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Abstract

We present implementation details and analyze convergence of a two grid solver forming the core of a fully auto-
matic hp-adaptive strategy for electromagnetic problems. The solver delivers a solution for a fine grid obtained from
an arbitrary coarse hp grid by a global hp-refinement. The classical V-cycle algorithm combines an overlapping block
Jacobi smoother with optimal relaxation, and a direct solve on the coarse grid. A theoretical analysis of the two grid
solver is illustrated with numerical experiments. Several electromagnetic applications show the efficiency of combining
the fully automatic hp-adaptive strategy with the two grid solver.
! 2005 Elsevier B.V. All rights reserved.
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1. Introduction

The paper is concerned with a construction and study of an iterative solver for linear systems resulting
from hp-adaptive finite element (FE) discretizations of Maxwell!s equations. Here, h stands for element size,
and p denotes element order of approximation, both varying locally throughout the mesh.

The algorithm presented in [13,9] produces a sequence of optimally hp-refined meshes that delivers expo-
nential convergence rates in terms of the FE error measured in energy norm vs the discrete problem size
(number of degrees-of-freedom (d.o.f.)) or the CPU time. A given (coarse) hp mesh is first refined globally
in both h and p to yield a fine mesh, i.e. each element is broken into four element-sons (eight in 3D), and the
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discretization order p is raised uniformly by one. We solve then the problem of interest on the fine mesh.
The next optimal coarse mesh is determined by minimizing the projection based interpolation error of the fine
mesh solution with respect to the optimally refined coarse mesh. The algorithm is very general, and it ap-
plies to H1-, H(curl)-, and H(div)-conforming discretizations [12,10]. In particular, it is suitable for electro-
magnetic problems. Moreover, since the mesh optimization process is based on minimizing the
interpolation error rather than the residual, the algorithm is problem independent, and it can be applied
to non-linear and eigenvalue problems as well.

Critical to the success of the proposed adaptive strategy is the solution of the fine grid problem. Typi-
cally, in 3D, the global hp-refinement increases the problem size at least by one order of magnitude, making
the use of an iterative solver inevitable. With a multigrid solver in mind, we choose to implement first a two
grid solver based on the interaction between the coarse and fine hp meshes. The choice is quite natural. The
coarse meshes are minimum in size. Also, for wave propagation problems in the frequency domain, the size
of the coarsest mesh in the multigrid algorithm is limited by the condition that the mesh has to resolve all
eigenvalues below the frequency of interest. Consequently, the sequence of multigrid meshes may be limited
to just a few meshes only.

The fine mesh is obtained from the coarse mesh by the global hp-refinement. This guarantees that the
corresponding FE spaces are nested, and allows for the standard construction of the prolongation and
restriction operators. Notice that the sequence of optimal coarse hp meshes produced by the self-adaptive
algorithm discussed above is not nested. The coarse meshes are highly non-uniform, both in element size h
and order of approximation p, and they frequently include anisotropically refined elements (construction of
multigrid algorithms for such anisotropically refined meshes is sometimes difficult), but the global refine-
ment facilitates greatly the logic of implementation.

Customarily, any work on iterative methods starts with self-adjoint and positive definite problems, and
this was the subject of the work presented in [25]. We included 2D and 3D examples of problems with
highly non-homogeneous and anisotropic material data, as well as problems presenting corners and edge
singularities.

In this paper, we are concerned with a construction of a similar but yet different two grid solver
algorithm suitable for general electromagnetic (EM) problems. We also discuss advantages and limita-
tions of the hp-adaptive strategy combined with the two grid solver when applied to real life EM pro-
blems.

The structure of our presentation is as follows. We begin with a formulation of the two grid solver algo-
rithm, and a study of its convergence. In Section 3, we present some implementation details, while Section 4
is devoted to numerical experimentation. A number of EM applications is presented in Section 5. Conclu-
sions are drawn in Section 6.

Notice that the two grid solver is not intended to be used only as a solver itself, but also as a crucial part
of the hp-adaptive strategy. Among several implementation and theoretical issues that we address in this
paper, one is especially important for us; is it possible to guide the optimal hp-refinements for EM problems
with a partially converged fine grid solution only, and to what extent?

2. Formulation of the two grid solver

2.1. A stabilized variational formulation for solving the Maxwell’s equations

At this point, we describe a mathematical formulation to solve the electromagnetic problem. Following
[8], we consider a bounded domain X ! R3, with boundary C consisting of two disjoint parts C1 and C2. We
wish to find electric field EðxÞ; x 2 !X, that satisfies:
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• the reduced wave equation in X,

$$ 1

l
$$ E

! "
% ðx2!% jxrÞE ¼ %jxJ imp; ð2:1Þ

• Dirichlet (ideal conductor) boundary condition on C1,

n$ E ¼ 0; ð2:2Þ

• Neumann boundary condition on C2,

n$ 1

l
$$ E

! "
¼ %jxJ imp

S . ð2:3Þ

Here, x is an angular frequency, !, l, r denote dielectric permittivity, magnetic permeability, and con-
ductivity of the medium, Jimp is a prescribed, impressed (source) current, J imp

S is a prescribed, impressed
surface current tangent to boundary C2, n ' J imp

S ¼ 0, with n denoting the normal outward unit vector to
C. Finally, j is the imaginary unit.

For theoretical reasons related to the proof of convergence for the two grid algorithm, presented in
Section 2.4, we assume additionally that domain X is convex. This limitation seems to be of a theoretical
nature, as no loss in performance for non-convex domains have been observed in presented numerical
experiments.

For the sake of simplicity, we shall restrict ourselves to simply connected domains X only, avoiding the
technical issues associated to cohomology spaces, see e.g. [7].

2.1.1. Standard variational formulation
The standard variational formulation is obtained by multiplying (2.1) by a vector test function !F, inte-

grating over domain X, integrating by parts, and using the Neumann boundary condition:

Find E 2 HDðcurl;XÞ such thatZ

X

1

l
ð$$ EÞ ' ð$$ !FÞdx%

Z

X
ðx2!% jxrÞE ' !F dx

¼ %jx
Z

X
J imp ' !F dxþ jx

Z

C2

J imp
S ' !F dS for all F 2 HDðcurl;XÞ.

8
>>>>><

>>>>>:

ð2:4Þ

In the above HD(curl;X) is the Hilbert space of admissible solutions

HDðcurl;XÞ :¼ fE 2 L2ðXÞ : $$ E 2 L2ðXÞ; n$ E ¼ 0 on C1g; ð2:5Þ

with inner product defined by

ðu; vÞHDðcurl;XÞ :¼ ðu; vÞL2ðXÞ þ ð$$ u;$$ vÞL2ðXÞ. ð2:6Þ

The original and variational formulations are equivalent to each other.

2.1.2. Stabilized variational formulation
Introducing a space of Lagrange multipliers (scalar potentials):

H 1
DðXÞ :¼ fq 2 H 1ðXÞ : q ¼ 0 on C1g; ð2:7Þ

we employ a special test function F ¼ $q; q 2 H 1
DðXÞ, to discover that solution E to the variational formu-

lation must automatically satisfy the weak form of the continuity equation
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%
Z

X
ðx2!% jxrÞE ' $!qdx ¼ %jx

Z

X
J imp ' $!qdxþ jx

Z

C2

J imp
S ' $!qdS. ð2:8Þ

We also recall the Helmholtz decomposition:

E ¼ $/þ E0; where / 2 H 1
DðXÞ and ðE0;$qÞL2ðXÞ ¼ 0 8q 2 H 1

DðXÞ. ð2:9Þ

It is well-known that the standard variational formulation is not uniformly stable with respect to the wave
number k2 = l(x2! % jxr). As k ! 0, we loose the control over gradients. This corresponds to the fact that,
in the limiting case k = 0, the problem is ill-posed as the gradient component remains undetermined. A rem-
edy to this problem is to enforce the continuity equation explicitly at the expense of introducing a Lagrange
multiplier p 2 H 1

DðXÞ. The so-called stabilized variational formulation looks as follows:

Find E 2 HDðcurl;XÞ; p 2 H 1
DðXÞ such that

Z

X

1

l
ð$$ EÞð$$ !FÞdx%

Z

X
ðx2!% jxrÞE ' !F dx

%
Z

X
ðx2!% jxrÞ$p ' !F dx ¼ %jx

Z

X
J imp ' !F dxþ jx

Z

C2

J imp
S ' !F dS

8F 2 HDðcurl;XÞ;Z

X
ðx!% jrÞE ' $!qdx ¼ %j

Z

X
J imp ' $!qdxþ j

Z

C2

J imp
S ' $!qdS

8q 2 H 1
DðXÞ.

8
>>>>>>>>>>>>>>><

>>>>>>>>>>>>>>>:

ð2:10Þ

By repeating the trick with the substitution F ¼ $q in the first equation, we discover that the Lagrange mul-
tiplier p identically vanishes, and for that reason, it is frequently called the hidden variable. In comparison
with the original formulation, the stability constant for the regularized formulation converges to zero
slower as k ! 0. In the case when r = 0, and the right-hand side of the second equation vanishes, we
can divide the second equation by another x to obtain

%
Z

X
!E ' $!qdx ¼ 0. ð2:11Þ

In this case, the inf–sup stability constant converges to one as x ! 0. The regularized formulation works
because gradients of the scalar-valued potentials from H 1

DðXÞ form precisely the null space of the curl–curl
operator.

The point about the stabilized (mixed) formulation is that, whether we use it or not in the actual com-
putations (the improved stability is one good reason to do it), the original variational problem is equivalent
to the mixed problem.

2.2. Formulation of the two grid solver for EM

Solving a linear system of equations (using a multigrid scheme) arising from Maxwell!s equations is chal-
lenging mainly for two reasons: the linear system is (in general) indefinite, and the null space of the differ-
ential operator curl is large.

The problem of indefiniteness of the linear system can be overcome by requesting the coarse grid to be
fine enough (see, for example, [6,16]). This assumption is needed both to define a block Jacobi smoother, as
well as to prove convergence of the overall two grid solver algorithm.

In order to control the solution over the null space of the curl, we may utilize Helmholtz decomposition
(2.12), and treat both terms separately:

HDðcurl;XÞ ¼ ðKerðcurlÞÞ ) ðKerðcurlÞÞ?. ð2:12Þ
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Two corresponding decompositions have been constructed for lower order FE spaces. More precisely, let T
be a grid, M the associated lowest order Nedelec subspaces of HD(curl;X) of the first kind [24], and W the
corresponding first order piecewise polynomial subspace of H 1

DðXÞ. Let, vl (resp. el) denote the non-Dirich-
let vertexes (resp. edges) of the grid T. Then, we define

Xv
l ¼ int

[
f!L 2 T : vl 2 oLg

# $
; ð2:13Þ

Xe
l ¼ int

[
f!L 2 T : el 2 oLg

# $
. ð2:14Þ

And

Mv
l ¼ fu 2 M : suppðuÞ ! Xv

lg; Me
l ¼ fu 2 M : suppðuÞ ! Xe

lg; ð2:15Þ
W v

l ¼ fu 2 W : suppðuÞ ! Xv
lg; W e

l ¼ fu 2 W : suppðuÞ ! Xe
lg ¼; . ð2:16Þ

We have the decomposition:

W ¼
X

v

W v
l . ð2:17Þ

Arnold et al. [2] proposed the following decomposition of M:

M ¼
X

v

Mv
l ; ð2:18Þ

which we shall call the AFW decomposition. Another well-known decomposition of M is Hiptmair!s
decomposition [19]:

M ¼
X

e

Me
l þ
X

v

$W v
l . ð2:19Þ

Each decomposition, together with the already prescribed coarse grid, determines a two grid solver in terms
of a multigrid framework, as presented, for example, in [5]. More precisely, the bilinear form defined over
each subspace can be inverted, generating a block Jacobi (or Gauss–Seidel) smoother for the fine grid that,
together with the coarse grid, define a two grid solver algorithm.

A formal generalization of these decompositions for hp-edge elements is straightforward. Notice that
Hiptmair!s decomposition (with lowest order elements) utilizes only one-dimensional subspaces (and there-
fore, point smoothers), while the AFW decomposition utilizes four-dimensional subspaces. For higher
order elements, size of patches will become considerably larger as p increases and, as a consequence,
amount of memory (and number of operations) required by the corresponding block Jacobi smoothers be-
come prohibitive. Thus, a suitable two grid solver algorithm for hp-edge FE may come from combining the
ideas presented in [25] with Hiptmair!s approach to control gradients.

In the remainder of this section, we present a two grid solver algorithm that combines a generalization of
Hiptmair!s approach to hp-edge FE with the block Jacobi smoother presented in [25]. M and W will denote
the hp-FE subspaces of HD(curl) and H 1

D, respectively.
We will illustrate via numerical experiments the importance of an adequate control of the kernel of the

curl operator formed by gradients of potentials. Indeed, a two grid solver may not converge if the gradients
are not resolved correctly.

2.2.1. Overlapping block Jacobi smoothers
At this point, we define two overlapping block Jacobi smoothers:

• one used as a preconditioner for the electric field, given by

SE ¼
XN

l¼1

ilD
%1
l iTl ;
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• and another used as a preconditioner for the gradients, given by

Sr ¼
XN

l¼1

ir;lD
%1
r;li

T
r;l.

Here, Dl denotes the diagonal sub-block of global stiffness matrix A corresponding to d.o.f. of a partic-
ular (modified) element that span an hp-edge FE subspace Ml ! HD(curl;X). D$,l denotes the diagonal
sub-block of global mass matrix for the gradients (Laplace equation) A$ corresponding to d.o.f. of a
particular (modified) element that span an hp FE subspace W l ! H 1

DðXÞ. il, i$,l are the matrices associ-
ated with the natural embeddings from Ml into M, and $W l into M, respectively.

At this point, we would like to simplify our notation and drop the boldface symbols for the matrices and
vectors in the coefficient space.

2.2.2. An approximation to the optimal relaxation parameter
An optimal relaxation parameter was selected in [25] to minimize the error in the energy norm, which

turned out to be a computable number for self-adjoint positive definite (SPD) problems. For electrody-
namic problems, computation of the optimal relaxation parameter involves solution of the system of linear
equations that we are trying to solve. Thus, only an approximation to it may be available.

Since S * A%1, we define our approximation to the optimal relaxation parameter as the argument that
minimizes Sr in the energy norm. Thus, at step n, a(n) is given by

aðnÞ ¼ argmin
a

kSrðnþ1ÞðaÞkB ¼ argmin
a

kSðI % aArðnÞÞkB ¼ ðSrðnÞ; SASrðnÞÞB
ðSASrðnÞ; SASrðnÞÞB

; ð2:20Þ

where B is the mass matrix associated with the energy norm ððBu; vÞ ¼ ðu; vÞHDðcurlÞÞ, and S is either SE or S$.

2.3. The two grid algorithm

We define our two grid solver (based on a modification of Hiptmair!s decomposition) as the iteration
along the following steps. Given current solution x, and residual r, we perform,

(1) Coarse grid correction, i.e.,
• restrict the residual to the coarse grid dual space,

r0 ¼ QTr; ð2:21Þ

• solve the coarse grid problem for coarse grid correction Dx0,

A0Dx0 ¼ r0; ð2:22Þ

• prolong the coarse grid correction to the fine grid space, and compute the corresponding correction
for the residual,

Dx ¼ QDx0; Dr ¼ ADx; ð2:23Þ

• update the fine grid solution and residual,

x ¼ xþ Dx;

r ¼ r % Dr.
ð2:24Þ

(2) Block Jacobi smoother on the fine grid, i.e.,
• compute the smoothing correction and the corresponding correction for the residual,

Dx ¼ SEr; Dr ¼ ADx; ð2:25Þ
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• compute an approximation of the optimal relaxation parameter a,

aE ¼ ðSEr; SEASErÞB
ðSEASEr; SEASErÞB

; ð2:26Þ

• update the solution and residual,

x ¼ xþ aEDx;

r ¼ r % aEDr.
ð2:27Þ

(3) Block Jacobi smoother to control gradients, i.e.,
• compute the smoothing correction and the corresponding correction for the gradients of the
residual,

Dx ¼ Srr; Dr ¼ ADx; ð2:28Þ

• compute an approximation of the optimal relaxation parameter a,

ar ¼ ðSrr; SrASrrÞB
ðSrASrr; SrASrrÞB

; ð2:29Þ

• update the solution and residual,

x ¼ xþ arDx;

r ¼ r % arDr.
ð2:30Þ

2.4. Convergence theory

A proof of convergence for our two grid solver algorithm can be inferred from the convergence theory
for multigrid algorithms presented in [16], which refers to [15,19], and [2] among others, for detailed proofs.
In here, we outline the main ingredients of the convergence proof, which can be divided into three parts:

• First, we introduce some notation and a discrete Poincaré–Friedrichs type inequality, necessary to define
our block Jacobi smoothers.

• Next, we define an auxiliary problem, which differs from our original problem in the value of wave num-
ber (squared) k2. By setting k2 = %1, we obtain a SPD auxiliary problem with convergence properties in
terms of the two grid solver equivalent (up to a constant times element size h) to our original problem,
under the assumption that the coarse grid is fine enough.

• Finally, we prove convergence of our two grid algorithm for the auxiliary SPD problem with a contrac-
tion constant independent of h, and possibly depending upon polynomial order of approximation p.
Thus, convergence of the two grid solver for the original problem is guaranteed.

We assume that k2 is real and such that our boundary value problem given by Eqs. (2.1)–(2.3) has a
unique solution. In the following, we will attempt to trace the dependence of various constants such as:
wave number k, mesh size h, and polynomial order of approximation p. C will denote a generic positive
constant independent of h, p, and k. A subindex h, p, or k will denote dependence upon h, p, or k, respec-
tively. For example, Cp will denote a generic positive constant independent of h and k, but possibly depen-
dent upon p.

We assume that our subspace decomposition M ¼
P

Ml is such that the discrete Friedrichs inequality
holds, i.e.:

kqlkL2 6 Chk$$ qlkL2 8ql 2 "Ml; l P 1; ð2:31Þ
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where "Ml ¼ fql 2 Ml : ðql;$/lÞL2 ¼ 0 8/l 2 W lg, and $W l ¼ fql 2 Ml : $$ ql ¼ 0g ! Ml. This inequality
has been proved for a variety of space decompositions, including spaces corresponding to local Dirichlet
problems for hp-meshes (see, for example, [10,11,14]).

Using the discrete Friedrichs inequality we can prove the following result.

Proposition 1. Let ql 2 Ml (l P 1) be a solution of problem,

Aðql; vlÞ ¼ Aðu; vlÞ 8vl 2 Ml; ð2:32Þ

where u 2M, and A( , ) is the bilinear form associated to our variational formulation. Then

kqlkHDðcurl;XlÞ 6 ChkkukHDðcurl;XlÞ; ð2:33Þ

where suppql ! {Xl, "ql 2Ml}, and Chk ¼ maxf1;k2g
minf1%C2h2ðk2þ1Þ;k2g. It follows that, if h

2(k2 + 1) is small enough, then

the local problems have unique solutions, and therefore, the corresponding block Jacobi smoothers are well-
defined.

Proof. Using discrete Helmholtz decomposition, we have

ql ¼ ql;1 þ ql;2; ðql;1; ql;2ÞL2 ¼ 0; ð2:34Þ

where ql;1 2 "Ml, and ql;2 ¼ $/ for some / 2Wl.
Substituting vl = ql in (2.32), and recalling the definition of bilinear form A( , ), we obtain

ðr$ ql;1;r$ ql;1ÞL2 % k2ðql;1; ql;1ÞL2 % k2ðql;2; ql;2ÞL2
¼ ðr$ u;r$ ql;1ÞL2 % k2ðu; ql;1ÞL2 % k2ðu; ql;2ÞL2 . ð2:35Þ

Setting vl = ql,2 in (2.32), we have

k2ðql;2; ql;2ÞL2 ¼ k2ðu; ql;2ÞL2 . ð2:36Þ

Thus

ðql;1; ql;1ÞHDðcurlÞ % ðk2 þ 1Þðql;1; ql;1ÞL2 ¼ ðr$ u;r$ ql;1ÞL2 % k2ðu; ql;1ÞL2 . ð2:37Þ

Since ql,1 is discrete divergence free (i.e., ql;1 2 "Ml), we can apply Friedrichs inequality on the left-hand side:

kql;1k
2
HDðcurlÞ % ðk2 þ 1Þkql;1k

2
L2 P ½1% C2h2ðk2 þ 1Þ,kql;1k

2
HDðcurlÞ. ð2:38Þ

Dividing last equation by kql;1kHDðcurlÞ, and applying Eq. (2.37), we obtain

½1% C2h2ðk2 þ 1Þ,kql;1kHDðcurlÞ 6 sup
ql;12 "Ml

ðr$ u;r$ ql;1ÞL2 % k2ðu; ql;1ÞL2
kql;1kHDðcurlÞ

. ð2:39Þ

From Eq. (2.36), we derive for ql,2 that

k2kql;2kHDðcurlÞ 6 sup
ql;2¼rw;w2W l

ðr$ u;r$ ql;2ÞL2 % k2ðu; ql;2ÞL2
kql;2kHDðcurlÞ

. ð2:40Þ

Using (2.39) and (2.40), and the orthogonality of Hilbert spaces "Ml and $Wl, we conclude

½1% C2h2ðk2 þ 1Þ,2kql;1k
2
HDðcurlÞ þ k4kql;2k

2
HDðcurlÞ 6 sup

ql2Ml

ðr$ u;r$ qlÞL2 % k2ðu; qlÞL2
kqlkHDðcurlÞ

 !2

6 ðkr$ ukL2 þ k2kukL2Þ
2 ð2:41Þ
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and the result follows, since

ðkql;1k
2
HDðcurlÞ þ kql;2k

2
HDðcurlÞÞ

1=2 6 maxf1; k2g
minf1% C2h2ðk2 þ 1Þ; k2g

. ! ð2:42Þ

As a consequence of the proposition, the A( , )-projection Pl :HDðcurlÞ ! Ml satisfies

kPlukHDðcurlÞ 6
maxf1; k2g

minf1% C2h2ðk2 þ 1Þ; k2g
kukHDðcurlÞ. ð2:43Þ

At this point, we consider an auxiliary boundary value problem given again by Eqs. (2.1)–(2.3), but with
k2 = %1. And we denote operators associated to our SPD auxiliary problem with the - symbol. For exam-
ple, ePl.

In the following, we show that the convergence properties of the two grid solver for the original and aux-
iliary problems are comparable up to a perturbation term. Such results were first proved for the Helmholtz
equation in [6]. That they can be extended to the Maxwell case, notwithstanding the non-ellipticity, was
realized in [15]. The following perturbation lemma is proved along the lines of a similar result in [16]:

Lemma 1. For all l P 1, we have

kPl % ePlkHDðcurlÞ 6 Cð1þ ChkÞðk2 þ 1Þh; ð2:44Þ

where Chk ¼ maxf1;k2g
minf1%C2h2ðk2þ1Þ;k2g.

Proof. Let u,q 2 HD(curl). Since ~Pl is an HD(curl)-projection, we obtain the following identity:

ðPlu% ePlu; qÞHDðcurlÞ ¼ ðPlu% u; ePlqÞHDðcurlÞ ¼ AðPlu% u; ePlqÞ þ ðk2 þ 1ÞðPlu% u; ePlqÞL2

¼ ðk2 þ 1ÞðPlu% u; ePlqÞL2 . ð2:45Þ

Now, using discrete Helmholtz decomposition (and notation of Proposition 1):

ðu% Plu; qlÞL2 ¼ ðu% Plu; ql;1ÞL2 þ ðu% Plu; ql;2ÞL2 . ð2:46Þ

Since ql;2 ¼ $/l:

%k2ðu% Plu; ql;2ÞL2 ¼ Aðu% Plu; ql;2Þ ¼ 0. ð2:47Þ

Applying Cauchy–Schwarz inequality, followed by discrete Friedrichs inequality, we obtain

ðu% Plu; ql;1ÞL2 6 Chku% PlukL2ðXlÞk$$ ql;1kL2ðXlÞ. ð2:48Þ

Thus

ðPlu% ePlu; qÞHDðcurlÞ 6 Chðk2 þ 1Þku% PlukL2ðXlÞk$$ ePlqkL2ðXlÞ. ð2:49Þ

From (2.43) we obtain

ku% PlukL2ðXlÞ 6 ð1þ ChkÞkukHDðcurl;XlÞ. ð2:50Þ

Finally,

k$$ ePlqkL2ðXlÞ 6 kqkHDðcurl;XlÞ ð2:51Þ

And the result follows. h
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The following lemma quantifies the difference between the definite and the indefinite coarse solves that
appears in the algorithm. The proof is similar to the proof of [15, Lemma 4.3] (also cf. [23]) but we now
keep track of the dependence of the constants on polynomial degree using the recent results in [10,11].

Lemma 2. If domain X is convex, we have

kP0 % eP0kHDðcurlÞ 6 Ck
h

p1=2%!

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1% C0

k
h

p1=2%!

r ; ð2:52Þ

where ! > 0.

Proof. Eqs. (2.45)–(2.47) are valid also for coarse grid subspace M0. We have for all u,q 2M:

ðP0u% eP0u; qÞHDðcurlÞ ¼ ðk2 þ 1Þðu% P0u;%q0;1ÞL2 ; ð2:53Þ

where q0,1 is the discrete divergence free part of q0 ¼ eP0q.
We define e = P0u % u, with e1, e2 denoting the corresponding terms of the discrete Helmholtz

decomposition of e. Then

ðP0u% eP0u; qÞHDðcurlÞ ¼ ðk2 þ 1Þ½ðe1; q0;1ÞL2 þ ðe2; q0;1ÞL2 ,. ð2:54Þ

In order to estimate both terms on the right hand side, we show first (following [15]) that

ke1kL2 6 Ck
h

p1=2%!
kekHDðcurlÞ. ð2:55Þ

We define e1,q0,1 2 HD(curl) by the following conditions:

$$ e1 ¼ $$ e1; ðe1;$/Þ ¼ 0; 8/ 2 H 1
D;

$$ q0;1 ¼ $$ q0;1; ðq0;1;$/Þ ¼ 0 8/ 2 H 1
D.

ð2:56Þ

The following result has been proved in [3] for square elements using the technique of projection-based
interpolation,1

ke1 % e1kL2 6 C
h

p1=2%!
k$$ e1kL2 . ð2:57Þ

Here, ! > 0 is an arbitrary small number, and C = C(!)! 1, as ! ! 0.
With discrete divergence free e, replaced with pointwise divergence free field e1, we turn now to the

standard duality argument and consider solution w1 2 HD(curl) to the dual problem:

Aðp;w1Þ ¼ ðe1; pÞ 8p 2 HDðcurlÞ. ð2:58Þ

With the assumption on convexity of the domain, we have

kw1kH1ðcurlÞ 6 Ckke1kL2 ; ð2:59Þ

where kw1k2H1ðcurlÞ ¼ kw1k2H1 þ k$$ w1k2H1 .
Using the standard duality argument, and the fact that w1 is divergence free, we obtain,

ke1kL2 6 Aðe1;w1Þ ¼ Aðe1;w1Þ ¼ Aðe;w1Þ ¼ Aðe;w1 %Pcurlw1Þ

6 Ckke1kHDðcurlÞ ' kw
1 %Pcurlw1kHDðcurlÞ; ð2:60Þ

where Pcurl is the projection-based interpolation operator.

1 An analogous result holds for triangular elements under a conjecture of an L2-stability result, see [4].
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From the approximation theory in [10,11], we obtain

kw1 %Pcurlw1kHDðcurlÞ 6 C
h

p1%!
kw1kH1ðcurlÞ 6 Ck

h
p1%!

ke1kL2 . ð2:61Þ

Application of triangle inequality finishes proof of (2.55).
Now, since q0,1 is divergence free, using Cauchy–Schwarz inequality, and estimate (2.57) for function

q0,1, we obtain

ðe2; q0;1ÞL2 ¼ ðe2; q0;1 % q0;1ÞL2 6 ke2kL2kq0;1 % q0;1kL2 6 C
h

p1=2%!
kekL2k$$ q0;1kL2

6 C
h

p1=2%!
kekHDðcurlÞkqkHDðcurlÞ. ð2:62Þ

Similarly, using Cauchy–Schwarz inequality, and estimate (2.55), we get

ðe1; q0;1ÞL2 6 ke1kL2kq0;1kL2 6 Ck
h

p1=2%!
kekHDðcurlÞkqkHDðcurlÞ. ð2:63Þ

Thus

ðP0u% eP0u; qÞHDðcurlÞ 6 Ck
h

p1=2%!
kekHDðcurlÞkqkHDðcurlÞ. ð2:64Þ

In order to finish the proof for this lemma, it only remains to show that kekHDðcurlÞ 6
Ck

1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1%C0

kh=p
1=2%!

p kukHDðcurlÞ. This can be done as follows:

kek2HDðcurlÞ ¼ ku% P0uk2HDðcurlÞ;

¼ Aðu% P0u; u% eP0uÞ þ ð1þ k2Þðu% P0u; u% P0uÞL2 ;

¼ ðu; u% eP0uÞHDðcurlÞ þ ð1þ k2Þðu% P0u; eP0u% P0uÞL2 ;

6 kuk2HDðcurlÞ þ Ck
h

p1=2%!
ku% P0uk2HDðcurlÞ. !

ð2:65Þ

Introducing the error reduction operator En (at step n) associated to the two grid algorithm, i.e.,
e(n+1) = Ene(n), we conclude the following theorem:

Theorem 1. If the coarse grid is fine enough, and

keE
n
ukHDðcurlÞ 6 ~dkukHDðcurlÞ with 0 < ~d < 1; ð2:66Þ

then

kEnukHDðcurlÞ 6 dkukHDðcurlÞ with 0 < d < 1; ð2:67Þ

where d ¼ ~dþ CmaxlP0kPl % ePlkHDðcurlÞ.

The remainder of this section is devoted to proving (2.66), which is a sufficient condition to guarantee the
main result (2.67). At this point, we have already determined convergence properties of the two grid solver
with respect to the wave number k.

Using standard domain decomposition techniques for SPD problems, it is well-known that (2.66) follows
from the following two conditions for the subspace splitting (see, for instance, [28,5], or [26]):
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• Condition I, necessary to estimate the maximum eigenvalue of the preconditioned matrix:

X

iP1

X

jP1

ðqi; qjÞHDðcurlÞ 6 C
X

iP1

ðqi; qiÞHDðcurlÞ

" #1=2 X

jP1

ðqj; qjÞHDðcurlÞ

" #1=2
; ð2:68Þ

where qi 2 Mi. This condition is easily proved by using a coloring algorithm as described, for example, in
[26].

• Condition II, necessary to estimate the minimum eigenvalue of the preconditioned matrix, by showing
that M ¼

P
Ml is a stable subspace splitting, i.e., for all q 2 M, there exist ql 2 Ml such that

q ¼
P

lP0ql, andX

lP0

kqlk
2
HDðcurlÞ 6 Ckqk2HDðcurlÞ. ð2:69Þ

In order to prove Condition II with a constant independent of h (but possibly dependent upon p), we con-
sider again the discrete Helmholtz decomposition. For all q 2 ðI% eP0ÞM :

q ¼ $wþ "q; ð2:70Þ

where "q 2 "M ¼ fq 2 M : ðq;$/ÞL2 ¼ 0 8/ 2 W g, w 2W.
If domain X is convex, it is proved in [2] using the fact that q 2 ðI% eP0ÞM that

k"qkL2 6 CphkqkHDðcurlÞ; kwkL2 6 CphkqkL2 . ð2:71Þ

Assuming that we have an L2-stable splitting for w (see [2]), and using discrete Poincare and inverse inequal-
ities, we obtain

kqkL2 P Cph%1kwkL2 P
X

lP1

Cph%1kwlkL2 P
X

lP1

Cpk$wlkL2 . ð2:72Þ

Similarly, assuming that we have an L2-stable splitting for "q, and using discrete Friedrichs and inverse
inequalities, we obtain

kqkHDðcurlÞ P Cpð1þ h%1Þk"qkL2 ð2:73Þ

P
X

lP1

Cpð1þ h%1Þk"qlkL2 P
X

lP1

Cpk"qlkHDðcurlÞ. ð2:74Þ

Defining ql ¼ "ql þ $wl, we conclude that for all q 2 ðI% eP0ÞM there exists a decomposition q ¼
P

lP1ql
such that

kqk2HDðcurlÞ P Cp

X

lP1

kqlk
2
HDðcurlÞ. ð2:75Þ

Then Condition II holds.
Observation: We have shown that a sufficient condition for convergence of the two grid solver is to have

an L2-stable subspace splittings for both parts of the discrete Helmholtz decomposition. In particular:

• Ml ¼ Mv
l (as defined in Section 2.2), implicitly generate L2-stable splittings for the discrete divergence

free and the gradient parts.
• Ml ¼ Me

l for 1 6 l 6 Ne;Ml ¼ rW v
l for Ne þ 1 6 l 6 Ne þ Nv (as defined in Section 2.2), generate L2-

stable splittings for the discrete divergence free (by using the first Ne subspaces) and the gradient parts
(by using the last Nv subspaces). Notice that if the last Nv subspaces are not included, then we do not
obtain a stable splitting for gradients, leading to a diverging two grid algorithm.
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• The subspace splitting corresponding to the definition of our smoother SE generates a L2-stable splitting
for the discrete divergence free part, while the subspace splitting corresponding to the definition of our
smoother S$ generates a L2-stable splitting for the gradient part. Thus, we obtain a convergent two grid
solver.

Finally, notice that in order to trace the dependence of constants upon p, we cannot use inverse inequal-
ities. Thus, this part of the proof of convergence becomes rather challenging and we have not attempted it.
Numerical results indicate that dependence of the two grid solver contraction constant upon p is, at most,
logarithmic.

2.5. Stopping criterion

Our ideal stopping criterion translates into condition,

keðnÞkB ¼ kA%1rðnÞkB 6 !TOL. ð2:76Þ
Obviously, this quantity is not computable, and a stopping criterion can only be based on an approxima-
tion to it. In Section 4.2, we derive and analyze numerically two error estimates based on two different
approximations to Eq. (2.76), which will be used as two alternative stopping criteria.

3. Implementation

In [25], we discussed several implementation aspects, such as assembling, sparse storage pattern, selec-
tion of blocks for the block Jacobi smoother, and construction of the prolongation (restriction) operator
for elliptic problems. The first two implementation aspects (assembling and sparse storage pattern) are
problem independent, while construction of elliptic operators (stiffness matrix, block Jacobi smoother,
and prolongation/restriction operators) can be naturally extended to electromagnetic problems by using
H(curl) degrees of freedom (d.o.f.) instead of H1 d.o.f. Thus, most implementation details discussed in
[25] remain valid for EM problems as well.

In this paper, we discuss the implementation of a new embedding operator from gradients of H1 into
H(curl) arising for EM problems. This operator is needed to construct the block Jacobi smoother for
gradients.

3.1. The transfer matrix between H1 and H(curl)

We present now shortly the main steps of the algorithm to construct the transfer matrix corresponding to
the embedding $H1 ! H(curl). More precisely, if W ! H1 and M ! H(curl) denote the FE spaces with the
corresponding FE basis functions given by {e1, . . . ,er} 2 W, {g1, . . . ,gs} 2M, we have

w ¼
Xr

i¼1

wiei and E ¼
Xs

j¼1

Ejgj. ð3:77Þ

We seek a global matrix Tij such that

rei ¼
Xs

j¼1

T jigj; ð3:78Þ

which implies the corresponding relation between the H1- and H(curl)-degrees of freedom (d.o.f.),

rEj ¼
Xr

i¼1

T jiwi. ð3:79Þ
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The following algorithm exploits the technology of constrained approximation and generalized connec-
tivities. For an element K, the global basis functions ei and gj are related to the element shape functions /k

and wl,

eijK ¼
X

k

Cik/k; gjjT ¼
X

l

Djlwl; ð3:80Þ

where Cik and Dji are the coefficients corresponding to generalized connectivities related to irregular nodes
and the constrained approximation. Formulas (3.80) imply the corresponding relations between local and
global d.o.f.

The element transfer matrix Ski relates element shape functions /k and wl according to the formula

r/k ¼
X

l

Slkwl. ð3:81Þ

For the parametric elements forming the de Rham diagram, the element transfer matrix is independent of
the element, and it can be precomputed for the master element shape functions.

Finally, due to the hierarchical construction of the shape functions, the master element transfer matrix
can be precomputed for the maximum order of approximation with the actual element matrix extracted
from the precomputed one. We use a simple collocation method to precompute Skl.

For an element K, we have

rei ¼
X

j

T jigj ¼
X

j

T ji

X

l

Djlwl ð3:82Þ

and, at the same time,

rei ¼
X

k

Cikr/k ¼
X

k

Cik

X

l

Slkwl; ð3:83Þ

which implies,

X

j

T ji

X

l

Djl ¼
X

k

Cik

X

l

Slk ð3:84Þ

or

DTT ¼ STC. ð3:85Þ

In practice, it is not necessary to invert matrix DT. This is due to the fact that for each global basis function
gj, there exists at least one element K, for which restriction gjjK reduces to one of the element shape func-
tions, possibly premultiplied with (%1) sign factor. In other words, in the corresponding row in the matrix
Dji, there is only one non-zero entry.

The formal algorithm looks as follows:

• Initiate Tji = 0.
• For each element K in the mesh:
– For each local H(curl) d.o.f.:

Exit the cycle if the local d.o.f. is connected to more than one global d.o.f.
Determine the connected global d.o.f. j and coefficient Djl.
For each local H1 d.o.f. k:

For each connected global H1 d.o.f. i set Tji = 0.
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End of loop through local H1 d.o.f.
For each local H1 d.o.f. k:

For each connected global H1 d.o.f. i accumulate T ji ¼ T ji þ D%1
jk CikSlk.

End of loop through local H1 d.o.f.
– End of loop through local H(curl) d.o.f.

• End of loop through elements.

4. Numerical results concerning the two grid solver

This section is devoted to an experimental study of convergence and performance of our two grid solver
for EM problems. The study will be based on three model EM problems that we will introduce shortly.
Using these examples, we will address the following issues:

• error estimation for the two grid solver,
• the need for controlling gradients by using Hiptmair or AFW decompositions, and,
• the possibility of guiding the optimal hp-refinements with a partially converged solution.

4.1. Examples

We shall work with three EM examples. For each model problem, we describe the geometry, governing
equations, material coefficients, and boundary conditions. We also display the exact or approximate solu-
tion, and we briefly explain the relevance of each problem in this research.

4.1.1. Diffraction of a plane wave on a screen
We consider the problem of a plane wave incident (at a 45" angle) to a diffracting screen.
Geometry. Unit square ([0,1]2). See Fig. 1.
Governing equations. 2D Maxwell!s equations.
Material coefficients. Free space.
Boundary conditions. Dirichlet boundary conditions corresponding to the exact solution.
Exact solution. The exact solution can be expressed in terms of Fresnel integrals (see, for example,

[9]).

Hðr; hÞ ¼ 1ffiffiffi
p

p exppj=4%jkrfF ½
ffiffiffiffiffiffiffi
2kr

p
sinðh=2% p=8Þ, þ F ½

ffiffiffiffiffiffiffi
2kr

p
sinðh=2þ p=8Þ,g; ð4:86Þ

F ðuÞ ¼
ffiffiffi
p

p

2
fexpjp=4 %

ffiffiffi
2

p
½Cð

ffiffiffiffiffiffiffiffi
2=p

p
uÞ % jSð

ffiffiffiffiffiffiffiffi
2=p

p
uÞ,g; ð4:87Þ

CðzÞ % jSðzÞ ¼
Z s

0

exp%1=2pjt2dt ðFresnel IntegralsÞ: ð4:88Þ

Solution is displayed in Fig. 1.
Observations. Solution of this 2D wave propagation problem in free space lives in H(curl), but not in H1.

4.1.2. Model waveguide example
Geometry. See Fig. 2.
Governing equations. 2D Maxwell!s equations.
Material coefficients. Free space.
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Boundary conditions. Cauchy boundary condition (to model the left excitation port), absorbing bound-
ary condition (to model the right port) and homogeneous Dirichlet BC (to model the metallic top and bot-
tom walls). See Eqs. (5.105) and (5.106) for details in the Cauchy BC formulation.

Exact solution. The exact solution is unknown. A FE solution is displayed in Fig. 2.
Observations. Solution of this 2D wave propagation problem in free space lives in H(curl), but not in H1.

It involves four singular reentrant corners.

4.1.3. A 3D electromagnetics model problem
Geometry. Unit cube ([0,1]3). See Fig. 3.
Governing equations. Maxwell!s equations.

Fig. 1. Geometry and solution (module of the second component of the electric field) of the diffraction of a plane wave on a screen.
Different colors correspond to different values of the solution. (For interpretation of the references in figure legends, the reader is
referred to the wed version of this article.)

Fig. 2. Geometry and FE solution (module of second component of the magnetic field) of the model waveguide problem. Different
colors correspond to different values of the solution, from 0 (blue) to 1 (red).
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Boundary conditions. Dirichlet at the three faces adjacent to the origin, and Cauchy (impedance) at the
remaining three faces.

Exact solution. The plane wave EðrÞ ¼ j k$pffiffiffiffiffi
k'k

p exp%jk'r, where

• r = uxx + uyy + uzz is the position vector,
• k = uxkx + uyky + uzkz with kx,ky,kz real indicates the wave amplitude and phase, and,
• p = ux + uy + uz determines polarization of the plane wave.

Observations. We use the example to study performance of the two grid solver and illustrate necessity (or
not) of large order of approximation p for different values of kx, ky, and kz.

4.2. Error estimation

In the following, we focus on error estimation and selection of the stopping criterion discussed in Section
2.5.

First, we consider

0.01 6 kaðnÞSErðnÞkB
kað0ÞSErð0ÞkB

6 0.1. ð4:89Þ

Then, we define two error estimators

Enð1Þ ¼ kaðnÞSErðnÞkB
kað0ÞSErð0ÞkB

; ð4:90Þ

Enð2Þ ¼ Enð1Þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1% gð1Þ þ gð0Þ
2

! "2
s

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1% gðnÞ þ gðn% 1Þ
2

! "2
s ; ð4:91Þ

where gðnÞ ¼ Enð1Þ
En%1ð1Þ.

Fig. 3. Geometry and exact solution of the 3D EM model problem with k ¼ 0.8$109

3$108
ðsinð35p=180Þ cosð25p=180Þux þ sinð35p=180Þ$

sinð25p=180Þuy þ cosð35p=180ÞÞuz. Different colors correspond to different values of the solution, from the minimum (dark blue) to the
maximum (pink).
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Figs. 4 and 5 compare the accuracy of both error estimates (En(1) and En(2)) for different hp-grids cor-
responding to the model waveguide and the diffraction of a plane wave on a screen problems. More numer-
ical results comparing both error estimators can be found in [25]. These results indicate that En(2) is a more
accurate error estimator than En(1) in most (but not all) cases.

4.3. The need for controlling gradients of potentials

In the following, we study numerically the need for using a subspace decomposition for our two grid
solver that provides control over gradients, either explicitly (Hiptmair!s approach) or implicitly (the
AFW approach).
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Fig. 4. Model waveguide example. Exact (solid curve) versus two estimated (E(1) and E(2)) errors for the two grid solver with a 3774
(left) and 34161 (right) d.o.f. mesh.
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Fig. 5. Diffraction of a plane wave on a screen problem. Exact (solid curve) versus two estimated (E(1) and E(2)) errors for the two grid
solver with a 13946 (left) and 45830 (right) d.o.f. mesh.
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In Fig. 6, we display convergence history for the two grid solver algorithm, with and without the explicit
correction for gradients of potentials. If this correction is not included, we may loose control over the ker-
nel of the curl operator, leading to a non-converging (or converging very slowly) two grid solver algorithm.
Notice that the problem is induced by the presence of the curl operator in our variational formulation, and
not by the fact that our problem may be indefinite.

In Figs. 7 and 8 we display convergence history for the two grid solver algorithm without the explicit
correction for gradients for a 3D EM problem using different smoothers S1, S2, and S3, defined as

• S1 corresponds to AFW decomposition, that is, a block (of the Jacobi smoother) corresponds to the span
of all basis functions whose supports are contained within the support of a vertex basis functions,

• blocks of S2 correspond to all d.o.f. associated to a particular (modified) element, and
• blocks of S3 correspond to all d.o.f. associated to all (modified) elements adjacent to a vertex node.
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Fig. 6. Diffraction of a plane wave on a screen problem with a purely imaginary wave number (thus, the problem is SPD). Exact (solid
curve) versus two estimated (E(1) and E(2)) errors for the two grid solver with a 7471 d.o.f. mesh (left figure). In the right figure,
correction for gradients were not utilized.
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Fig. 7. 3D EMmodel problem. Exact (solid curve) versus two estimated (E(1) and E(2)) errors for the two grid solver with a 6084 d.o.f.
mesh (without using an explicit correction for gradients), for smoothers S1 (left figure) and S2 (right figure).
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Although a block of S3 is larger than the corresponding block of S1, convergence of the two grid solver is
only guaranteed for smoother S1. Indeed, only S1 controls the kernel of the curl without the need for an
explicit gradient correction.

Unfortunately, size of patches associated to block Jacobi smoother S1 (corresponding to AFW decom-
position) are rather large (for p . 1). Thus, the corresponding two grid solver becomes quite expensive,
both, in terms of memory requirements, and CPU time.

4.4. Guiding hp-adaptivity with a partially converged solution

We come now to the most crucial question addressed in this article. For EM problems, how much can we
relax our convergence tolerance for the two grid solver, without loosing the exponential convergence in the
overall hp-adaptive strategy? In the remaining of this section, we try to reach a conclusion via numerical
experimentation only.

We work this time with two examples: diffraction of a plane wave on a screen problem, and the model
waveguide example. For each of these problems we run the hp-adaptive strategy using up to four different
strategies to solve the fine grid problem:

(1) a direct (frontal) solver,
(2) the two grid solver with tolerance set to 0.01 (as described in Section 4.2),
(3) the two grid solver with tolerance set to 0.1, and
(4) the two grid solver with tolerance set to 0.3.

As a measure of the error, we use an approximation of the error in H(curl)-norm. We simply compute
the H(curl)-norm of the difference between the coarse and (partially converged) fine mesh solution. The er-
ror is reported relative to the norm of the fine grid solution, in percent.

Finally, for each of the cases under study, we report the number of the two grid iterations necessary to
achieve the required tolerance.
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Fig. 8. 3D EMmodel problem. Exact (solid curve) versus two estimated (E(1) and E(2)) errors for the two grid solver with a 6084 d.o.f.
mesh (without using an explicit correction for gradients), for smoother S3.
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From Figs. 9 and 10 we draw the following conclusions:

• The two grid solver with 0.01 error tolerance generates a sequence of hp-grids that has similar conver-
gence rates to the sequence of hp-grids obtained by using a direct solver.

• As we increase the two grid solver error tolerance up to 0.3, the convergence rates of the corresponding
sequence of hp-grids does not decrease at all. However, the number of iterations (as well as the CPU
time) decreases dramatically.

• The number of iterations required by our two grid solver does not increase as the number of degrees of
freedom increases.
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Fig. 9. Diffraction of a plane wave on a screen problem. Guiding hp-refinements with a partially converged solution. The left figure
displays a discretization error estimate. The right figure shows the number of iterations needed by the two grid solver.
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To summarize, it looks safe to relax the error tolerance to 0.1 (or even larger) value, without loosing the
exponential convergence rates of the overall hp mesh optimization procedure.

5. Electromagnetic applications

We conclude our work with a number of more realistic EM examples related to applications in the area
of Petroleum Engineering, a simulation of a waveguide filter with six inductive irises, and a dispersion error
study in 3D, critical for radar simulations. We focus on advantages and limitations of our numerical tech-
nique combining the fully automatic hp-adaptive strategy with the two grid solver.

5.1. Modeling of logging while drilling (LWD) EM measuring devices

In this section, we consider two problems posed by the oil company Baker-Atlas2 in the area of LWD
EM measuring devices: an electrostatic edge singularity problem, and an axisymmetric battery antenna
problem.

5.1.1. An electrostatic edge singularity problem
A number of LWD instruments incorporate EM antennas covered by metals with plastic apertures.

Thus, edge singularities for the electric field may occur on the boundary between plastic and metal.
As a result, to find the electric field near edge singularities may become essential. In addition, edge sin-

gularities for the electric (or magnetic) field may occur in the geological formation. Strength of an edge sin-
gularity is dependent upon geometry and sources. The fully automatic hp-adaptive algorithm does not only
detects singularities, but it also distinguishes between singularities of different strength.

Here, we focus on edge singularities arising in electrostatic problems and we present high accuracy
approximations for the electric field by considering the following problem with an edge singularity, for
which analytical solution is known.

Geometry. See Fig. 11.
Governing equation. Laplace equation (%Du = 0).
Boundary conditions. u = %lnr, where r ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðx2 þ y2Þ

p
.

Exact solution. The analytical solution is known, and it was provided to us by Baker-Atlas3 (see Eq.
(5.98)).

Observations. This 2D problem has a corner singularity located at (%1,%1), which corresponds to an
edge singularity in 3D located at (%1,%1,z). We are interested in approximating the exact solution at dis-
tances from the singularity 10–12 orders of magnitude smaller than the size of the domain.

To introduce the physics of our problem, we consider two perfect electric conductor (PEC) infinite lines
intersecting at a non-zero point (xc,yc), as shown in Fig. 1. Let b be the angle between PEC1 and PEC2, and
q a Dirac!s delta function distribution of charges concentrated at point (0,0) (Fig. 12).

5.1.1.1. Boundary value problem (BVP). The electrostatic phenomena is governed by the following system
of equations:

$$ E ¼ 0;

$ ' ð!EÞ ¼ q.

&
ð5:92Þ

2 Baker-Atlas, a division of Baker-Hughes.
3 We thank Lev Tabarovsky and Alex Bespalov for this example.
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Thus, solving for scalar potential p, we obtain

divrp ¼ Dp ¼ q
!

ð5:93Þ

with boundary conditions:

• p = 0 on PEC1 and PEC2.
• p = 0 on a boundary far enough from the source. Since electric field E decays as 1/r (where r is the dis-
tance from a given point to the source), for r large enough (for example, r = 106), the electric field inten-
sity is negligible, and can be replaced by 0.

Thus, denoting by X our computational domain (shown in Fig. 11) and by C its boundary, we obtain

Dp ¼ q
!

in X;

p ¼ 0 on C.

(

ð5:94Þ

(–1,–1)
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d=2*10 62 d
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Fig. 11. Geometry of the electrostatic problem with an edge singularity.
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Fig. 12. Model problem.

D. Pardo et al. / Comput. Methods Appl. Mech. Engrg. 195 (2006) 2533–2573 2555



5.1.1.2. Secondary (scattered) field. Now, let q be a unitary electric charge distribution concentrated at the
origin in free space. Solution is given by pprim = ln r. Then

Dp % pprim ¼ 0 in X;

p % pprim ¼ 0% ln r ¼ % ln r on C.

&
ð5:95Þ

Solving the problem for secondary potential psec = p % pprim, we avoid modeling of the source, obtaining:

Dpsec ¼ 0 in X;

psec ¼ % ln r on C.

&
ð5:96Þ

5.1.1.3. Variational formulation. In order to derive the corresponding variational formulation, we multiply
equation Dpsec = 0 by a test function v 2 V ¼ H 1

0ðXÞ ¼ fu 2 H 1ðXÞ : u ¼ 0 on Cg; and integrate (by parts)
over domain X. We obtain

Find u 2 u0 þ V ;Z

X
rurv ¼ 0 8v 2 V ;

8
<

: ð5:97Þ

where u0 is a lift corresponding to the non-homogeneous Dirichlet boundary conditions.

5.1.1.4. Exact solution. The exact solution of this electrostatic problem can be computed analytically [22].
At points located on the surface of PEC1, the normal component of the electric field as a function of b, c, x,
y, xc, and yc, is given by

En ¼ % 2p
s

l
p
b sin

pc
b

! "

1% 2l
p
b cos

!
pc
b

"
þ l

2p
b

' ( ; ð5:98Þ

where s is the distance from a given point (x,y) to the corner (xc, yc), i.e.,

s ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðx% xcÞ2 þ ðy % ycÞ

2
q

ð5:99Þ

and l is given by

l ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
x2c þ y2c

p

s
. ð5:100Þ

In particular, for c ¼ b
2, we have

En ¼ % 2pffiffiffiffiffiffiffiffiffiffiffiffiffiffi
x2c þ y2c

p 1

l%1%p
b þ l%1þp

b
) * ¼ %2p

ðx2c þ y2cÞ
% p

2bs1þ
p
b þ ðx2c þ y2cÞ

p
2bs1%

p
b

h i . ð5:101Þ

There exists a singularity at point (xc,yc) (edge singularity in three dimensions) if and only if p < b. Fur-
thermore, the larger is b the stronger is the singularity. In particular, the strength of singularity is indepen-
dent of the selected non-zero point (xc,yc). Therefore, we set xc = yc = %1, obtaining:

En ¼ Enðs; bÞ ¼
%2p

2%
p
2bs1þ

p
b þ 2

p
2bs1%

p
b

) * . ð5:102Þ

For simplicity, we will restrict ourselves only to the case b = 358", which corresponds to a strong edge
singularity.
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5.1.1.5. Numerical results. Figs. 13–19, show different zooms on the final hp-grid (generated automatically
by our refinement strategy) toward the singularity. Notice that elements near the singularity are up to thir-
teen orders of magnitude smaller than other elements in the same grid!

Finally, in Fig. 20, a comparison between the exact and approximate solutions of the normal component
of the electric field over PEC1 at points located near the singularity is displayed. Notice that in order to
study behavior of the edge singularity, we are interested in points located at distances 10%6%10%2 from
the singularity. As it can be concluded from Fig. 20, we do fully resolve the problem in the region of
interest.

Fig. 13. Final hp-grid (zooms = 1,10) for the electrostatic edge singularity problem. Different colors indicate different polynomial
orders of a approximation, from p = 1 (dark blue) to p = 8 (pink).

Fig. 14. Final hp-grid (zooms = 102,103) for the electrostatic edge singularity problem. Different colors indicate different polynomial
orders of a approximation, from p = 1 (dark blue) to p = 8 (pink).
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5.1.2. An axisymmetric battery antenna problem: the need for goal-oriented adaptivity
We consider the following axisymmetric battery antenna in a homogeneous medium with non-zero con-

ductivity r.
Geometry. 3D axisymmetric problem. See Fig. 21.
Governing equations. Axisymmetric 3D Maxwell!s equations.
Material coefficients.

• Conductivity: 1 S.
• Frequency: 1 MHz.
• Relative permeability and permittivity: 1.

Fig. 15. Final hp-grid (zooms = 104,105) for the electrostatic edge singularity problem. Different colors indicate different polynomial
orders of a approximation, from p = 1 (dark blue) to p = 8 (pink).

Fig. 16. Final hp-grid (zooms = 106,107) for the electrostatic edge singularity problem. Different colors indicate different polynomial
orders of a approximation, from p = 1 (dark blue) to p = 8 (pink).
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Boundary conditions. Homogeneous Dirichlet and Neumann, see Eq. (5.103).
Exact solution. The analytical solution is unknown, although it is known to decay exponentially as we go

away from the battery antenna, since we have a non-zero conductivity.
Observations. We are interested in approximating the exact solution at points far away (0.5 m) from the

antenna.
The original 3D problem can be reduced to a 2D boundary value problem, which can be formulated in

terms of a 2D E-field obtained by solving the reduced wave equation with the appropriate boundary
conditions.

Fig. 17. Final hp-grid (zooms = 108,109) for the electrostatic edge singularity problem. Different colors indicate different polynomial
orders of a approximation, from p = 1 (dark blue) to p = 8 (pink).

Fig. 18. Final hp-grid (zooms = 1010,1011) for the electrostatic edge singularity problem. Different colors indicate different polynomial
orders of a approximation, from p = 1 (dark blue) to p = 8 (pink).
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Fig. 19. Final hp-grid (zooms = 1012,1013) for the electrostatic edge singularity problem. Different colors indicate different polynomial
orders of a approximation, from p = 1 (dark blue) to p = 8 (pink).
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Fig. 20. Value on the PEC1 edge of normal component of electric field at distances 10%6%10%4 (top figure), 10%4%10%2 (bottom left
figure), and 10%2%100 (bottom right figure) from the singularity. The dotted curve denotes exact solution, while FE approximation is
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Since r 5 0, it is known that the electric field intensity decays exponentially as we move away from the
source (battery antenna), and we can select a finite computational domain with homogeneous Dirichlet
boundary conditions enforced at points distant from the antenna. More precisely, we may formulate our
boundary value problem in domain X (shown in Fig. 21) as follows:

$$ 1

l
$$ E

! "
% ðx2!% jxrÞE ¼ 0 in X;

n$ $$ E ¼ %jxl on C1;

n$ $$ E ¼ 0 on C3;

n$ E ¼ 0 on C2 [ C4.

8
>>>>><

>>>>>:

ð5:103Þ

The corresponding variational formulation is given by

Find E 2 HDðcurl;XÞ such that
Z

X

1

l
ð$$ EÞ ' ð$$ !FÞdx%

Z

X
ðx2!% jxrÞE ' !F dx

¼ x2l
Z

C1

!F dS
& +

for all F 2 HDðcurl;XÞ;

8
>>>>><

>>>>>:

ð5:104Þ

where HD(curl;X) = {E 2 H(curl;X) :n$ EjðC2[C4Þ ¼ 0g is the Hilbert space of admissible solutions.
The corresponding stabilized variational formulation can then be derived using techniques of Section

2.1.
Fig. 22 shows convergence history for a sequence of optimal hp-grids produced by our refinement strat-

egy, which is delivering exponential convergence rates.
The final hp-grid (with the corresponding zooms toward the battery antenna) is displayed in Figs. 23–27.

This final hp-grid is optimal in the sense that it minimizes the relative energy norm error with respect to the
number of unknowns.

Unfortunately, the objective of this problem is to estimate the electric field at distances far away from the
source. And for this purpose, an energy norm based refinement strategy is not suitable, and a goal-oriented
adaptive strategy is needed.
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Fig. 21. A 2D cross section geometry of the axisymmetric battery antenna problem.
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5.2. Waveguide design

In this section, we focus our attention on the following six inductive irises waveguide problem:
Geometry. A six inductive irises filter4 of dimensions *20 · 2 · 1 cm. For details, see Fig. 28.
Governing equations. Maxwell!s equations.
Material coefficients.

• Free space.
• Operating Frequency * 8.8%9.6 GHz.
• Cutoff frequency * 6.56 GHz.

   27   183   579  1325  2534  4317  6786 10053 14229
nrdof9.38

11.76

14.75

18.50

23.20

29.09

36.47

45.74

57.35

71.92

90.19 error

SCALES: nrdof^0.33, log(error)

2Dhp90: Fully automatic hp-adaptive Finite Element code

Fig. 22. Convergence history of the axisymmetric battery antenna in the scales number of unknowns to the power of 1/3 (algebraic
scale) vs logarithm of the relative energy norm error.

Fig. 23. Final hp-grid (zooms = 1,10) for the axisymmetric battery antenna problem. Different colors indicate different polynomial
orders of a approximation, from p = 1 (dark blue) to p = 8 (pink).

4 We thank Dr. Luis Garcia-Castillo and Mr. Sergio Llorente for this problem.
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Boundary conditions. Dirichlet, Neumann and Cauchy, see Eq. (5.105).
Exact solution. The exact solution is unknown. A FE solution is displayed in Fig. 28.
Observations.

• H-plane six inductive irises filter.
• Solution of this wave propagation problem lives in H(curl), but not in H1.
• Solution involves resolution of 24 singular reentrant corners.
• Dominant mode (source): TE10-mode.

First, we formulate the boundary value problem. Next, we present the variational formulation and dis-
cuss a way to compute the scattering parameters, the primary quantity of interest for the waveguide design.
Third, we display results obtained with our numerical method. Finally, we use the problem to illustrate
some of the limitations of the fully automatic hp-adaptive strategy, and the two grid solver.

Fig. 25. Final hp-grid (zooms = 104,105) for the axisymmetric battery antenna problem. Different colors indicate different polynomial
orders of a approximation, from p = 1 (dark blue) to p = 8 (pink).

Fig. 24. Final hp-grid (zooms = 102,103) for the axisymmetric battery antenna problem. Different colors indicate different polynomial
orders of a approximation, from p = 1 (dark blue) to p = 8 (pink).
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5.2.1. Formulation
We excite the TE10-mode at the left-hand side port of the waveguide structure (see Fig. 28), and we con-

sider an H-plane discontinuity, i.e., the magnetic field is invariant with respect to the z-direction. Thus, our
original 3D problem can be reduced to a 2D boundary value problem, which we can formulate in terms of
the 2D H-field as follows:

$$ 1

!
$$H

! "
% x2lH ¼ 0 in X;

n$ 1

!
$$H ¼ jx2l

b10

n$ n$ ð2H inc %HÞ on C1;

n$ 1

!
$$H ¼ % jx2l

b10

n$ n$H on C2;

n$ 1

!
$$H ¼ 0 on C3;

8
>>>>>>>>>>><

>>>>>>>>>>>:

ð5:105Þ

Fig. 26. Final hp-grid (zooms = 106,107) for the axisymmetric battery antenna problem. Different colors indicate different polynomial
orders of a approximation, from p = 1 (dark blue) to p = 8 (pink).

Fig. 27. Final hp-grid (zooms = 108,109) for the axisymmetric battery antenna problem. Different colors indicate different polynomial
orders of a approximation, from p = 1 (dark blue) to p = 8 (pink).
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where C1, C2, and C3 are the parts of the boundary corresponding to the excitation port (left port), non-
excitation port (right port), and the perfect electric conductor respectively; b10 refers to the propagation
constant of the TE10 mode; and Hinc is the incident magnetic field at the excitation port.

The corresponding variational formulation is given by

Find H 2 HDðcurl;XÞ such thatZ

X

1

!
ð$$HÞ ' ð$$ !FÞdx%

Z

X
x2lH ' !F dx

þ jx2l
b10

Z

C1[C2

ðn$HÞ ' ðn$ !FÞdS

¼ 2
jx2l
b10

Z

C1

ðn$H incÞ ' ðn$ !FÞdS for all F 2 HDðcurl;XÞ.

8
>>>>>>>>>><

>>>>>>>>>>:

ð5:106Þ

In the above HD(curl;X) is the space of admissible solutions,

HDðcurl;XÞ :¼ fH 2 L2ðXÞ : $$H 2 L2ðXÞg. ð5:107Þ

The stabilized variational formulation can be derived using techniques of Section 2.1.

5.2.2. Scattering parameters
The objective of the waveguide problem is to compute the so called scattering parameters. Since the only

propagating mode is TE10, we have two power waves5 present at each port Ci (i = 1,2): one going inward
(ai), and other going outward (bi) the structure. The relation between the power waves is linear, and may be
written in matrix form as

b1
b2

! "
¼

S11 S12

S21 S22

! "
'

a1
a2

! "
; ð5:108Þ

where Sij are the scattering parameters, or simply S parameters. Thus, the S parameters relate the incident
and reflected power waves. Note that S11, S22 are reflection coefficients and S12, S21 are transmission
coefficients.

Fig. 28. Geometry and FE solution (
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
jHxj2 þ jHy j2

q
) at 8.82 GHz of the waveguide problem with six inductive irises. Different colors

correspond to different values of the solution, from 0 (blue) to 1 (red).

5 A power wave can be identified with a complex number such that its magnitude squared represents the power carried by the wave,
and its argument is the phase of the wave.
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Table 1
Convergence (or not) of the two grid solver for different quasi-uniform initial grids

Does the two grid solver converge? p = 1 p = 2 p = 3 p = 4

Number of elements per k = 7, 13 Yes Yes Yes Yes
Number of elements per k = 7, 11 No No No Yes
Number of elements per k = 6, 13 No No No No

125 1000 3375 8000 15625 27000 42875 64000 91125
10

–1

10
0

10
1

10
2

10
3

Number of unknowns (algebraic scale)

E
rr

or
 in

 th
e 

re
la

tiv
e 

en
er

gy
 n

or
m

 (
%

)

p=1, Fine initial grid
p=2, Fine initial grid
p=3, Fine initial grid
p=1, Coarse initial grid
p=2, Coarse initial grid
p=3, Coarse initial grid

Fig. 29. Convergence history using the fully automatic hp-adaptive strategy for different initial grids. Different grey-scale colors
correspond to different initial orders of approximation. Twenty-seven is the minimum number of elements needed to reproduce the
geometry, while 1620 is the minimum number of elements needed to reproduce the geometry and to guarantee convergence of the two
grid solver.
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Fig. 30. Return loss of the waveguide structure.
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The absorbing boundary condition at C2 implies a2 = 0, and (5.108) reduces to

S11 ¼
b1
a1

; S12 ¼
b2
a1

. ð5:109Þ

Also, we have the reciprocity condition, given by S12 = S21 (see [17]). And since no losses occur within the
waveguide structure, symmetry property jS11j2 + jS22j2 = 1 holds (see [18]).

Fig. 32. jHxj (upper figure), jHyj (center figure), and
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
jHxj2 þ jHy j2

q
(lower figure) at 8.82 GHz for the six irises waveguide problem.

Different colors correspond to different values of the solution, from 0 (blue) to 1 (red).

Fig. 31. jHxj (upper figure), jHyj (center figure), and
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
jHxj2 þ jHy j2

q
(lower figure) at 8.72 GHz for the six irises waveguide problem.

Different colors correspond to different values of the solution, from 0 (blue) to 1 (red).
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5.2.3. Numerical results
The problem may be solved by using semi-analytical techniques (for example, mode matching techniques

[27]). Nevertheless, it would be desirable to solve it using purely numerical techniques, since a numerical
method allows for simulation of more complex geometries and/or artifacts possibly needed for the con-
struction of an actual waveguide.

While attempting to solve this problem using the fully automatic hp-adaptive strategy coupled with the
two grid solver, we encountered the following limitations:

Fig. 34. jHxj (upper figure), jHyj (center figure), and
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
jHxj2 þ jHy j2

q
(lower figure) at 9.71 GHz for the six irises waveguide problem.

Different colors correspond to different values of the solution, from 0 (blue) to 1 (red).

Fig. 33. jHxj (upper figure), jHyj (center figure), and
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
jHxj2 þ jHy j2

q
(lower figure) at 9.58 GHz for the six irises waveguide problem.

Different colors correspond to different values of the solution, from 0 (blue) to 1 (red).
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(1) We cannot guarantee convergence of the two grid solver if the coarse grid is not fine enough, as predicted
by the theory. In this case, we need a minimum of seven elements per wavelength k in the x-direction,
and thirteen elements per wavelength k in the y-direction. Furthermore, as indicated in Table 1, con-
vergence (or not) of the two grid solver is (almost) insensitive to p-enrichment.

(2) We cannot guarantee the optimality of the fully automatic hp-adaptive strategy if the dispersion error is
large. Since solution of the problem on the fine grid is used to guide optimal hp-refinements, we need
to control the dispersion error on the fine grid. Thus, h needs to be sufficiently small or p suffi-
ciently large. In Fig. 29, we compare the convergence history obtained by using the fully automatic
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Fig. 35. 3D EM model problem. 1D cross section over the main diagonal of the unit cube (from (0,0,0) to (1,1,1)). Comparison
between the exact and the FE solution component Re(E1), for different hp-meshes delivering 4.4% and 13.4% error (in the relative
energy norm) respectively.
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Fig. 36. 3D EM model problem. 1D cross section over the main diagonal of the unit cube (from (0,0,0) to (1,1,1)). Comparison
between the exact and the FE solution component Re(E1), for an hp-mesh delivering 32.8% error (in the relative energy norm).
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hp-adaptive strategy starting with different initial grids. For third order elements, the dispersion error
is under control (see estimates of [1,20,21]), and the fully automatic hp-adaptive strategy converges
exponentially. We also observe that, in the asymptotic regime, all curves present similar rates of
convergence.

We solved the six irises waveguide problem delivering a 0.2% error (in the relative energy norm). Fig. 30
displays the magnitude of the S11 scattering parameter (on the decibel scale) with respect to the frequency.
This quantity is usually referred to as the return loss of the waveguide structure. For frequency interval 8.8–

Table 2
3D electromagnetics model problem

No. of k vs p p = 1 p = 2 p = 3 p = 4 p = 5

k = 1
Error 5.0% 4.2% 1.2% 1.8% 0.3%
Elem/k 20 3 2 1 1
d.o.f. 40K 946 1033 308 548

k = 2
Error 4.2% 2.9% 1.9% 0.3%
Elem/k 3 1.5 1 1
d.o.f. (>300K) 6427 2764 2226 4109

k = 3
Error 3.5% 4.1% 1.8% 2.1%
Elem/k 3.33 1.33 1 0.66
d.o.f. (>1200K) 31K 7115 6148 4109

k = 4
Error 5.0% 1.9% 1.2%
Elem/k 1.25 1 0.75
d.o.f. (>2300K) (>82K) 12K 14K 12K

k = 5
Error 3.6% 4.4% 3.4%
Elem/k 1.4 0.8 0.6
d.o.f. (>135K) 31K 27K 12K

k = 6
Error 4.2% 3.8% 2.1%
Elem/k 1.33 0.83 0.66
d.o.f. (>240K) 46K 27K 27K

k = 7
Error 3.4% 4.3%
Elem/k 0.86 0.57
d.o.f. (>410K) (>98K) 45K 27K

k = 8
Error 2.8%
Elem/k 0.625
d.o.f. (>20M) (>650K) (>167K) (>71K) 51K

k = 50
Error
Elem/k
d.o.f. (>5000M) (>122M) (>25M) (>14M) (>9.5M)

For frequencies from 1 to 50 wavelengths k, and uniform hp-grids (1 6 p 6 5), we display relative error in the energy norm (in
percentage), number of elements per wavelength k, and actual (or estimated) number of d.o.f. required to obtain an error below 5%.
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9.6 GHz, the return loss is below %20 dB, which indicates that almost all energy passes through the struc-
ture, and thus, the waveguide acts as a filter.

Finally, Figs. 31–34 display solution at different frequencies. For frequencies 8.72 GHz, and 9.71 GHz,
the return loss of the waveguide structure is large, and for frequencies 8.82 GHz, and 9.58 GHz the return
loss is below %20 dB.

5.3. Analysis of a 3D EM model problem

In this section, we study numerically a 3D EM model problem introduced in Section 4.1.3. Given a unit
cube geometry, the objective is to determine number of elements N and corresponding order of approxima-
tion p, needed to solve Maxwell!s equations numerically, for an arbitrary plane wave solution at different
frequencies (thus, wavelengths).

A second motivation for this numerical experiment comes from studying the fully automatic hp-adaptive
strategy, which may produce misleading results if dispersion error on the initial fine grid is too large. In this
section, we present combinations of uniform hp-grids, that lead to solution of our model problem (at dif-
ferent frequencies) with a relative energy norm error below 5%. These hp-meshes may be utilized as a guide
to construct the initial fine grid for the hp-adaptive strategy.

For these purposes, we select an incoming plane wave with

k ¼ kðsinðaÞ cosðbÞux þ sinðaÞ sinðbÞuy þ cosðbÞuzÞ; ð5:110Þ

where k is the wave number, a = 35p/180, and b = 25p/180. We consider a 1D cross section given by the
main diagonal of the unit cube, starting at the origin and ending at point (1,1,1). Figs. 35 and 36 show a
comparison between exact and FE solution for the real part of the first component of the electric field, using
different hp-meshes. For an hp-grid delivering 4.4% relative error in the energy norm, differences in both
phase and amplitude between exact and FE solutions cannot be appreciated. As the error increases, these
differences become larger.

Since solution of the 3D EM problem is smooth, large elements with large polynomial order of approx-
imation p are preferred over small elements with small p. In addition, dispersion error decreases faster by
increasing p rather than by decreasing element size h (see [1,20], and [21]). Table 2 illustrates these asser-
tions. Using p = 5, a grid with 51000 d.o.f. delivers smaller error than a grid with 20 million unknowns
and lowest order elements for the model problem with 8 wavelengths on the main diagonal.

Table 2 has been generated by using a direct (frontal) solver. Notice that the two grid solver requires an
elevated number of elements per wavelength on the coarse grid to guarantee convergence, as mentioned in
Section 5.2. As a consequence, the two grid solver could not be utilized to produce the table.

6. Conclusions and future work

In this paper, we have studied a two grid solver for solving linear systems resulting from hp FE discret-
izations of Maxwell!s equations. The meshes come in pairs, consisting of a coarse mesh and the correspond-
ing fine mesh obtained via the global hp refinement of the coarse mesh. The coarse meshes are generated by
a special hp-adaptive algorithm, based on minimizing the projection based interpolation error of the fine
mesh solution with respect to the next optimally refined coarse mesh. The solver combines block Jacobi
smoothing with an optimal relaxation, with the coarse grid solve.

Instead of using the two grid iteration for producing a preconditioner for conjugate gradient (CG) only,
we chose to accelerate each smoothing operation individually with an approximation of the steepest descent
(SD) method, which we interpret as determining the optimal relaxation parameter.
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Within the described framework, we have studied several critical questions including the convergence
theory, implementation issues, the need of controlling gradients, error estimation for the two grid solver
and, first of all, the possibility of guiding the hp strategy for EM problems with only partially converged
solution. As a result of it, we verified that a partially converged solution, with a rather large (relative) error
tolerance of 0.1, is sufficient to guide the hp strategy. The corresponding number of two grid iterations stays
then very minimal at a level below 10 iterations per mesh.

Then, we have applied our numerical technique (the fully automatic hp-adaptive strategy coupled with
the two grid solver) to a number of practical EM problems. While most applications were solved with ex-
treme accuracy, we also faced a number of limitations:

• The two grid solver may not converge for indefinite problems if the coarse grid is too coarse. Further-
more (as shown in Lemma 1), this condition over the element size does not depend upon the polynomial
order of approximation p. A multigrid solver for which the constant in Lemma 1 decreases as p increases
is badly needed for wave propagation problems, when hp-finite elements are used.

• An adaptive strategy based on minimization of the energy norm may be inadequate for a number of EM
applications as, for example, the axisymmetric battery antenna problem. Thus, an hp goal-oriented
adaptive algorithm is needed.
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