method for the Helmholtz equation
based on an ultra-weak formulation can be found in [3].)

The discrete spaces are defined, for any degree p≥ 0, by

Yh = {v ∈ Y : v|K ∈ Pp+2(K),∀K ∈Ωh},
Uh = {w ∈U : w|K ∈ Pp+1(K),∀K ∈Ωh},

Qh = {r ∈ Q : q|K ∈ R∂
p(K),∀K ∈Ωh},

where Pp(K) denotes the space of polynomials of degree at most p on K and R∂
p(K)

is defined as follows. Recall that the Raviart-Thomas space in N space dimensions
(N = 2,3), namely Pp(K)N + xPp(K) where x ∈ RN is the coordinate vector, can
be split into a subspace R0

p(K) = Rp(K)∩H0(div,K) and a linearly independent re-
mainder R∂

p(K). The decomposition Rp(K) =R0
P(K)⊕R∂

p(K) depends on the choice
of the basis for Rp(K), but since the sesquilinear form b(·, ·) uses only the trace n ·q
of function q in Q, its value is independent of the choice of the basis representation.
The trace space of Rp(K) and R∂

p(K) coincide. Indeed, we may even use a space
other than the Raviart-Thomas space, as long as its traces coincide with that of the
Raviart-Thomas space of index p (i.e., polynomials of degree at most p on each
subsimplex of K).

3 The matrix form of the method

Let {v j},{wl},{rm} denote some bases for Yh,Uh, and Qh, respectively. Then, defin-
ing the matrices A,B,C by

Ai j = (v j,vi)Y = ∑
K

(∫
K

gradv j ·gradvi + k2
∫

K
v jvi

)
Bl j = b((wl ,0),v j) = ∑

K

(∫
K

gradv j ·gradwl− k2
∫

K
v jwl

)
Cm j = b((0,rm),v j) =−∑

K

(∫
∂K

v j n · rm

)
,



4 Jay Gopalakrishnan and Joachim Schöberl

we can write the matrix form of the DPG method asA B∗ C∗

B 0 0
C 0 0

xε

xu
xq

=

F
0
0

 , (5)

where ∗ denote conjugate transpose. Clearly, the system is Hermitian. It is possible
to prove that this discrete system inherits invertibility from the well-posedness of the
exact problem whenever Yh is of sufficiently high degree, but in practice we choose
Yh to be of degree p+2 as already stated.

Since functions in Yh have no continuity constraints across element interfaces, the
matrix A is block diagonal (in addition to being Hermitian and positive definite) with
one block per element, and is thus easy to invert. Therefore, the preferred matrix
system for inversion is not (5), but rather its positive definite Schur complement
computed as follows. With L∗ = [B∗ C∗] and xuq∗ = [x∗u x∗q], rewriting (5) as[

A L∗

L 0

][
xε

xuq

]
=

[
F
0

]
, (6)

and eliminating xε , we obtain

(LA−1L∗)xuq = LA−1F. (7)

This is a Hermitian and positive definite system whenever (5) is invertible. Hence we
are able to use the preconditioned conjugate gradient method as an iterative solver
even though the original Helmholtz problem is indefinite. The remaining component
xε can be recovered by xε = A−1(F−L∗xuq).

4 Implementation in NGSolve

We use several facilities provided by the package NGSolve [7, 8] to implement the
above DPG method. First, the spaces Yh and Uh are standard finite element spaces
provided by the classes L2HighOrderFESpace and H1HighOrderFESpace,
respectively. The space Qh can be implemented by removing all interior degrees of
freedom from the NGSolve class HDivHighOrderFESpace. A built-in facility
for this removal is provided via the option -orderinner which allows one to
restrict the degree of interior shape functions (those with zero normal traces on the
element boundary). One then makes a compound space using these components. All
of this can be done in the standard pde-input file format of NGSolve, as shown:

# Finite element spaces (p = 2 case)
fespace fs1 -type=l2ho -order=4 -complex # Yh
fespace fs2 -type=h1ho -order=3 -complex # Uh
fespace fs3 -type=hdivho -order=2 -complex -orderinner=1 # Qh
fespace fs -type=compound -spaces=[fs1,fs2,fs3] -complex # Yh x Uh x Qh
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Next, we must define all the sesquilinear forms in (4). The first form (·, ·)Y
in (4a) can be input in the pde-file using the built-in “integrator” classes laplace
and mass provided in NGSolve. The b(·, ·) form however is nonstandard and
is not available in NGSolve. We therefore exploit NGSolve’s extensibility via
shared library additions by writing new integrator classes. They use the dynamic
polymorphism in NGSolve, inheriting properties from the abstract NGSolve class
BilinearFormIntegrator. The new integrator classes are used to build a
shared library of forms often needed in DPG methods. With the integrators for
the b(·, ·) form made (subsumed under [custom integrators] below) we can
now define the sesquilinear form:

bilinearform dpg -fespace=fs -linearform=lf -nonsym -eliminate_internal
[custom_integrators] # b( (u,q), v)
laplace (1.0) --comp=1 # (grad e, grad v)
mass (k*k) --comp=1 # k*k* (e,v)

Of particular interest to us is the option -eliminate internal above. Each
degree of freedom in an NGSolve finite element space is marked if it is “inner” or
not. An inner degree of freedom on one element does not interact with another in-
ner degree of freedom on another element. By virtue of this stored information, the
code can automatically perform static condensation of all inner degrees of freedom.
In particular, all degrees of freedom of L2HighOrderFESpace within an ele-
ment are marked to be inner. This means that the elimination of xε that allowed
us to go from (5) to (7) is automatically performed by the code once the flag
-eliminate internal is given. To be precise, in addition to condensing (5)
to (7), the code does a further condensation that eliminates all inner degrees of free-
dom of Uh.

After condensation by -eliminate internal,

• u-degrees of freedom on interfaces remain ( ),
• q̂-degrees of freedom on interfaces remain ( ),
• all other interior unknowns are eliminated ( ).

Fig. 1 Schematic of degrees of freedom left after condensation

Thus the condensed system consists only of degrees of freedom of Qh (which
by definition are associated only to element interfaces) and those degrees of free-
dom of Uh at the element interfaces (see Figure 1). This final system, being another
Schur complement of the Hermitian positive definite Schur complement (7), is Her-
mitian and positive definite. We solve it by conjugate gradients, preconditioned by
the Schwarz procedure discussed later.

This and other input files in their entirety as well as the code for the DPG shared
library is publicly available at [https://github.com/jayggg/DPG].

https://github.com/jayggg/DPG
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5 The impedance boundary condition

Previously, we built the Dirichlet boundary condition (1b) into the weak formulation
by essentially imposing it in U . Now suppose we are given, instead of (1b), the
impedance condition

∂u
∂n
− ı̂ku = 0, on ∂Ω ,

where ı̂ denotes the imaginary unit. Then instead of setting U to H1
0 (Ω), we now set

U =H1(Ω). Using the flux approximation given explicitly in the DPG formulations,
the impedance boundary condition can be rewritten as

n ·q− ı̂ku = 0, on ∂Ω . (8)

Being a constraint tying two of the component spaces, a natural implementation
would be by a Lagrange multiplier technique. However, this can result in loss of
positive definiteness.

We pursue a different approach that imposes condition (8) weakly. The idea is to
use the test function components w and r, i.e., we would like to impose the additional
conditions

∫
∂Ω

(n · qh − ı̂kuh)n · r = 0 and
∫

∂Ω
(n · qh − ı̂kuh)w = 0 without over-

constraining the system. Since εh is an approximation to zero, we are motivated to
build an approximate version of these conditions into the system by adding the term

±
∫

∂Ω

(n ·qh− ı̂kuh)(n · r− ı̂kw) (9)

to the left hand side of (4b). This then perturbs the original system (6) to[
A L∗

L D

][
xε

xuq

]
=

[
F
0

]
. (10)

This system can also be condensed to get an analogue of (7):

(LA−1L∗−D)xuq = LA−1F. (11)

Now the choice of the sign in (9) becomes important: If we want (11) to be positive
definite, we must choose the negative sign in (9) so that D is negative semidefinite.

6 The condensed Schwarz preconditioner

We now study a preconditioner for (11) constructed using a block Gauss-Seidel op-
erator with overlapping blocks. The block Gauss-Seidel algorithm is standard, so we
omit all details, except the specification of the blocks for our application. The blocks
consists of all degrees of freedom after condensation, associated to a vertex patch.
In 2D, one such block consists of all degrees of freedom of Uh and Qh associated
to the edges which meet at a single vertex (see Figure 2). The block corresponding
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• Set up diagonal blocks from the condensed DPG
matrix, with vertex patches blocks, as indicated.

• One preconditioner action:

– Perform one block Gauss-Seidel relaxation
sweep with these blocks.

– Perform a reverse block Gauss-Seidel sweep,
using the same blocks, but in the reverse order,
for symmetrization.

– The result is the action of the linear operator
used as a preconditioner in conjugate gradients.

Fig. 2 Gauss-Seidel blocks

to a vertex in the 3D case consists of all degrees of freedom on all the mesh edges
and the mesh faces containing that vertex. There are as many blocks as there are
mesh vertices. The block Gauss-Seidel iteration multiplicatively updates an iterate
by block inverses of certain residuals. These block inverses exist because they are
principal submatrices of the positive definite matrix in (11). The action of our pre-
conditioner consists simply of a block Gauss-Seidel relaxation algorithm followed
by its adjoint given by the same relaxation done in the reverse block ordering.

7 Numerical results

We now report a result that is typical of our numerical experience with this method.
We simulated a plane wave propagating in the x-direction on a uniform 4× 4 tri-
angular mesh of the unit square by providing the needed non-homogenous data to
the impedance boundary condition. After assembling the condensed system (11),
we used conjugate gradients, preconditioned by the above-mentioned block Gauss-
Seidel algorithm, as an iterative solver. We stopped the iterations when successive
iterates differed by less than 10−10. The number of iterations are reported in Table 1.
Each column of the table reports iteration counts obtained using a fixed wavenum-
ber k = 2π × nλ where nλ (indicated atop the table) is the number of wavelengths
that fit into the unit square.

The grayed out entries give iteration counts as well as indicate that computed so-
lution did not resolve the wave. As is typical of all finite element type methods for
wave problems, when meshes are too coarse, waves are not resolved. However, un-
like many other methods, the DPG system remains solvable, no matter how coarse
the mesh is. Moreover, the preconditioned conjugate gradient algorithm seems to
converge at a degree-independent rate even on such coarse meshes. The bold entries
also give the iteration numbers, but additionally indicate that in these cases the con-
verged solution clearly showed the wave features. For example, in the k = 2π × 4
case, it appears that we need at least p = 8 to resolve the wave. Note that we are able
to go to polynomial degrees as high as 32 due to the good conditioning properties
of the integrated Legendre shape functions implemented in NGSolve.
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Schwarz preconditioner
degree number of waves

p 2 4 8 16
1 16 14 12 11
2 22 13 12 10
4 28 27 12 12
8 28 30 32 11
16 29 30 30 32
32 29 30 30 30

Diagonal preconditioner
degree number of waves

p 2 4 8 16
1 63 59 54 51
2 180 178 166 121
4 261 468 416 398
8 328 612 *** ***
16 662 894 *** ***
32 *** *** *** ***

Table 1 Preconditioned conjugate gradient iteration counts

For comparison, we provide results from a simple diagonal preconditioning in a
separate table. Clearly, the results from the block preconditioner are better. Entries
marked “***” indicate that stopping criterion was not met even at 1000 iterations.

Our main conclusion from these observations is that the preconditioner seems to
be uniform in p and k. (Similar observations were reported in [6] using an analogous
preconditioner within GMRES for a different method. That method yields an indef-
inite system, while the current DPG method yields positive definite systems, so we
may reliably use conjugate gradients on the latter.) Other (unreported) experiments
in other wave directions in 2D, as well as in 3D tetrahedral meshes, all appear to
confirm the uniformity of the preconditioner on k and p. Finally, we note that the
preconditioner is not uniform in mesh size h. One usually needs to use a “coarse”
solution to get h-uniformity. But for wave propagation, a good coarse problem is
still a subject of debate.
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7. J. SCHÖBERL, NETGEN – An advancing front 2D/3D-mesh generator based on abstract

rules, Comput. Visual. Sci, 1 (1997), pp. 41–52.
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