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Abstract. This paper shows that the test spaces in discontinuous Petrov Galerkin (DPG)

methods can be reduced on rectangular elements without affecting unisolvency or rates of con-

vergences. One reduced case is obtained by decreasing the polynomial degree of a standard test

space in both coordinate directions by one. A further reduction of test space by almost another

full degree is possible if one is willing to implement a nonstandard test space. The error analysis

of such cases is based on an extension of the second Strang lemma and an interpretation of the

DPG method as a nonconforming method. The key technical ingredient in obtaining unisol-

vency is the identification of a discontinous piecewise polynomial on the element boundary that

is orthogonal to all continuous piecewise polynomials of one degree higher.

1. Introduction

The development of discontinuous Petrov Galerkin (DPG) methods [6, 7] opened an avenue

to construct methods whose stability is inherited from a residual minimization in a dual norm.

When the minimization is carried out in a discrete (or approximate) dual norm, discrete stability

depends on the choice of the finite dimensional spaces used. A few possible options for such

choices on rectangular meshes are the subject of this short note.

We consider the primal DPG method introduced in [8] applied to a model Dirichlet problem.

For triangular elements, it yields (a) an approximation uh to the solution u of the Laplace

equation, which is of degree ku on each mesh element, and (b) an approximation to the flux q

which is of degree kq on each mesh edge. The degrees ku and kq form the so-called “trial space”

degrees and the method’s convergence rates depend on them. In addition, the method uses a

discrete “test space,” on which the stability of the method depends. The variational equations

are imposed using these test functions, which are in a space YhpKq on each mesh element K. In

the DPG method, these test functions have no interelement continuity constraints.

We are interested in making YhpKq as small as we can, while maintaining stability and rates

of convergence. This has been the theme of at least two previous works. In the context of the

so-called “ultraweak” DPG formulation on simplicial meshes, this issue was studied in [5]. In the

context of the primal DPG method, which we shall be concerned with in this paper, the same

issue was studied in [1] for triangular meshes. In fact, this study can be viewed as a continuation

of [1] for rectangular element shapes. For the reader’s convenience, the comparable findings of [1]

are reproduced in Table 1. The table shows a comparison of a reference case (Case 1) with a

reduced test space case (Case 3). We see that while maintaining the degrees ku and kq (and

thus maintaining the same rate of convergence), it is possible to reduce the dimension of the

element test space YhpKq.

Key words and phrases. Discontinuous Petrov Galerkin, DPG method, Strang lemma, unisolvency,

quadrilateral.
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ku kq dim YhpKq }u´ uh}H1pΩq

Case 1 of [1]: k ` 1 k pk ` 3qpk ` 4q{2 Ophk`1q

Case 3 of [1], even k only: k ` 1 k pk ` 2qpk ` 3q{2 Ophk`1q

Table 1. Known results in the triangular case (k ě 0)

Results of this paper are in the same spirit, but for rectangular elements. In this case, ku
represents the polynomial degree of u within each element in each coordinate. Precise definitions

of the involved spaces appear later, but to provide an immediate summary of the results proved

in later sections, we present Table 2.

ku kq dim YhpKq }u´ uh}H1pΩq

Case A k ` 1 k ` 1 pk ` 4q2 Ophk`1q

Case B k ` 1 k pk ` 3q2 Ophk`1q

Case C k ` 1 k pk ` 2q2 ` 1 Ophk`1q

Table 2. Summary of the cases studied in this paper (k ě 0) and the conver-

gence rate findings for rectangular elements

Comparing Tables 1 and 2, we observe a few interesting differences between the triangular

and rectangular cases. First, in the rectangular case, we are able to reduce the dimension of the

space YkpKq more than in the triangular case without altering the provable convergence rates.

This requires the construction of a nonstandard polynomial test space, as we shall see. Second,

unlike the triangular case, there are no even-odd discrepancies in the results of the rectangular

case. The main new technical ingredient in this paper is motivated by the classical work of [12]

and involves the identification of a null space on the boundary of a square element. This gives

insight into a smaller test space that can be used without losing solvability.

We begin by describing the DPG method and the three cases of Table 2 precisely in Section 2.

The motivation for the reduced degree cases becomes clearer in Section 3 where unisolvency of

the various cases is discussed. Section 4 proves that each of the three cases produces a numerical

approximation uh that converges at the same rate. We conclude in Section 5 by reporting results

of numerical experiments that match the theory.

2. Three choices of spaces on rectangular meshes

We study the DPG approximation to the Dirichlet problem

´∆u “ f on Ω, (1a)

u “ 0 on BΩ. (1b)

Here Ω is a bounded open Lipschitz polygon in R2 that is meshed by Ωh, a geometrically

conforming, finite element mesh of rectangles. Note that since the boundary BΩ is Lipschitz,

Ω is not on both sides of BΩ at any point of BΩ. Let h “ maxKPΩh
diampKq. We assume for

simplicity that all element sizes are comparable, i.e., there are fixed constants c1 and c2 such

that c1h ď diampKq ď c2h for all K P Ωh. Finally, let BΩh denote the collection of all element

boundaries BK for all elements K in Ωh,
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2.1. The formulation and the method. It is based on the following variational formula-

tion [4, 8]: Find pu, q̂nq P X0 ˆ X̂ satisfying

pgradu, grad vqΩh
´ xq̂n, vyBΩh

“ pf, vqΩh
, @v P Y, (2)

where

X0 “ H1
0 pΩq,

Y “ H1pΩhq “ tv : v|K P H
1pKq, @K P Ωhu ”

ź

KPΩh

H1pKq,

X̂ “ H´1{2pBΩhq “

"

η P
ź

K

H´1{2pBKq : D r P Hpdiv, Ωq such that

η|BK “ r ¨ n|BK , @K P Ωh

*

.

Here and elsewhere n denotes the unit outward normals on the boundary of mesh elements.

Above, the derivatives are calculated element by element, and we have used the following ab-

breviated notations for summing over mesh elements:

pr, sqΩh
“

ÿ

KPΩh

pr, sqK , x`, wyBΩh
“

ÿ

KPΩh

x`, wy1{2,BK ,

where p¨, ¨qK denotes the L2pKq-inner product and x`, ¨y1{2,BK denotes the action of a functional

` in H´1{2pBKq. The space X̂ “ H´1{2pBΩhq is normed, as in [12], by

}r̂n}X̂ “ inf
 

}r}Hpdiv,Ωq : r P Hpdiv, Ωq such that r̂n|BK “ r ¨ n|BK @K P Ωh
(

. (3)

Throughout, all function spaces are over R. The wellposedness of this formulation was first

proved in [8]. The proof was later considerably simplified in [4].

The DPG discretization uses finite element subspaces Xh,0 Ă X0, X̂h Ă X̂, and Yh Ă Y .

Setting

bp pw, r̂nq, v q “ pgradw, grad vqΩh
´ xr̂n, vyBΩh

, (4)

we can formulate the equations of the DPG method as follows: Find eh P Yh, uh P Xh,0, and

q̂n,h P X̂h satisfying

peh, vqY ` bp puh, q̂n,hq, vq “ pf, vqΩh
@v P Yh, (5a)

bp pw, r̂nq, ehq “ 0 @w P Xh,0, r̂n P X̂h. (5b)

Here pr, sqY “ pgrad r, grad sqΩh
`pr, sqΩh

denotes the Y -inner product. We will also often write

X “ X0 ˆ X̂, Xh “ Xh,0 ˆ X̂h.

2.2. Three cases. We want to study the effect of various finite element space choices in (5). To

this end, we define certain standard spaces of polynomials [11] and one non-standard polynomial

space [12]. Let PkpDq to be the set of polynomials of total degree at most k, restricted to the

domain D, whenever k ě 0, and the empty set when k ă 0. Let Qk,kpDq be the space of

polynomials of the form

ppx, yq “
ÿ

0ďi,jďk

cijx
iyj

on D. For the interface variables we need local polynomial spaces defined on the element

boundary BK:

PrpBKq “ tp P L
2pBKq : p|E P PrpEq for all edges E of Ku,
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Also set Qk,kpΩhq “ tv : v|K P Qk,kpKq for all K P Ωhu and set PkpBΩhq to the set of functions

v on YKPΩh
BK having the property that v|E P PkpEq for all edges of BK and for all K P Ωh.

Using these, the discrete spaces Xh “ Xh,0 ˆ X̂h are set below for various cases. In all cases,

Yh “
ź

KPΩh

YhpKq

but the element space YhpKq is not the same for all cases.

For any integer k ě 0, we consider these three cases:

Case A Case B Case C

Xh,0 “ Qk`1,k`1pΩhq XX0 Xh,0 “ Qk`1,k`1pΩhq XX0 Xh,0 “ Qk`1,k`1pΩhq XX0,

X̂h “ Pk`1pBΩhq X X̂ X̂h “ PkpBΩhq X X̂ X̂h “ PkpBΩhq X X̂,

YhpKq “ Qk`3,k`3pKq YhpKq “ Qk`2,k`2pKq YhpKq “ Q`1k`1,k`1pKq,

where Q`1k,kpKq is the pullback of the following space defined on the reference element K̂ “

r0, 1s ˆ r0, 1s.

Definition 2.1. If k is odd, set

ρpx, yq “ rxp1´ xq ´ yp1´ yqs
”

pxp1´ xqqpk´1q{2 ` pyp1´ yqqpk´1q{2
ı

,

and if k is even, set

ρpx, yq “ rxp1´ xq ´ yp1´ yqsp2x´ 1qp2y ´ 1q
”

pxp1´ xqqpk´2q{2 ` pyp1´ yqqpk´2q{2
ı

.

Then define

Q`1k,kpK̂q “ Qk,kpK̂q ` spanpρq.

Definition 2.1 is motivated by a similar space used in [12] which they use for different pur-

poses (to construct a hybrid method that is not a DPG method). When there is potential for

confusion between the cases, we will explicitly indicate the case as a superscript in the notation

for underlying spaces and operators, e.g., XC
h and Y C

h denote the spaces of Case C. Note that

the spaces in the Cases A and B are standard. Case C however requires implementation of

the nonstandard space Q`1k,k,pK̂q. This is not difficult since the space is obtained by adding to

the standard Qk,kpK̂q-space a single interior basis function (ρ). Case C is the most attractive

practically, because it has the lowest number of degrees of freedom among the three cases. The

rationale behind Definition 2.1 and the choice of spaces will become clear in the next section.

3. Unisolvency

In this section, we will show the unisolvency of the DPG method (5) in each of the above-

mentioned three cases. Although unisolvency alone does not give us a complete error analysis,

it serves to motivate our choices of the spaces in the three cases. Let Bh : Xh Ñ Y ˚h be the

operator generated by the form in (4), i.e.,

pBhxhqpyq “ bpxh, yq, @xh P Xh, y P Yh.

Similarly, let B̂h : X̂h Ñ Y ˚h be defined by

pB̂hẑhqpyq “ ´xẑh, yyBΩh
, @ẑh P X̂h, y P Yh. (6)
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It is obvious from the structure of the mixed method (5) that

(5) is uniquely solvable ðñ Bh is injective. (7)

Furthermore, by [1, Theorem 2.8],

Bh is injective ðñ B̂h is injective. (8)

Using these facts, we will show below that Bh, in each of the three cases (namely BA
h , B

B
h , and

BC
h ), is injective.

3.1. The standard case (Case A). Among the previously presented cases of DPG methods,

we consider Case A to be the standard case for rectangular elements, because it is suggested by

the analysis of [2].

Specifically, in [2, Lemma 4.3], they exhibited a bounded Fortin operator for rectangular

meshes Πk : H1pΩhq Ñ Qk`2,k`2pΩhq satisfying

pΠkz, vqK “ pz, vqK @v P Qk,kpKq, (9)

xΠkz, wyBK “ xz, wyBK @w P PkpBKq (10)

for all K P Ωh. This implies, by integration by parts element by element, that

bppwh, rn,hq, Πk`1v ´ vq “ 0, @ pwh, rn,hq P Qk,kpKq ˆ PkpBKq, (11)

for all v P H1pΩhq. Equation (11) verifies a basic assumption in one of the known techniques [3, 9]

of error analysis.

The injectivity of BA
h in Case A follows from (11). Indeed, if BA

h xh “ 0, then bpxh, yhq “ 0 for

all yh P Yh, so in particular, bpxh, Πk`1yq “ 0. But this implies, due to (11), that bpxh, yq “ 0

for all y P Y . Hence the wellposedness of the undiscretized problem implies xh “ 0.

As we shall see next (in the remaining cases), it is possible to reduce the space Yh without

losing the injectivity of Bh.

3.2. Unisolvency of Case B. In this case, we reduce the degree of YhpKq by one. To prove

that Bh remains injective, first observe from Case A that (11), with k ´ 1 in place of k, implies

bppwh, rn,hq, Πkv ´ vq “ 0, (12)

for all wh P Qk,kpΩhq XX0, rn,h P PkpBΩhq X X̂ and v P H1pΩhq. Since the corresponding Bh is

injective, by (8), the associated B̂h is also injective, namely if rn,h P PkpBΩhq satisfies

xrn,h, vhyBΩh
“ 0, @vh P Qk`2,k`2pΩhq, (13)

then rn,h “ 0. But this is exactly the same as the injectivity of B̂B
h . Using (8) again, we conclude

that BB
h is injective.

3.3. Unisolvency of Case C. This case is more involved. The degree of YhpKq is further

reduced by one, but an extra dimension is added. To understand the need for this extra di-

mension, consider an rn,h P PkpBKq, which as in (13), satisfies xrn,h, vhyBK “ 0, but now only

for all vh P Qk`1,k`1pKq. This is a square system of equations for rn,h because dimPkpBKq

and the number of nontrivial equations both equal 4pk ` 1q. Unfortunately, this system has a

one-dimensional null space as seen in Lemma 3.1 below. The addition of an appropriate extra

equation – which corresponds to the addition of an extra dimension to YhpKq – will remove this

null space, as we shall see below.
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´
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q
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‘
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´
j k
p1
´
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´
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(c) Odd k

Figure 1. The unit square element and sign patterns of νk on its boundary

Let Jα,βk pŝq denote the family of Jacobi polynomials, indexed by degree k, orthogonal with

respect to the weight function ω̂pŝq “ p1´ ŝqαp1` ŝqβ on the interval r´1, 1s. Let us recall the

properties specific to the case α “ β “ 1. Mapping to r0, 1s, set

jkpsq “ J1,1
k p2s´ 1q, 0 ď s ď 1.

Then, with respect to the mapped weight ωpsq “ sp1´ sq, we have

ż 1

0
ωpsq jkpsq ppsq ds “ 0, @p P Pk´1pr0, 1sq. (14)

Let s1, . . . , sk´1 denote the roots of jkpsq. Its well known that the nodes of the Gauss-Lobatto

quadrature on r0, 1s are 0 “ s0 ă s1 ă ¨ ¨ ¨ ă sk´1 ă sk “ 1. If the corresponding weights are wi,

then the quadrature is exact for polynomials of degree at most 2k ´ 1, i.e.,

ż 1

0
ωpsqppsq ds “

k
ÿ

i“0

wippsiq, p P P2k´1pr0, 1sq. (15)

Next, consider the unit square K̂ “ r0, 1s ˆ r0, 1s in the px, yq-plane with vertices a0 “ p0, 0q,

a1 “ p1, 0q, a2 “ p1, 1q, a3 “ p0, 1q and edges e0, . . . , e3 as shown in Figure 1. By mapping jk to

the four edges of the unit square K̂, we define a function νk on BK̂ as follows.

νkpx, yq “

$

’

’

’

’

&

’

’

’

’

%

jkpxq, 0 ă x ă 1, y “ 0,

jkp1´ xq, 0 ă x ă 1, y “ 1,

´ jkpyq, x “ 0, 0 ă y ă 1,

´ jkp1´ yq, x “ 1, 0 ă y ă 1.

The next result is essentially contained in [12, Lemma 8], but we state and prove it in a different

form more suitable for our purposes.

Lemma 3.1. Suppose µ P Pk´1pBK̂q satisfies
ż

BK̂
µv “ 0, @v P Qk,kpKq. (16)

Then, there is a c P R such that

µ “ c νk´1.
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Proof. Let w P Qk´2,k´1pK̂q. In (16), put v “ xp1´ xqp1´ yqwpx, yq. Then

0 “

ż

BK
µv “

ż

e0

xp1´ xqp1´ yqµpx, 0qwpx, 0q dx.

Hence, there is a scalar c0 P R such that µpx, 0q “ c0jk´1pxq – see (14). Arguing similarly on

remaining edges, we find that there are constants ci P R such that µ|ei “ cijk´1 for each edge ei.

Next, let v0 P Pkpr0, 1sq satisfy v0psiq “ 0 for all i “ 1, . . . , k and v0ps0q “ 1. Then, putting

vpx, yq “ v0pxqv0pyq in (16), and using (15), we obtain

0 “

ż

e0Ye3

µv “

ż 1

0
c0jk´1pxqv0pxqv0p0q dx`

ż 1

0
c3jk´1pyqv0p0qv0pyq dy

“ pc0 ` c3qjk´1p0qv0p0q
2w0.

Thus we obtain a condition at the vertex a0, namely c0 ` c3 “ 0, i.e., the two limits of µ at a0
are equal in magnitude and opposite in sign. Using a smilar argument at the remaining vertices,

we find that sum of the two limits of µ at each vertex ai must be zero.

Recall that J1,1
k is even or odd, depending on whether k is even or odd, respectively. Hence,

fitting together the mapped orthogonal polynomials on each edge, reflecting about edge mid-

points as needed to satisfy the sign change constraint at each vertex (see Figure 1), we find that

µ must coincide with a scalar multiple of νk´1. �

Lemma 3.2. Suppose ρ is any smooth scalar function on K̂ that is linearly independent from

Qk,kpK̂q and satisfies
ż

BK̂
νk´1ρ ‰ 0. (17)

Then the only µ P Pk´1pBK̂q that satisfies
ż

BK̂
µv “ 0 @v P Qk,kpK̂q ‘ spanpρq (18)

is the zero function.

Proof. By Lemma 3.1, equation (18) for all v P Qk,kpK̂q implies that µ “ cνk´1 for some c P R.

Hence, putting v “ ρ in (18), we find that

c

ż

BK̂
νk´1ρ “ 0.

Due to (17), this implies that c “ 0, so µ ” 0. �

Clearly, one can design many functions ρ that satisfy the conditions of Lemma 3.2. One

possible choice is the one we have settled on in Definition 2.1. We conclude this section by

summarizing the results in the next theorem.

Theorem 3.3. In Cases A, B, and C, the DPG method (5) is uniquely solvable.

Proof. We have already indicated the proofs in Cases A and B. To complete the proof for Case C,

we verify that the ρ set in Definition 2.1 satisfies the conditions of Lemma 3.2. Indeed, for that

ρ, the integral of νk´1ρ over all edges of BK̂ are equal, and

ż

BK̂
νk´1ρ “

$

’

’

’

&

’

’

’

%

4

ż 1

0
xp1´ xq jk´1pxq rxp1´ xqs

pk´1q{2 dx, if k is odd,

4

ż 1

0
xp1´ xq jk´1pxq p1´ 2xq rxp1´ xqspk´2q{2 dx, if k is even.
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The functions rxp1´ xqspk´1q{2 and p1 ´ 2xq rxp1´ xqspk´2q{2, for odd and even k respectively,

are polynomials of strict degree k ´ 1, hence the integrals on the right hand side above cannot

vanish. Thus having verified the conditions of Lemma 3.2, its conclusion implies that B̂C
h is

injective. By (8), we conclude that the DPG method is uniquely solvable in Case C. �

3.4. A necessary condition for unisolvency. DPG methods are usually designed with a

rich enough space Yh that makes Bh injective. We quantify this as a condition on the degrees

of freedom that is necessary for unisolvency of (5):

Proposition 3.4. The system (5) is uniquely solvable only if

dimpXhq ď dimpYhq. (19)

Proof. Let nX “ dimpXhq and nY “ dimpYhq. By (7), unisolvency of (5) implies that Bh is

injective. Therefore, the nY ˆnX stiffness matrix of Bh, denoted by B, has the trivial nullspace.

By the rank-nullity theorem, rankpBq “ nX . Now the result is obvious from the fact that

rankpBq ď minpnX , nY q. �

Since we have already verified unisolvency of all the cases previously, the necessary condi-

tion (19) must hold in each case. To provide more insight into this condition, we now count the

degrees of freedom to provide an alternate verification that the necessary condition holds in the

two nonstandard cases we studied.

Proposition 3.5. In Cases B and C on a mesh of nK rectangular elements, we have

dimpYhq ´ dimpXhq ě 2nK ´ 1.

Proof. Decomposing Ω into disjoint connected components, it suffices to prove the stated in-

equality on each component. Hence without loss of generality, we assume that Ω is a multiply

connected domain with m holes. Furthermore, we may restrict ourselves to the Yh of Case C

since it the smaller of the two cases. We will prove that in Case C

dimpYhq ´ dimpXhq “ 2nK `m´ 1. (20)

Let nV , nE , n
B
V , and nBE denote the number of vertices, edges, boundary vertices, and boundary

edges, respectively. Removing the dimensions corresponding to the Dirichlet boundary condi-

tions, we have dimpX0,hq “ nV ` nEk ` nKk
2 ´ nBEk ´ nBV . Using nBV “ nBE together with

dimpX̂hq “ nEpk ` 1q, we obtain dimpXhq “ nV ` nEp2k ` 1q ` nKk
2 ´ nBEpk ` 1q. Simplifying

using the Euler relations (see e.g., [11, Lemma 1.57]) nV “ nE´nK`1´m and 2nE´n
B
E “ 4nK ,

dimpXhq “ nKpk ` 3qpk ` 1q ` 1´m.

Subtracting this from dimpYhq “ nKppk ` 2q2 ` 1q, the proof of (20) is complete. �

4. Error analysis

In this section we show that all the three cases admit the same convergence rate for uh. The

method of analysis for Cases B and C is different from that proposed in [9], but is the same as

the one found in [1] and is akin to the second Strang lemma using the non-conforming space

Yh,0 “ tv P Yh : xrn,h, vyBΩh
“ 0 for all rn,h P X̂hu.

We use c to denote a generic constant, independent of h, whose value at different occurrences

may vary.
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Theorem 4.1. In Cases A, B, and C, the solution uh of the DPG method satisfies

}u´ uh}H1pΩq ď chk`1|u|Hk`2pΩq. (21)

Proof. For Case A, the Fortin operator of [2] satisfies (11), thus verifying the assumptions of [9,

Theorem 2.1], which together with the Bramble-Hilbert lemma, gives the stated error estimate.

For Cases B and C, we adopt the approach in the proof of [1, Theorem 3.5]. We use a

characterization of the DPG solution uh using the so-called weakly conforming optimal test

space Y opt
h,0 “ ThXh,0, where Th : Xh,0 Ñ Yh,0 is defined as the solution of pThwh, zhqY “

pgradwh, grad zhqΩh
, for all zh P Yh,0. It is easy to see that for all wh P Xh,0,

sup
vhPYh,0

pgradwh, grad vhqΩh

}vh}Y
“ sup

vhPY
opt
h,0

pgradwh, grad vhqΩh

}vh}Y
. (22)

Also recall that by [1, Theorem 2.6], uh satisfies

pgraduh, grad vhqΩh
“ pf, vhqΩh

, @vh P Y
opt
h,0 . (23)

We use these facts in the argument below.

If cp is the Poincaré constant such that }w}H1pΩq ď cp} gradw}L2pΩq for all w P H1
0 pΩq, then,

for any wh P Xh,0,

}uh ´ wh}H1pΩq ď c2p sup
zhPXh,0

pgradpuh ´ whq, grad zhqΩh

}zh}H1pΩq

ď c2p sup
vhPYh,0

pgradpuh ´ whq, grad vhqΩh

}vh}Y
, as Xh,0 Ď Yh,0,

“ c2p sup
vhPY

opt
h,0

pgradpuh ´ uq, grad vhqΩh
` pgradpu´ whq, vhqΩh

}vh}Y
,

due to (22). Focusing on the first term in numerator, for any vh P Y
opt
h,0 ,

pgradpuh ´ uq, grad vhqΩh
“ pf, vhqΩh

´ pgradu, grad vhqΩh
by (23)

“ ´xq̂n, vhyBΩh
by (2)

“ ´xq̂n ´ r̂n,h, vhyBΩh

for any r̂n,h P X̂h (since vh P Yh,0). Therefore,

}uh ´ wh}H1pΩq ď c2p sup
vhPY

r
h,0

bppu´ wh, q̂n ´ r̂n,hq, vhq

}vh}Y
ď c

`

}q̂n ´ r̂n,h}X̂ ` }u´ wh}H1pΩq

˘

.

Thus, by triangle inequality,

}u´ uh}H1pΩq ď c inf
pwh,r̂n,hqPXh

ˆ

}q̂n ´ r̂n,h}X̂ ` }u´ wh}H1pΩq

˙

.

It only remains to estimate the right hand side. The argument is standard: Let Rk denote

the Raviart-Thomas subspace [12] of Hpdiv, Ωq consisting of all vector functions which when

restricted to an element takes the form xp1 ` p2 for some p1 P PkpKq and some p2 P PkpKq
2.

Since r̂n,h and q̂n are element-by-element traces of an rh P Rk and the exact flux q “ gradu,

respectively, by (3),

}q̂n ´ r̂n,h}X̂ ď }q ´ rh}Hpdiv,Ωq ď chk`1
´

|u|Hk`1pΩq ` | div q|Hk`1pΩq

¯

.

Together with the well-known bounds for H1pΩq-best approximation, the estimate is proved. �
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Figure 2. Observed convergence rates of the three cases

5. Numerical results

For numerical illustration of the previously established theoretical results, we solve the Poisson

equation with Dirichlet boundary condition using the three cases of the DPG method.

The domain Ω was set to the unit square. The function f was chosen so that the exact

solution is u “ sinpπxq sinpπyq. We construct an n ˆ n uniform mesh by dividing Ω into n2

congruent squares. Its mesh size is h “
?

2{n. The method is applied on a sequence of such

meshes with geometrically increasing n.

All three cases were implemented using the open source NGSolve finite element library [14].

Since the test space of Case C is not a standard space, it is not available in NGSolve. So we

have implemented it within a DPG shared library freely available in an online repository [10].

This code uses existing NGSolve classes to make a new finite element class representing Q`k,k
(as well as the corresponding finite element space it generates). Upon compilation it provides a

shared library that can be loaded into NGSolve’s (python or other) interfaces at run time.

Figure 2 shows plots of the error }u´ uh}H1pΩq as a function of n “
?

2{h in all three cases.

The error decreases at the rate Opnαq. Slopes of regression fits to each data set determine an

approximate observed convergence rate α, which is also marked in the figure. They are in good

agreement with the theoretically predicted rates for all orders except k “ 2. The observed

convergence rate for k “ 2 is inexplicably one order higher than what is expected from our

theory.
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