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Abstract. We introduce two new lowest order methods, a mixed method, and a hy-
brid Discontinuous Galerkin (HDG) method, for the approximation of incompressible
flows. Both methods use divergence-conforming linear Brezzi-Douglas-Marini space
for approximating the velocity and the lowest order Raviart-Thomas space for ap-
proximating the vorticity. Our methods are based on the physically correct viscous
stress tensor of the fluid, involving the symmetric gradient of velocity (rather than
the gradient), provide exactly divergence-free discrete velocity solutions, and optimal
error estimates that are also pressure robust. We explain how the methods are con-
structed using the minimal number of coupling degrees of freedom per facet. The
stability analysis of both methods are based on a Korn-like inequality for vector fi-
nite elements with continuous normal component. Numerical examples illustrate the
theoretical findings and offer comparisons of condition numbers between the two new
methods.
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1. Introduction

In this work we introduce two new methods for the discretization of the steady
incompressible Stokes equations in three space dimensions. Let Ω Ă R3 be an open
bounded domain with Lipschitz boundary BΩ that is split into the Dirichlet boundary
ΓD and outflow boundary ΓN . The Stokes system for the fluid velocity u and the
pressure p is given by

´ divpνεpuqq ` ∇p “ f in Ω, (1a)

div u “ 0 in Ω, (1b)

u “ 0 on ΓD, (1c)

p´νεpuq ` pIqn “ 0 on ΓN , (1d)

where εpuq :“ p∇u ` ∇uTq{2 is the symmetric gradient, f : Ω Ñ R3 is an external
body force, ν is twice the kinematic viscosity, n is the outward unit normal vector
and I P R3ˆ3 is the identity matrix. We assume that both ΓD and ΓN have positive
boundary measure, and any rigid displacement vanishing on ΓD vanishes everywhere
in Ω. (As usual, when ΓN is empty the pressure space must be adapted to obtain a
unique pressure [18], but we omit this case for simplicity.) Next, define the viscous
stress tensor [23] by σ “ νεpuq and the vorticity by ω “ curlu. Using them, we can
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rewrite the above system as

ν´1dev σ ´ ∇u ` κpωq “ 0 in Ω, (2a)

´ div σ ` ∇p “ f in Ω, (2b)

σ ´ σT
“ 0 in Ω, (2c)

div u “ 0 in Ω, (2d)

u “ 0 on ΓD, (2e)

pσ ´ pIqn “ 0 on ΓN . (2f)

Here we used the deviatoric part of the tensor τ given by dev τ :“ τ ´ 1
3
trpτqI, the

matrix trace trpτq :“
ř3

i“1 τii, and the operator κ : R3 Ñ tτ P R3ˆ3 : τ ` τT “ 0u

defined by

κpvq “
1

2

¨

˝

0 ´v3 v2
v3 0 ´v1

´v2 v1 0

˛

‚.

Note the obvious identities

∇v “ εpvq ` κpcurl vq, 2κpvqw “ v ˆ w, (3)

for vector fields v and w (the first of which was already used in (2a)). We will refer to
system (1) as the primal formulation and system (2) as the mixed formulation.

The literature on discretizations of (1) and (2) is too vast to list here. The relatively
recent quest for exactly divergence-free velocity solutions and pressure-independent
a priori error estimates for velocity, often referred to as pressure robust estimates [30,
28], has rejuvenated the field. A recurring theme in this vast literature, from the
early non-conforming method of [10] to the more recent [29], is the desire to improve
computational efficiency by minimizing inter-element coupling. However, less studied
are its side effects on stability when the actual physical flux replaces the often-used
simplified diffusive flux, i.e., when

´ divpνεpuqq replaces ´ divpν∇uq, (4)

even though an early work [11] cautions how the lowest order method of [10] can become
unstable when doing so. Such instabilities arise because the larger null space of ε ne-
cessitates increased inter-element coupling (as explained in more detail below) and are
manifested in certain lowest order cases with insufficient inter-element coupling. In this
work, focusing on the lowest order case, we identify new stable finite element methods,
with the minimal necessary inter-element coupling, that yield exactly divergence-free
and pressure robust velocities. New methods based on both the primal and the mixed
formulations are designed.

Yet another reason for focusing on the lowest order case is its utility in precondi-
tioning. Roughly speaking, a common strategy for preconditioning high order Stokes
discretizations involves combining local (high order) error dampers via, say block Ja-
cobi or other smoothers, with a global (low order) error corrector such as multigrid (or
even a direct solver) applied to the smaller lowest order discretization. From this point
of view, it is desirable to have stable low order versions (that remain stable under (4))
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Figure 1. Configurations of adjacent elements after deformation by
piecewise rigid displacements of two adjacent elements T˘.

of high order methods for design of preconditioners, an interesting topic which we shall
not touch upon further in this paper.

To delve deeper into the mechanics of the above-mentioned instability, consider the
kernel of ε, consisting of rigid displacements of the form x Ñ a ` b ˆ x with a, b P R3.
Reasonable methods approximating the operator ´ divpνεpuqq produce element matri-
ces whose nullspaces contain these rigid displacements. Ideally, when these element-
wise rigid displacements are subjected to the inter-element continuity conditions of the
discrete velocity space, they should equal element-wise restrictions of a global rigid
displacement on Ω (which can then be eliminated by boundary conditions). However,
if the inter-element coupling in the discrete velocity space is so weak to allow for the
existence of a u in it that does not equal a global rigid displacement on Ω even though
u|T is a rigid displacement on every mesh element T , then instabilities can arise [11].
The discrete velocity space we have in mind is the lowest order (piecewise linear)

Hpdivq-conforming Brezzi-Douglas-Marini (BDM1) space [4]. (A basic premise of
this paper is the unquestionable utility of Hpdivq-conforming velocity spaces to obtain
exactly divergence-free discrete Stokes velocity fields, well established in prior works [8,
9, 29, 20, 21]). Hence, to understand how to avoid the above-mentioned instability
while setting velocity in the BDM1 space, we ask the following question: how many
coupling degrees of freedom (dofs) are needed to guarantee that two rigid displacements
u˘, given respectively on two adjacent elements T˘, coincide on the common interface
F “ BT` X BT´?
The pictorial representations of the deformations created by u˘ in Figure 1 lead

to the answer. Three of the pictured deformations are just translations (generated
by the a-vector in a ` b ˆ x). For a unit vector b, letting Rb

θ denote the unitary
operator that performs a counterclockwise rotation by angle θ around b, it is easy to
see that Rb

θx “ x ` θpb ˆ xq ` Opθ2q as θ Ñ 0. Therefore the deformation created by
the rigid displacement bˆ x can be viewed as an infinitesimal rotation about b. These
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Figure 2. Classification of facet dofs in our new methods into three
types: (1) normal velocity components in the form of BDM1 facet dofs,
(2) tangential facet velocities, (3) normal vorticity as RT 0 facet dof.

deformations are portrayed in Figure 1 as rotations about three linearly independent b-
vectors. The first row in Figure 1 illustrates deformations generated by piecewise rigid
displacements which are given by two b-vectors coplanar with F and an a-vector normal
to F . These rigid displacements are forbidden in the BDM1 space. Indeed, recall [4]
that the BDM1 dofs on the facet F are given by the linear functionals u ÞÑ

ş

F
u¨n q ds

for all linear polynomials q on F , where n is a normal vector on F . These represent
three dofs illustrated in left diagram of Figure 2. If these three dofs coincide for two
rigid displacements u˘, then the corresponding normal component must be continuous
on F . This continuity forbids the above-mentioned deformations to be generated by
elements of the BDM1 space. We summarize this by saying that the rigid displacements
portrayed in the first row of Figure 1 are “controlled” by the three BDM1 dofs of the
facet F which are illustrated in the left diagram of Figure 2.

It remains to control the rigid displacements of the second row of Figure 1 using three
additional dofs per facet. To this end, our new methods have two additional spaces:
(i) one that approximates the in-plane components of the velocity on facets, illustrated
in the middle diagram of Figure 2, used to control the first two rigid displacements
in the second row of Figure 1; and (ii) a second space, schematically indicated in the
last diagram of Figure 2, that controls the third deformation in the second row of
Figure 1. The latter deformation arises from piecewise rigid displacements of the form
u˘ “ b˘ ˆx with b˘ collinear to n, a unit normal of F . Since curlpb˘ ˆxq “ 2b˘, we can
make the two rigid displacements coincide on F by requiring continuity of n ¨ curlu˘.
While continuity of n ¨ curlu certainly holds if u is the exact Stokes velocity, it does
not generally hold for u in BDM1. Hence, keeping in view that ω “ curlu represents
vorticity, we incorporate this constraint in our new methods by approximating vorticity
ω in the lowest order Raviart-Thomas space. This is our second additional space. Its
single dof per facet is shown schematically in the last diagram of Figure 2.

In the first part of the paper we will employ these additional spaces to construct
a novel HDG method to approximate (1) and present a detailed stability and error
analysis. HDG methods have become popular ever since its introduction in [7] which
showed how interface variables, or facet variables, can be effectively used to construct
DG schemes amenable to static condensation. In the method presented here, the inter-
face variable approximates the tangential components of the velocity. The key technical
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ingredient in the analysis that reflects the insight garnered from the above pictorial dis-
cussion is a discrete Korn-like inequality for the BDM1 space (see Lemma 3.1 below,
and the version with interface variables in Lemma 3.2).

The second part of this work discusses the derivation of a novel mixed method for
the approximation of (2) and is motivated by our previous two papers [20, 21] and the
many other works on discretizing (2) such as [12, 13, 14, 15]. In [21] we derived the
“Mass-Conserving Stress-yielding” (MCS) formulation where the symmetry of σ was
incorporated in a weak sense by means of a Lagrange multiplier that approximates
ω “ curlu. While the ω there was approximated using element-wise linear (or higher
degree) functions without any inter-element continuity requirements, the new mixed
method we propose here will approximate ω in the lowest order Raviart-Thomas space
instead. The lowest order case that was proved to be stable in [21] had nine coupling
dofs per facet. We are able to reduce this number to the minimal six (the dimension of
rigid displacements) in this paper. This minimal coupling was achieved earlier in [35]
using a bubble-augmented velocity space which is a subspace of a degree-four vector
polynomial space. Since higher degrees necessitate more expensive integration rules,
we offer our simpler elements as an alternative.

Other methods that approximate the operator divpν∇uq, such as [10, 29, 20], are
able to reduce the number of coupling dofs per facet even further. Since our focus here
is on methods that approximate divpνεpuqq, we restrict ourselves to a brief remark on
this. Since the kernel of ∇ (applied to vector fields) is three dimensional, we expect the
minimal number of coupling dofs per facet to be three when approximating divpν∇uq.
A method with this minimal coupling was achieved early by [10]. To also obtain
pressure robust and exactly divergence-free solutions, prior works [29, 20] settled for a
slightly higher five coupling dofs per facet in the lowest order case. It is now known that
this can be improved by employing the technique of “relaxed Hpdiv,Ωq-conformity,”
see [26, 27], which results in a method with the minimal three coupling dofs per
facet and yet, thanks to a simple post-processing, provides optimal convergence orders
and pressure robustness. While on the subject of coupling dofs, an explanation of
our focus on three-dimensional (3D) domains is in order. On two-dimensional (2D)
domains, the space of rigid displacements only has three dimensions. In the lowest
order 2D case, BDM1 space provides two coupling dofs per facet edge, and the space
of tangential facet velocities adds one more coupling degree of freedom. Thus the
minimal facet coupling (of three dofs) needed to eliminate the rigid displacements are
more immediate in 2D case when compared to the 3D case, which is why restrict to
the 3D case henceforth.

The new HDG method and the new mixed method proposed in this paper both have
the same coupling dofs, the same velocity convergence orders and the same struc-
ture preservation properties like pressure robustness and mass conservation. On closer
comparison, two advantages of the mixed method are notable. One is its direct approx-
imation of viscous stresses. Another is the absence of any stabilization parameters in
it. In fact, in our numerical studies, the conditioning of a matrix block arising from the
parameter-free mixed method was found to be better than the analogous HDG block
for all ranges of the HDG stabilization parameter we considered.

Outline. We set up general notation in Section 2 and continue with a description of
the variational framework used throughout the paper. Finite element spaces, a discrete
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Korn-like inequality, and resulting norm equivalences are introduced in Section 3. A
list of interpolation operators into these spaces and their properties with references to
literature can also be found there. In Section 4 we introduce and analyze the HDG
method for the primal set of equations (1) and in Section 5 we do the same for the MCS
method for the mixed set of equations (2). Finally, in Section 6 we perform numerical
experiments to illustrate and complement our theoretical findings.

2. Notation and weak forms

By M we denote the vector space of real 3 ˆ 3 matrices and by K we denote the
vector space of 3 ˆ 3 skew symmetric matrices, i.e., K “ skwpMq, where skw τ “
1
2
pτ ´ τT q for τ P M. Further, let D “ dev pMq. To indicate vector and matrix-

valued functions on Ω, we include the range in the notation, thus while L2pΩq “

L2pΩ,Rq denotes the space of square integrable and weakly differentiable R-valued
functions on Ω, the corresponding vector and matrix-valued function spaces are defined
by L2pΩ,R3q :“

␣

u : Ω Ñ R3
ˇ

ˇ ui P L2pΩq
(

and L2pΩ,Mq :“
␣

τ : Ω Ñ M
ˇ

ˇ τij P L2pΩq
(

,

respectively. For any Ω̃ Ď Ω, we denote by p¨, ¨qΩ̃ the inner product on L2pΩ̃q (or its
vector- or matrix-valued versions). Similarly, we extend this notation and write } ¨ }Ω̃
for the corresponding L2-norm of a (scalar, vector, or matrix-valued) function on the
domain Ω̃. In the case Ω̃ “ Ω we will omit the subscript in the inner product, i.e. we
have p¨, ¨qΩ̃ “ p¨, ¨q and we will use the notation } ¨ }0 “ } ¨ }Ω.
In addition to the differential operators we have already used, ∇, ε, curl, we under-

stand div Φ as either
ř3

i“1 BiΦi for a vector-valued function Φ, or the row-wise diver-

gence
ř3

j“1 Bjτij for a matrix-valued function τ . In addition to the standard Sobolev

spaces HmpΩq for any m P R, we shall also use the well-known spaces Hpdiv,Ωq “ tv P

L2pΩ,R3q : div v P L2pΩqu and Hpcurl,Ωq “ tv P L2pΩ,R3q : curl v P L2pΩ,R3qu. We
use H1

0,BpΩq, H0,Bpdiv,Ωq and H0,Bpcurl,Ωq, to denote the spaces of functions whose
trace, normal trace and tangential trace respectively vanish on ΓB, for B P tD,Nu.
The only somewhat nonstandard Sobolev space that we shall use is

Hpcurl div,Ωq :“ tτ P L2
pΩ,Dq : div τ P H0,Dpdiv,Ωq

˚
u, (5)

where H0,Dpdiv,Ωq˚ is the dual space of H0,Dpdiv,Ωq. In the case ΓD “ BΩ, as proved
in [20], the dual of H0,Dpdiv,Ωq equals H´1pcurl,Ωq, so the condition that div τ P

H0,Dpdiv,Ωq˚ in (5) is the same as requiring that curl div τ P H´1pΩq. This explains
the presence of the operator “curl div” in the name of the space in (5).

We denote by T a quasiuniform and shape regular triangulation of the domain Ω
into tetrahedra. Let h denote the maximum of the diameters of all elements in T .
Throughout this work we write A „ B when there exist two constants c, C ą 0
independent of the mesh size h as well as the viscosity ν such that cA ď B ď CA.
Similarly, we use the notation A À B if there exists a similar constant C (independent
of h and ν) such that A ď CB. Henceforth we assume that ν is a constant. Due to
quasiuniformity we have h „ diampT q for any T P T . The set of element interfaces
and boundaries is denoted by F . This set is further split into facets on the Dirichlet
boundary, FD “ tF P F : F Ă ΓDu, facets on the Neumann boundary FN “ tF P F :
F Ă ΓNu and facets in the interior F0 “ FzpFN Y FDq. Also let F0,D “ F0 Y FD.

For piecewise smooth functions v on the mesh, vvw and tvu are functions on F whose
values on each interior facet equal the jump (defined up to a sign) of v and the mean
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of the values of v from adjacent elements. On boundary facets, they are both defined
to be the trace of v. On each element boundary, and similarly on each facet on the
global boundary we denote by n the outward unit normal vector. Then the normal
and tangential trace of a smooth enough vector field v is given by

vn “ v ¨ n and vt “ v ´ vnn.

Accordingly, the normal trace is a scalar function and the tangential trace is a vector
function. In a similar manner we introduce the normal-normal (nn) trace and the
normal-tangential pntq trace of a matrix valued function τ by

τnn :“ τ : n b n “ nTτn and τnt “ pτnqt.

For any Ω̃ Ď Ω, we denote by P kpΩ̃q “ P kpΩ̃,Rq the set of polynomials of degree at
most k, restricted to Ω̃. Let P kpΩ̃,R3q and P kpΩ̃,Mq denote the analogous vector-
and matrix-valued versions whose components are in P kpΩ̃q. With respect to these
spaces we then define Πk

Ω̃
, the L2pΩ̃q-projection into the space P kpΩ̃q or its vector- or

matrix-valued versions. We omit subscript from Πk
Ω̃
if it is clear from context. For the

space of functions the restrictions of which are in P kpT q for all T P T we write simply
P kpT q. The analogous convention holds for HkpT q, L2pFq, etc.
The standard [18] variational formulation of (1) is to find pu, pq P H1

0,DpΩ,R3qˆL2pΩq

such that

νpεpuq, εpvqq ´ pdiv v, pq “ pf, vq for all v P H1
0,DpΩ,R3

q, (6a)

´pdiv u, qq “ 0 for all q P L2
pΩq. (6b)

However our novel methods use Hpdivq-conforming spaces for the approximation of the
velocity u. Another weak form where velocity is set in Hpdivq was given in [20, 21, 25]
using Σsym :“ tτ P Hpcurl div,Ωq : τ “ τTu. It finds pσ, u, pq P Σsym ˆ H0,Dpdiv,Ωq ˆ

L2pΩq such that

pν´1σ, τq ` xdiv τ, uydiv “ 0 for all τ P Σsym, (7a)

´xdiv σ, vydiv ´ pdiv v, pq “ pf, vq for all v P H0,Dpdiv,Ωq, (7b)

´pdiv u, qq “ 0 for all q P L2
pΩq, (7c)

where Σsym :“ tτ P Hpcurl div,Ωq : τ “ τTu. Here x¨, ¨ydiv denotes the duality pairing
on H0,Dpdiv,Ωq˚ ˆH0,Dpdiv,Ωq. Note that since σ P L2pΩ,Dq we have trpσq “ 0 which
is motivated by (2a). In [25], a detailed well-posedness analysis of (7) was provided,
but in this paper, (7) will serve merely to motivate the new mixed method of Section 5.

3. The finite elements used and their properties

In this preparatory section, we define the standard finite element spaces used to
construct our methods, their natural interpolators, and a number of discrete norm
equivalences revealing equivalent norms involving piecewise εp¨q. Lemma 3.2 below
will be used in the analysis of the HDG scheme while the analysis of the MCS scheme
will additionally need Lemmas 3.3–3.4. We begin with the finite element spaces used
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in this paper:

Vh :“ tvh P H0,Dpdiv,Ωq : vh|T P P 1
pT,R3

qu, (8a)

Vph :“ tvph P L2
pF ,R3

q : vph “ 0 on ΓD, and for all F P F ,
vph|F P P 0

pF,R3
q and pvphqn|F “ 0u, (8b)

Wh :“ tηh P H0,Dpdiv,Ωq : ηh|T P P 0
pT,R3

q ` xP 0
pT,Rq for all T P T u, (8c)

Σh :“ tτh P L2
pΩ,Dq : τh|T P P 1

pT,Dq, pτhqnt|F P P 0
pF, nK

F qu, (8d)

Qh :“ P 0
pT q. (8e)

Note that for any τh P Σh, on a facet F , pτhqnt is a constant function on F taking
values in nK

F , where n
K
F denotes the orthogonal complement of nF , a unit normal of

F . This is indicated by the notation pτhqnt P P 0pF, nK
F q in (8d). Also any vph P

Vph is tangential and takes values in nK
F on each facet F . Note also that Vh, which

equals H0,Dpdiv,Ωq XBDM1 in the notation of §1, is the lowest order Brezzi-Douglas-
Marini space while Wh is the lowest order Raviart-Thomas space [4]. The space Σh

is a discontinuous version of the “nt-continuous” space introduced in [20], for which
simple shape functions were exhibited there. All of these finite element spaces are
obtained by mappings from a single reference finite element. (All these maps extend to
curvilinear elements, although we restrict to affine equivalent elements in our analysis
here.) The maps are compatible with the degrees of freedom of the spaces. (For Σh, the
appropriate map is given in [20] and compatibility with degrees of freedom is proved in
[20, Lemma 5.7], while for the other spaces, the mappings are standard.) In the case
of Vh and Wh, the maps are Piola maps which also preserve divergence-free subspaces.

3.1. A discrete Korn-type inequality. Korn inequalities for piecewise functions
were given in [5, Theorem 3.1]. A further refinement was given in [31, Theorem 3.1].
To describe it, let ΠR denote the facet-wise L2 projection onto RF :“ tt ` α n ˆ

x : t P nK, α P Ru, the space of tangential components (on a facet F ) of the rigid
displacements (or simply the space of two-dimensional rigid displacements on F ). Let
H1

n,DpT ,R3q :“ tu : u P H1pT,R3q for all elements T P T and vuwn “ 0 on all facets
F P F0,Du. A minor modification of the proof of [31, Theorem 3.1] shows that

}∇u}
2
T À }εpuq}

2
T ` h´1

›

›ΠR
vuwt

›

›

2

F0,D
for all u P H1

n,DpT ,R3
q. (9)

Here and throughout, we use } ¨ }2T to abbreviate
ř

TPT } ¨ }2T with the understanding
that any derivative operators in the argument of these norms are evaluated summand
by summand, e.g., the gradient and ε are evaluated element by element in (9). This
notation is similarly extended to facets, so } ¨ }2F0,D

“
ř

FPF0,D
} ¨ }2F . Note how nor-

mal components are controlled in (9) through the space H1
n,DpT ,R3q, while tangential

components are controlled through the jumps vuwt. The next result shows that a part
of the right hand side of (9) can be traded for a norm of the jump of n ¨ curlu when u
is in Vh.
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Lemma 3.1. For all uh P Vh,

}εpuhq}
2
T ` h´1

›

›ΠR
vuhwt

›

›

2

F0,D
„ }εpuhq}

2
T ` h´1

›

›Π0
vuhwt

›

›

2

F0,D

` h
›

›vcurluhwn
›

›

2

F0,D
.

(10)

Proof. By Pythagoras theorem,
›

›ΠR
vuhwt

›

›

2

F
“
›

›Π0
vuhwt

›

›

2

F
`
›

›pΠR
´ Π0

qvuhwt
›

›

2

F
.

Hence (10) would follow once we prove that for all F P F and all uh P Vh,

h
›

›vcurluhwn
›

›

2

F
`

ÿ

TPTF

›

›εpuhq
›

›

2

T
„ h´1

›

›pΠR
´ Π0

qvuhwt
›

›

2

F
`

ÿ

TPTF

›

›εpuhq
›

›

2

T , (11)

where TF “ tT P T : F Ă BT u.
To prove (11), first note that, restricted to every facet F , ΠR ´ Π0 is the L2pF q-

orthogonal projection onto the one dimensional span of rF “ nF ˆ px ´ xF q where
xF “ 1

|F |

ş

F
x dx is the barycenter of F . Computing this one-dimensional projection,

pΠR ´ Π0qvuhwt
ˇ

ˇ

F
“ prF , vuhwqF rF {}rF }2F . Therefore,

›

›pΠR
´ Π0

qvuhwt
›

›

F
“

|prF , vuhwqF |

}rF }F
. (12)

To simplify the numerator of the last term, let w equal uh|T for some T P TF . We
claim that

prF , wqF “ prF , εpwqpx ´ xF qqF `
1

2
p|x ´ xF |

2, nF ¨ curlwqF . (13)

To see why, recalling that w is linear in T (and hence in F Ă BT ), for any x P F ,

wpxq “ wpxF q ` ∇w px ´ xF q

“ wpxF q ` εpwqpx ´ xF q `
1

2
curlw ˆ px ´ xF q,

where we have used (3). Since rF is orthogonal to constants on F ,

prF , wq “ prF , εpwqpx ´ xF qqF `
1

2
pnF ˆ px ´ xF q, curlw ˆ px ´ xF qqF .

Now, since px´ xF q K n for any x P F , using the identity paˆ bq ¨ pcˆ bq “ |b|2pa ¨ cq ´

pa ¨ bqpc ¨ bq to simplify the last term, we obtain (13).
The equivalence of (11) is a consequence of the identity

›

›pΠR
´ Π0

qvuhwt
›

›

F
“

prF , vεpuhqwpx ´ xF qqF

}rF }F
`

p|x ´ xF |2, vcurluhwnqF

2}rF }F
, (14)

immediately obtained by combining (12) and (13). Indeed, by applying Cauchy-
Schwarz inequality to the terms on the right hand side of (14), simple local scaling

arguments give h´1
›

›pΠR ´ Π0qvuhwt
›

›

2

F
À

ř

TPTF }εpuhq}2T ` h
›

›vcurluhwn
›

›

2

F
, thus prov-

ing one side of equivalence in (11). To prove the other side, we begin by noting that
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curlpuhq is constant on each element, so

h1{2
›

›vcurluhwn
›

›

F
À h´1{2 p|x ´ xF |2, vcurluhwnqF

2}rF }F

“ h´1{2

ˆ

›

›pΠR
´ Π0

qvuhwt
›

›

F
´

prF , vεpuhqwpx ´ xF qqF

}rF }F

̇

À h´1{2
›

›pΠR
´ Π0

qvuhwt
›

›

F
`

ÿ

TPTF

}εpuhq}T ,

where we have used (14) and local scaling arguments again. Squaring both sides and
applying Young’s inequality, (11) is proved. □

3.2. Norm equivalences. The product space for the kinematic variables is given by

Uh :“ Vh ˆ Vph ˆ Wh. For the analysis we define the norms

}uh, uph}
2
∇ :“ }∇uh}

2
T ` h´1

}Π0
puh ´ uphqt}

2
BT ,

~uh, uph, ωh~
2
ε :“ }εpuhq}

2
T ` h´1

}Π0
puh ´ uphqt}

2
BT ` h}pcurluh ´ ωhqn}

2
BT ,

}uh, uph, ωh}
2
ε :“ }εpuhq}

2
T ` h´1

}Π0
puh ´ uphqt}

2
BT ` } curluh ´ ωh}

2
T ,

}uh, uph, ωh}
2
Uh

:“ } dev∇uh ´ Π0κpωhq}
2
T ` h´1

}Π0
puh ´ uphqt}

2
BT ,

where we have used } ¨ }2BT to abbreviate
ř

TPT } ¨ }2BT . We will shortly establish relation-
ships between these norms (Lemma 3.4). That these are all norms on Uh may not be
immediately obvious, but follows from Lemma 3.2 below (where we critically use that
uph is single valued on facets). As we shall see later, ~¨~ε is the natural norm to analyze
the new HDG method in §4, while } ¨ }ε features in the analysis of the MCS method
in §5. All the above norms involve the interface variable uph, so they may be referred
to as “HDG-type” norms. In contrast, “DG-type” norms were used in Subsection 3.1,
where Lemma 3.1 and (9) imply

}∇uh}T À }εpuhq}
2
T ` h´1

›

›Π0
vuhwt

›

›

2

F0,D
` h

›

›vcurluhwn
›

›

2

F0,D
. (15)

A similar discrete Korn-type inequality also holds for HDG-type norms, as seen in the
next lemma.

Lemma 3.2. For all puh, uph, ωhq P Uh, we have the Korn-like inequality

}uh, uph}∇ À ~uh, uph, ωh~ε . (16)

The reverse inequality holds in the sense that for any puh, uphq P Vh ˆ Vph there exists a
ωh P Wh such that

~uh, uph, ωh~ε À }uh, uph}∇. (17)

Proof. To prove (16), first note that on an interior facet F “ BT` X BT´ P F0 shared
by two elements T˘ P T , letting u˘

h “ uh|T˘
, since uph is single valued on F , we have

u`
h ´u´

h “ pu`
h ´upq ´ pu´

h ´upq. Moreover, on a facet F P FD, uh|F “ puh ´uphq|F . Thus
by triangle inequality,

›

›Π0
vuhwt

›

›

2

F0,D
ď 2}Π0

puh ´ uphqt}
2
BT , (18)
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where we have increased the right hand side to include facets on ΓN also. Similarly,
since the normal component of the given ωh P Wh is continuous across F P F0 and zero
on F P FD,

›

›vcurluhwn
›

›

2

F ď 2 }pcurluh ´ ωhqn}
2
BT . (19)

Using (18) and (19) in (15), we obtain the estimate (16).
To prove (17), consider a function ωh P Wh satisfying

n ¨ ωh “ n ¨ tcurluhu on BT zΓD,

n ¨ ωh “ 0 on BT X ΓD,

on the boundary of every element T P T . Since curluh is piecewise constant, by the well
known degrees of freedom of the Raviart-Thomas space Wh, these conditions uniquely
fix an ωh P Wh. Then, }pcurluh ´ωhqn}F equals zero for F P FN , equals

1
2

›

›vcurluhwn
›

›

F
for F P F0, and equals }pcurluhqn}F for F P FD, so

}pcurluh ´ ωhqn}
2
BT À

›

›vcurluhwn
›

›

2

F0,D
.

Therefore, for this choice of ωh, we have

~uh, uph, ωh~
2
ε À }εpuhq}

2
T ` h

›

›vcurluhwn
›

›

2

F0,D
` h´1

}Π0
puh ´ uphqt}

2
BT .

By a local scaling argument h
›

›vcurluhwn
›

›

2

F À } curluh}2T . Using this in the above

inequality and recalling that }∇uh}2T “ }εpuhq}2T ` }κpcurluhq}2T , we complete the
proof of (17). □

Lemma 3.3. For any uh P Vh, ωh P Wh, and T P T ,

} curluh ´ ωh}
2
T „ h}pcurluh ´ ωhqn}

2
BT , (20a)

} curlκpωhq}T „ |κpωhq|
2
H1pT q „ } divωh}T , (20b)

}εpuhq}
2
T ` } curluh ´ ωh}

2
T „ } dev∇uh ´ Π0κpωhq}

2
T

` h2} divωh}
2
T ` } div uh}

2
T .

(20c)

Proof. The first equivalence follows by standard scaling arguments (by equivalence of
norms in the lowest order Raviart-Thomas space). Equivalence (20b) also follows by
local scaling arguments and [21, eq. (4.14)]. We continue on to prove (20c). Applying
the Pythagoras theorem twice,

}εpuhq}
2
T `

1

2
} curluh ´ ωh}

2
T “ }∇uh ´ κpωhq}

2
T

“ } dev∇uh ´ κpωhq}
2
T `

1

3
} div uh}

2
T . (21)

We also have, due to (20b),

h2} divωh}
2
T „ h2} curlpκpωhqq}

2
T “ h2

›

› curl
`

κpωh ´ curluhq
˘›

›

2

T

À }ωh ´ curluh}
2
T .

(22)

Here we have used an inverse inequality and the observation that derivatives of curluh P

P 0pT q vanish. Combining (21), (22) and the continuity of the L2 projection, we con-
clude that the right side of (20c) can be bounded by the left side.
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For the reverse inequality,

} dev∇uh ´ κpωhq}
2
T “ }Π0

pdev∇uh ´ κpωhqq}
2
T ` }pI´Π0

qκpωhq}
2
T

À } dev∇uh ´ Π0κpωhq}
2
T ` h2|κpωhq|

2
H1pT q

„ } dev∇uh ´ Π0κpωhq}
2
T ` h2} divωh}

2
T . (23)

Here, we used that dev∇uh P P 0pT q, a standard approximation estimate for the L2

projection, followed by (20b). The proof is then concluded using (21). □

Lemma 3.4. For all puh, uph, ωhq P Uh,

~uh, uph, ωh~
2
ε „ }uh, uph, ωh}

2
ε „ }uh, uph, ωh}

2
Uh

` } div uh}
2
0 ` h2} divωh}

2
0.

Proof. This is a direct consequence of Lemma 3.3. □

3.3. Interpolation operators. In subsequent sections we will require the interpola-
tion operators into the spaces in (8a)-(8e), denoted by

IV : H1
n,DpT q Ñ Vh, IW : H1

n,DpT q Ñ Wh, IVp : L2
pF ,R3

q Ñ Vph, IΣ : Σ Ñ Σh,

where Σ “ tτ P H1pT ,Dq : vτwnt “ 0u. Of course, the natural interpolation for Qh,
denoted by IQ : L2pΩq Ñ Qh, is simply the L2-orthogonal projection. The definitions
and properties of the remaining interpolants are summarized in this subsection.

An Hpdivq-interpolation into Vh, denoted by IV : H1
n,DpT q Ñ Vh, is defined using

the standard degrees of freedom (see e.g., [4, Proposition 2.3.2]):
ż

F

pu ´ IV uqn q ds “ 0 for all q P P 1
pF q and F P F . (24)

A well-known consequence of (24) is that

divpIV uq “ IQ div u, (25)

for all u in the domain of IV . The interpolant IW : H1
n,DpT q Ñ Wh, defined by

ppω´IWωqn, qqF “ 0 for all q P P 0pF q and all F P F , is also standard. The interpolation
operator for the stress space IΣ : Σ Ñ Σh, borrowed from [20], is defined by

ż

F

pIΣσ ´ σqnt ¨ q ds “ 0, for all q P P 0
pF,R3

q with qn “ 0, for all F P F , (26)

ż

T

pIΣσ ´ σq : q dx “ 0, for all q P P 0
pT,Dq, for all T P T . (27)

Finally, the tangential L2-projection on facets, IVp : L2pF ,R3q Ñ Vph is defined as usual
by ppup ´ IVpupqt, qqF “ 0 for all q P P 0pF,R3q with qn “ 0 on all F P F .
To note the salient approximation properties of these interpolants, first observe that

for a u P H1pΩ,R3qXH2pT q, we have curlpuq P H1
n,DpT q. Hence pIV u, IVput, IW curlpuqq

is in Uh and using standard scaling arguments and the Bramble-Hilbert lemma, we get
​

​u ´ IV u, ut ´ IVput, curlu ´ IW curlu
​

​

2

ε
` }u ´ IV u, ut ´ IVput}

2
∇

` h}εpIV u ´ uqnt}
2
BT À h2}u}

2
H2pT q. (28)

Also recall that [20, Theorem 5.8] implies that for all σ P Σ,

}σ ´ IΣσ}
2
0 ` h }pσ ´ IΣσqnt}

2
BT À h2}σ}

2
H1pT q. (29)
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4. An Hpdivq-conforming velocity–vorticity HDG scheme

4.1. Derivation of the HDG method. To derive our new HDG scheme for (6), let
u, p be a sufficiently smooth exact solution of (1). (A sufficient smoothness condition
is quantified in Lemma 4.1 below.) Let vh P Vh. Then, multiplying (1a) by vh and
integrating by parts on each element,

pf, vhq “ p´ divpνεpuqq ` ∇p, vhq “ ´pp, div vhq `
ÿ

TPT

ż

T

νεpuq : εpvhq dx

`
ÿ

TPT

ż

BT zΓN

pp ´ νεpuqqn ¨ vh ds,

(30a)

where we used the symmetry of εpuq and the boundary condition (1d). Since p is
smooth, vvhwn “ 0 on F0,D,

0 “ ´
ÿ

TPT

ż

BT zΓN

pn ¨ vh ds . (30b)

Let vph P Vph. Since vph is single-valued on all facets, vph “ 0 on ΓD (see (8b)), and εpuq

is continuous across interior facets,

0 “
ÿ

TPT

ż

BT zΓN

νεpuqn ¨ vph ds . (30c)

Adding (30a)–(30c),

pf, vhq “ ´pp, div vhq `
ÿ

TPT

ż

T

νεpuq : εpvhq dx`

ż

BT zΓN

νεpuqn ¨ pvph ´ vhq ds,

Since pvphqt “ vph, vvhwn “ 0 on F0,D and εpuq is smooth, we may replace pvph ´vhq by its
tangential component pvph ´ vhqt in the last term above. Furthermore, on ΓN , we have
εpuqn ¨ pvph ´ vhqt “ εpuqnt ¨ pvph ´ vhqt “ 0 since the tangential part of (1d) shows that
εpuqnt “ 0 on ΓN . Hence we may also replace BT zΓN by BT in the last term. Thus,

pf, vhq “ ´pp, div vhq `
ÿ

TPT

ż

T

νεpuq : εpvhq dx`

ż

BT

νεpuqn ¨ pvph ´ vhqt ds . (31a)

Next, let ω “ curlpuq and up “ ut on each element boundary BT . Then, obviously,

0 “
ÿ

TPT

ż

BT

νεpvhqn ¨ pup ´ uqt ds`
ÿ

TPT

να

h

ż

BT

Π0
pup ´ uqt ¨ Π0

pvph ´ vhqt ds, (31b)

0 “
ÿ

TPT
h

ż

BT

νpcurlu ´ ωqnpcurl vh ´ ηhqn dx, (31c)

for any test function ηh P Wh and constant α ą 0, i.e., if u, up and ω are replaced by
uh, uph and ωh, respectively, then the terms on the right are consistent terms.

Adding the equations (31a)–(31c), we obtain

νahdgpu, up, ω; vh, vph, ηhq ´ pdiv vh, pq “ pf, vhq, (32a)
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where

ahdgpz, zp, θ; vh, vph, ηhq :“ pεpzq, εpvhqqT

` pεpzqn, pvph ´ vhqtqBT ` ppzp´ zqt, εpvhqnq
BT

`
α

h

`

Π0
pzp´ zqt,Π

0
pvph ´ vhqt

˘

BT ` h ppcurl z ´ θqn, pcurl vh ´ ηhqnq
BT .

Here and throughout, p¨, ¨qT “
ř

TPT p¨, ¨qT and p¨, ¨qBT “
ř

TPT p¨, ¨qBT , extending our
prior analogous norm notation to inner products. Of course, from (1b), we also have

pdiv u, qhq “ 0, (32b)

for all qh P Qh. Equations (32a)–(32b), after replacing pu, up, ωq by puh, uph, ωhq, yield
the following discrete formulation: find puh, uph, ωhq P Uh and ph P Qh such that

ν ahdgpuh, uph, ωh; vh, vph, ηhq ´ pph, div vhq “ pf, vhq, (33a)

´pdiv uh, qhq “ 0, (33b)

for all pvh, vph, ηhq P Uh and qh P Qh. Note that this method enforces Π0puhqt “ 0 on
ΓD as a consequence of how the last term of (31b) manifest in the method. Due to the
Dirichlet conditions built intoWh (see (8c)) the method also penalizes }Π0 curlpuhqn}ΓD

through the manifestation of the consistent term (31c) in the method. System (33) may
be thought of as a nonconforming HDG discretization of the standard weak form (6).

Note that ahdgpu, up, ω; vh, vph, ηhq is well defined for any pvh, vph, ηhq P Uh and any
pu, up, ωq P Ureg, where

Ureg :“ pH1
0,DpΩq X H2

pT qq ˆ L2
pFq ˆ H1

n,DpT q, (34a)

Qreg :“ Q X H1
pT q. (34b)

Lemma 4.1 (Consistency of the HDG method). Suppose the exact solution pu, pq of
(6) is regular enough so that u, together with up “ ut on facets and ω “ curlu, satisfies
pu, up, ωq P Ureg and suppose p P Qreg. Then any ppuh, uph, ωhq, phq P Uh ˆ Qh solving
(33) satisfies

νahdgpu ´ uh, ut ´ uph, ω ´ ωh; vh, vph, ηhq ´ pdiv vh, p ´ phq “ 0,

for all pvh, vph, ηhq P Uh.

Proof. This follows by subtracting (33) from (32). □

4.2. Pressure robust error analysis of the HDG scheme. We follow the usual
mixed method approach and proceed to combine continuity and coercivity of ahdg with
a discrete Stokes inf-sup condition, or the LBB [4] estimate. The latter implies the
stability of (33), which also implies its unique solvability. We begin by noting that by
local scaling arguments, there is a mesh-independent c1 such that

h}εpvhq}
2
BT ď c1}εpvhq}

2
T , vh P Vh, T P T , (35)

since εpvhq is constant on T . For the same reason, Π0 may be introduced into the
second and third terms in the definition of ahdgpuh, uph, ωh; vh, vph, ωhq, e.g.,

pεpuhqn, pvph ´ vqtqBT “
`

εpuhqn,Π0
pvph ´ vqt

˘

BT . (36)

Let ~u, up, ω~
2
ε,` “ ~u, up, ω~

2
ε ` h}εpuqnt}

2
BT ` h´1}pI´Π0qpu ´ upq}2BT .
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Lemma 4.2 (Continuity of of ahdg). For any pu, up, ωq P Ureg, puh, uph, ωhq P Uh,
pvh, vph, ωhq P Uh and qh P Qh,

νahdgpu, up, ω; vh, vph, ωhq À ν ~u, up, ω~ε,` ~vh, vph, ηh~ε,` , (37)

νahdgpuh, uph, ωh; vh, vph, ωhq À ν ~uh, uph, ωh~ε ~vh, vph, ηh~ε , (38)

pdiv uh, qhq À ~uh, uph, ωh~ε }qh}0. (39)

Proof. Inequality (37) follows from Cauchy-Schwarz inequality, while (38) follows by ad-
ditionally employing (35) and (36). The estimate (39) is a consequence of 1

3
} div uh}2T “

}εpuhq}2T ´ } dev εpuhq}2T ď }εpuhq}2T . □

Lemma 4.3 (Coercivity of ahdg). There is a mesh-independent α0 ą 0 such that for
all α ą α0 and all puh, uph, ωhq P Uh,

νahdgpuh, uph, ωh;uh, uph, ωhq Á ν ~uh, uph, ωh~
2
ε . (40)

Proof. By (36) and Young’s inequality with any β ą 0,

ahdgpuh, uph, ωh;uh, uph, ωhq ě }εpuhq}
2
T ´

´

βh}εpuhqn}
2
BT `

1

βh
}Π0

puh ´ uphqt}
2
BT

¯

` αh´1
}Π0

puh ´ uphqt}
2
BT ` h}pcurluh ´ ωhqn}

2
BT .

Hence using (35), and choosing, say β “ 1{p2c1q and α “ 2{β, (40) follows. □

Lemma 4.4 (LBB condition for the HDG method). For any ph P Qh there exists a
pvh, vph, ηhq P Uh with ~vh, vph, ηh~ε À }ph}0 and div vh “ ph. Consequently,

sup
pvh,vph,ηhqPUh

pdiv vh, phq

~vh, vph, ηh~ε

Á }ph}0. (41)

Proof. By classical results [18], there exists a u P H1pΩq such that

div v “ ph, }v}H1pΩq À }ph}0. (42)

Put vh “ IV v and vph “ IVpv on each facet. Then, (42) and (25) imply div vh “

divpIV vq “ IQ div v “ ph. Moreover, (as alluded to in [29]) it is easy to show that

}vh, vph}∇ À }v}H1pΩq. (43)

Choose ηh P Wh as in (17) of Lemma 3.2. Then, by (42)–(43),

~vh, vph, ηh~ε À }vh, vph}∇ À }v}H1pΩq À }ph}0,

concluding the proof. □

Theorem 4.5 (Error estimates for the HDG method). Let u, up, ω, p denote the exact
solution that satisfies the regularity assumption of Lemma 4.1 and let ppuh, uph, ωhq, phq P

Uh ˆQh be the discrete solution of (33). Then the errors in uh, uph, ωh can be bounded
independently of the pressure error by

~u ´ uh, ut ´ uph, ω ´ ωh~ε À h}u}H2pT q. (44)

Furthermore, the pressure error satisfies

ν´1
}p ´ ph}0 À hp}u}H2pT q ` ν´1

}p}H1pT qq. (45)
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Proof. Let E “ pu´uh, up´uph, ω´ωhq and Eh “ pIV u´uh, IVpup´uph, IWω´ωhq. Then
E “ E ´ Eh represents the interpolation errors. Since Eh P Uh,

ν ~Eh~
2
ε À νahdgpEh;Ehq “ νahdgpE ´ E ;Ehq by Lemma 4.3

“ pdivpIV u ´ uhq, p ´ phq ´ νahdgpE ;Ehq by Lemma 4.1.

By (25), divpIV uq “ IQ div u “ 0. Moreover, by (33b), div uh “ 0. Hence

ν ~Eh~
2
ε “ ´νahdgpE ;Ehq À ν ~E~ε,` ~Eh~ε,` , (46)

by Lemma 4.2. Now we claim that

~Eh~ε,` À ~Eh~ε . (47)

To see this, first note that local scaling arguments give

h´1
}pI ´ Π0

qvh}
2
BT À }∇vh}

2
T , (48)

for any vh P Vh. Then, letting E
u
h “ IV u´ uh, E

up
h “ IVpu´ uph, note that on each facet,

pI ´ Π0q
`

Eu
h ´ Eup

h

˘

“ pI ´ Π0qEu
h . Hence the extra terms in ~Eh~

2
ε,` that are not in

~Eh~
2
ε can be bounded by applying (48) and (35) with vh “ Eu

h to get

~Eh~
2
ε,` À ~Eh~

2
ε ` }Eu

h , E
up
h}

2
∇ À ~Eh~

2
ε ,

by Lemma 3.2. This proves (47). Using (47) in (46), we conclude that ~Eh~ε À ~E~ε,`.
Combining with triangle inequality,

~E~ε ď ~E~ε ` ~Eh~ε À ~E~ε,` À h}u}H2pT q, (49)

where we have applied (28) in the last step. This proves (44).
For the pressure estimate, we begin with triangle inequality and Lemma 4.4:

ν´1
}p ´ ph}0 ď ν´1

}p ´ IQp}0 ` ν´1
}IQp ´ ph}0

À ν´1
}p ´ IQp}0 ` sup

pvh,vph,ηhqPUh

ν´1pdiv vh, IQp ´ phq

~vh, vph, ηh~ε

.

To bound the numerator of the supremum, we use Lemma 4.1:

ν´1
pdiv vh, IQp ´ phq “ ν´1

pdiv vh, p ´ phq “ ahdgpE; vh, vph, ηhq

À ~E~ε ~vh, vph, ηh~ε .

Hence the already proved estimate (49), together with the standard L2 projection error
estimates finish the proof of (45). □

5. An MCS formulation with Hpdivq-conforming vorticity

In this section we derive a new mixed method for the approximation of (2), motivated
by the weak formulation (7). Let σh P Σh and pvh, vph, ηhq P Uh. Defining

xdiv σh; vh, vph, ηhyUh
:“ pdiv σh, vhqT ´ ppσhqnn, pvhqnq

BT

´ ppσhqnt, pvphqtqBT ` pσh, κpηhqqT ,
(50)

consider the terms on the right. When pσhqnt is continuous across element interfaces,
the first two terms together realizes the duality pairing introduced in Section 2, namely
xdiv σ, vhydiv, per [21, Theorem 3.1]. The third term is used to impose the nt-continuity
of the viscous stress (and prior works [20, 21, 25] provided enough rationale to employ
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nt-continuous finite elements for viscous stresses). Note, that a similar nt-continuous
approximation of the gradient (but not the physical viscous stresses εpuq) was also

already considered in [17]. Due to the Dirichlet conditions built into Vph on ΓD (see
(8b)), this term is comprised only of integrals over facets in the interior and on ΓN ,
with the latter enforcing σnt “ 0 in ΓN as demanded by (2f). Finally, the last term
above is used to weakly incorporate the symmetry constraint (2c). This technique of
imposing symmetry weakly is widely used in finite elements for linear elasticity [1, 2,
3, 6, 14, 19, 34].

Viewing (7) in terms of xdiv ¨, ¨yUh
, we are led to the following mixed method: find

puh, uph, ωhq P Uh and pσh, phq P pΣh ˆ Qhq satisfying

ν´1
pσh, τhq ` xdiv τh; uh, uph, ωhyUh

“ 0, (51a)

´xdiv σh; vh, vph, ηhyUh
´ pdiv vh, phq ` cpωh, ηhq “ pf, vhq, (51b)

´pdiv uh, qhq “ 0, (51c)

for all τh P Σh, pvh, vph, ηhq P Uh, and qh P Qh, with the stabilizing bilinear form
cpωh, ηhq :“ νh2pdivωh, div ηhqΩ. Note that since ωh approximates the vorticity ω “

curlpuq, we have divω “ 0, so cp¨, ¨q is a consistent addition. Although the formulation
(51) is very similar to the formulations from [20] and [21], note the following differences.
First, while the nt-continuity of viscous stresses was built into the spaces in [20, 21],
now it is incorporated as an equation of the method by the well-known hybridization
technique. Second, although we use the same local stress finite element space as in
[20], we use the weak symmetric setting from [21]. In the latter, the Lagrange mul-
tiplier for the weak symmetry constraint was given by an element-wise discontinuous
approximation, whereas here it is in the div-conforming Wh.

5.1. Stability of the MCS method. From the terms in (51), we anticipate that the
norms } ¨}Uh

and } ¨}ε are more natural for the analysis of the MCS method (in contrast
to the HDG method). The latter appears in the next lemma.

Lemma 5.1 (Continuity of MCS formulation). The bilinear forms in (51) are contin-
uous in the sense that for all σh, τh P Σh, ph P Qh, ηh P Wh and puh, uph, ωhq P Uh, in
addition to the obvious estimates

ν´1
pσh, τhq À ν´1{2

}σh}0 ν
´1{2

}τh}0, and cpωh, ηhq À νh2} divωh}0 } div ηh}0,

the following estimates hold:

pdiv uh, phq À }uh, uph, ωh}ε }ph}0, (52a)

xdiv σh; uh, uph, ωhyUh
À }σh}0 }uh, uph, ωh}ε. (52b)

Proof. Inequality (52a) is proved just like (39). To prove (52b), let us first note an
equivalent and more compact form of xdiv σh; vh, vph, ηhyUh

obtained by integrating (50)
by parts (see e.g, [21, eq. (3.11)]), namely

xdiv σh; vh, vph, ηhyUh
“ ´pσh,∇vh ´ κpηhqqT ` ppσhqnt, pvh ´ vphqtqBT . (53)

Using (53), the fact that σh is trace-free, the Cauchy-Schwarz inequality, and the
following estimate (which follows by a local scaling argument using a specific mapping
mentioned in the beginning of §3),

h1{2
}pσhqnt}BT À }σh}T , (54)
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we get

xdiv σh; uh, uph, ωhyUh
À }σh}0

`

} dev∇uh ´ κpωhq}
2
T ` h´1

}Π0
puh ´ uph}

2
BT
˘1{2

À }σh}0
`

}uh, uph, ωh}
2
Uh

` h2} divωh}
2
T
˘1{2

,

where the last inequality is due to the same argument as in (23). Thus (52b) follows
from Lemma 3.4. □

Lemma 5.2. For any puh, uph, ωhq P Uh there exists a pτh, qhq P Σh ˆ Qh satisfying

}τh}0 ` }qh}0 À }uh, uph, ωh}Uh
` } div uh}0, (55)

xdiv τh; uh, uph, ωhyUh
´ pdiv uh, qhq Á p}uh, uph, ωh}Uh

` } div uh}0q
2. (56)

Proof. For each element T P T and each facet F Ă BT , there are matrix fields SF
0 , S

F
1 ,

supported on T , with the following properties: on T , both SF
0 , S

F
1 are constant matrices

in D, their boundary trace pSF
i qnt|F , for i P t0, 1u, are constant unit-length vector fields

on F that form a basis for the tangent space nK
F , and pSF

i qnt|F 1 vanishes on all other
facets F 1 ‰ F in Fh. Such matrix fields are exhibited in [20, Lemma 5.1]. Given any
puh, uph, ωhq P Uh, set

τ 0h :“
ÿ

TPT

ÿ

FĂBT

ÿ

iPt0,1u

´pSF
i : Π0 devp∇uh ´ κpωhqqq λFSF

i ,

τ 1h :“
ÿ

TPT

ÿ

FĂBT

ÿ

iPt0,1u

1
?
h
Π0

puph ´ uhqt S
F
i ,

where λF is the linear barycentric coordinate function associated to the vertex opposite
to the facet F . Since λFSF

i has a vanishing nt-trace and Π0 devp∇uh ´ κpωhqq P D, we
see that τh “ γ0τ

0
h `γ1τ

1
h , for any γ0, γ1 P R, is an element of Σh. Also set qh “ ´ div uh,

so that ´pdiv uh, qhq “ } div uh}20. For these choices, (55) obviously holds as long as γi
is chosen independent of h and ν. Indeed, such γi can be chosen to also ensure that

xdiv τh; uh, uph, ωhyUh
Á }uh, uph, ωh}

2
Uh
,

so that (56) also holds. This follows from an argument which (we omit and) is similar
to that detailed in [21, Lemma 6.5], proceeding simply by appropriately combining
Young and Cauchy-Schwarz inequalities. □

The combined bilinear form of the MCS method (51) is given by

Bpσh, uh, uph, ωh, ph; τh, vh, vph, ηh, qhq :“ν´1
pσh, τhq ` xdiv τh; uh, uph, ωhyUh

´ xdiv σh; vh, vph, ηhyUh

´ pdiv uh, qhq ´ pph, div vhq ` cpωh, ηhq.

Define a norm on the product space Sh “ Σh ˆ Vh ˆ Vph ˆ Wh ˆ Qh by

}σh, uh, uph, ωh, ph}Sh
:“ ν´1{2

p}σh}0 ` }ph}0q ` ν1{2
}uh, uph, ωh}ε.

Lemma 5.3 (Inf-sup condition for MCS method). For any r “ pσh, uh, uph, ωh, phq P Sh,
be arbitrary, there exists an s P Sh such that

Bpr; sq Á }r}2Sh
, and (57)

}s}Sh
À }r}Sh

. (58)
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Proof. We will find the required s as a sum of three terms, each in Sh, and each
depending on the given r. The first term is set using s˚ “ pσh, uh, uph, ωh,´phq, for
which we obviously have

Bpr, s˚
q “ ν´1

}σh}
2
0 ` νh2} divωh}

2
0, (59a)

}s˚
}Sh

À }r}Sh
. (59b)

The second term is s̃ “ pντh, 0, 0, 0, νqhq P Sh, where τh P Σh and qh P Qh are as in
Lemma 5.2 obtained using the given components uh, uph, ωh of r. The lemma gives some
C̃ ą 0 such that

Bpr; s̃q “ ν´1
pσh, ντhq ` νxdiv τh; uh, uph, ωhyUh

´ νpdiv uh, qhq

Á pσh, τhq ` ν
´

}uh, uph, ωh}
2
Uh

` } div uh}
2
0

¯

, (60a)

}s̃}2Sh
“ ν´1

p}ντh}
2
0 ` }νqh}

2
0q ď C̃ν

´

}uh, uph, ωh}
2
Uh

` } div uh}
2
0

¯

. (60b)

The third term is s∆ “ p0,´ν´1vh,´ν
´1vph,´ν

´1ηh, 0q P Sh where pvh, vph, ηhq P Uh is
as in Lemma 4.4 obtained using the given component ph of r. The lemma implies that
div vh “ ph and

Bpr; s∆q “ ν´1
}ph}

2
0 ´ ν´1

xdiv σh; vh, vph, ηhyUh
` ν´1cpωh, ηhq, (61a)

}s∆}
2
Sh

“ ν}ν´1vh, ν
´1vph, ν

´1ηh}
2
ε À ν´1

}ph}
2
0. (61b)

Note that to obtain the last inequality, we have also used Lemma 3.4.
Now letting β ą 0, a constant yet to be chosen, put s “ βs˚ ` s̃ ` s∆. Then,

combining (59a), (60a) and (61a),

Bpr; sq Á
β

ν
}σh}

2
0 ` βνh2} divωh}

2
0 ` ν}uh, uph, ωh}

2
Uh

` ν} div uh}
2
0 `

1

ν
}ph}

2
0 ´ pρ1 ` ρ2 ` ρ3q,

(62)

where ρ1 “ pσh, τhq, ρ2 “ ´ν´1xdiv σh; vh, vph, ηhyUh
, ρ3 “ ν´1cpωh, ηhq. By (60b) and

Young’s inequality,

ρ1 ď
C̃

2ν
}σh}

2
0 `

ν

2

´

}uh, uph, ωh}
2
Uh

` } div uh}
2
0

¯

.

To bound ρ2, note that by Lemma 5.1, ρ2 À ν´1}σh}0}vh, vph, ηh}ε, so by (61b), there is

a C∆ ą 0 such that ρ2 ď ν´1{2}σh}0
`

1
2
C∆ν´1}ph}20

˘1{2
. Thus

ρ2 ď
C∆

2ν
}σh}

2
0 `

1

4ν
}ph}

2
0.

To bound ρ3, we recall from Lemma 3.4 that h} div ηh}0 À }vh, vph, ηh}ε. Hence by (61b),

there is a C 1 ą 0 such that ρ3 ď pν1{2h} divωh}0q
`

1
2
C 1ν´1}ph}20

˘1{2
, so

ρ3 ď
C 1ν

2
h2} divωh}

2
0 `

1

4ν
}ph}

2
0.
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Using these estimates for ρi in (62),

Bpr; sq Á
2β ´ pC̃ ` C∆q

2ν
}σh}

2
0 `

2β ´ C 1

2
νh2} divωh}

2
0

`
ν

2
}uh, uph, ωh}

2
Uh

`
ν

2
} div uh}

2
0 `

1

2ν
}ph}

2
0.

Since C̃, C∆ and C 1 are mesh-independent constants, choosing β ą maxpC̃`C∆, C 1q{2
and recalling the norm equivalence of Lemma 3.4, we prove (57). Of course, inequal-
ity (58) follows from (59b), (60b), and (61b). □

5.2. Pressure robust error analysis of MCS scheme. In addition to the spaces
Ureg and Qreg, the a priori error analysis will now also use a stress space with improved
regularity, Σreg :“ Σsym X H1pT ,Dq. Note that the integrals in the terms defining
Bpσ, u, up, ω, p; ¨q are well-defined for σ P Σreg, pu, ut, ωq P Ureg, and p P Qreg, so Bp¨, ¨q
can be extended to such non-discrete arguments.

Lemma 5.4 (Consistency of the MCS method). Assume that the exact solution pσ, u, pq

of (7) fulfills the regularity assumption pu, ut, ωq P Ureg and pσ, pq P Σreg ˆ Qreg, where
ω “ curlpuq. Let pσh, uh, uph, ωh, phq P Sh be the solution of (51) and let pτh, vh, vph, ηh, qhq P

Sh be an arbitrary test function. Then

Bpσ ´ σh, u ´ uh, ut ´ uph, ω ´ ωh, p ´ ph; τh, vh, vph, ηh, qhq “ 0. (63)

Proof. Since σ is symmetric we have that σ : κpηhq “ 0. Next, using the regularity
assumptions, starting from (53), we get

´xdiv σ; vh, vph, ηhyUh
´ pdiv vh, phq “ pσ ´ pI : ∇vhqT ´ pσnt, ¨pvh ´ vphqtqBT

“ ´pdivpσ ´ pIq, vhqT ´ pσnt, pvh ´ vphqtqBT ` ppσ ´ pIqn, vhqBT

“ ´pdivpσ ´ pIq, vhqT ` pσnt, vphqBT ´ ppσ ´ pIqnn, pvhqnqBT

“ ´pdivpσ ´ pIq, vhqT `
ÿ

FPF
pvσwnt, vphqF ´ pvpσ ´ pIqwnn, pvhqnqF

“ ´pdivpσ ´ pIq, vhqT `

ż

ΓN

pσ ´ pIqnnpvhqn ´ σntvph ds

“ ´pdivpσ ´ pIq, vhq “ pf, vhq,

where the boundary integral vanished using (2f) given on ΓN . Next, since ν´1σ “

εpuq “ ∇u ´ κpωq we have

ν´1
pσ, τhq ` xdiv τh; u, up, ωyUh

“ ν´1
pσ, τhq ´ pτh,∇u ´ κpωqqT ` pτnt, pu ´ utqtqBT “ 0.

The final remaining term in the bilinear form is also zero since pdiv u, qhq “ 0 as the
exact solution is divergence free. □

Theorem 5.5 (Error estimate for the MCS method). Assume that the exact solution
pσ, u, pq of (7) fulfills the regularity assumption pu, ut, ωq P Ureg and pσ, pq P ΣregˆQreg,
where ω “ curlpuq. Let puh, uph, ωhq P Uh and pσh, phq P Σh ˆQh be the solution of (51).
Then we have the pressure robust error estimate

ν´1
}σ ´ σh}0 ` }u ´ uh, ut ´ uph, ω ´ ωh}ε À h}u}H2pT q. (64)
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Furthermore, the pressure error can be bounded by

ν´1
}p ´ ph}0 À h

`

}u}H2pT q ` ν´1
}p}H1pT q

˘

. (65)

Proof. As in the proof of Theorem 4.5, let E “ pσ´ σh, u´ uh, ut ´ uph, ω´ωh, p´ phq,
Eh “ pIΣσ´σh, IV u´uh, IVput ´uph, IWω´ωh, IQp´phq, and let the interpolation error
be E “ E ´ Eh. Now, using Lemma 5.3, choose s “ pτh, vh, vph, ηh, qhq such that

}Eh}Sh
À
BpEh; sq

}s}Sh

.

By the consistency of the MCS formulation (63) we have

BpEh; sq “ BpE ´ E ; sq “ BpE ; sq.

Hence, if we prove that

BpE ; sq À ν1{2h}u}H2pT q}s}Sh
, (66)

then }Eh}Sh
À ν1{2h}u}H2pT q, which is enough to yield the stated pressure-independent

estimate (64): indeed, letting Ē :“ pσ ´ σh, u ´ uh, ut ´ uph, ω ´ ωh, 0q, Ēh :“ pIΣσ ´

σh, IV u ´ uh, IVput ´ uph, IWω ´ ωh, 0q, and Ē “ Ē ´ Ēh, we would then have

}Ē}Sh
ď }Ē}Sh

` }Ēh}Sh
ď }Ē}Sh

` }Eh}Sh
ď ν1{2h}u}H2pT q, (67)

using the interpolation estimates (28)–(29) to bound }Ē}Sh
. Inequality (67) obviously

implies (64). Therefore we focus on proving (66) and proceed to separately inspect
each term forming its left hand side.

Let E j with j P tσ, u, up, ω, pu denote the corresponding components of the interpo-
lation error. Then (53) implies

xdiv τh; Eu, Eup, Eω
y “ pτh, κpEω

q ´ ∇Eu
qT ` ppτhqnt, pEu

´ Eup
qtqBT .

As pτhqnt is constant on each facet, we can insert Π0 in the last term, so several
applications of the Cauchy-Schwarz inequality with h1{2 and h´1{2 weights for the
boundary terms yields

xdiv τh; Eu, Eup, Eω
y À

`

}τh}0 ` h1{2
}pτhqnt}BT

˘

p}Eu, Eup
}∇ ` }κpEω

q}0q

À }τh}0h}u}H2pT q, (68)

where we used (54) again and the interpolation estimate (28) in the last step.
Next consider the symmetrically opposite term in B. Since ∇vh P P 0pT q and Eσ is

orthogonal to facet-wise and element-wise constant functions (see (26)–(27)), we have

´xdiv Eσ; vh, vph, ηhyUh
“ pEσ,∇vh ´ κpηhqqT ´ pEσ

nt, pvh ´ vphqtqBT

“ ´pEσ, pI ´ Π0
qκpηhqqT ´ pEσ

nt, pI ´ Π0
qpvh ´ vphqtqBT

À }Eσ
}0 }vh, vph, ηh}ε ` h1{2

}Eσ
nt}BT }vh, vph}∇.

where on the right hand side of the last inequality, the first term is obtained using (20b)
and Lemma 3.4, while the second term is obtained using (48). Thus, the interpolation
estimate (29) and Lemma 3.2 imply

xdiv Eσ; vh, vph, ηhyUh
À νh}u}H2pT q}vh, vph, ηh}ε. (69)
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The remaining terms are easy: by Cauchy-Schwarz inequality,

ν´1
pEσ, τhq À h}u}H2pT q}τh}0, (70)

and by the definition of IW , IQ and (25),

pdiv Eω, div ηhq “ 0, pdiv Eu, qhq “ 0, and pEp, div vhq “ 0, (71)

where the last equation is due to div vh P P 0pT q. Summing up (68), (69), (70), and
(71), we prove (66), and hence (64).

The pressure error estimate (65) follows along the same lines as in the proof of
Theorem 4.5. □

6. Numerical examples

In this last section we present a simple numerical example to provide a practical
illustration of the theoretical asymptotic convergence rates as well as to compare the
two new methods we presented. Both methods were implemented within the finite
element library NGSolve/Netgen (see [32, 33] and www.ngsolve.org). Testfiles and
our computational results are available at [24].

The computational domain is given by Ω “ p0, 1q3 and the velocity field is driven by
the volume force determined by f “ ´ div σ ` ∇p with the exact solution given by

σ “ νεpcurlpψ, ψ, ψqq, and p :“ x5 ` y5 ` z5 ´
1

2
.

Here ψ :“ x2px ´ 1q2y2py ´ 1q2z2pz ´ 1q2 defines a given potential and we choose the
viscosity ν “ 10´4. While this would lend itself to homogenous Dirichlet conditions
being prescribed on the whole boundary, as we assume |ΓN | ą 0 throughout the paper,
we instead opt to impose non-homogenous Neumann conditions on ΓN :“ t0uˆp0, 1qˆ

p0, 1q and homogenous Dirichlet conditions only on ΓD :“ BΩzΓN . Note that this
requires the additional source terms

ş

ΓN
pσnn´pqpvhqn ds and

ş

ΓN
σntvph ds to be provided

as data for the methods.

Convergence. An initial, relatively coarse mesh was generated and then refined mul-
tiple times. With the larger problem size on finer meshes in mind, we used a GMRes
Krylov space solver preconditioned by an auxiliary space method using a lowest order
conforming H1 space (see e.g., [16], and for details specific to the MCS case, see [22])
with relative tolerance of 10´14. Errors measured in different norms and their estimated
order of convergence (eoc) are listed in Table 1 for the HDG method and Table 2 for
the MCS method. For the HDG method we chose the stabilization parameter α “ 6.
As predicted by the analysis from Theorem 4.5 and Lemma 5.5, the velocity error
measured in the seminorm }εpu´ uhq}0, the L

2-norm of the vorticity, and the pressure
errors converge at optimal linear order. Furthermore, for the MCS method, we also
observe optimal convergence for the stress error. In addition, we also plotted the L2-
norm error of the velocity. From an Aubin-Nitsche argument one may expect a higher
order of convergence whenever the dual problem shows enough regularity [4, 20]. Not
surprisingly therefore, we observe quadratic convergence for the L2-norm of the velocity
error for both methods.

www.ngsolve.org
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|T | }εpu ´ uhq}0 (eoc) }u ´ uh}0 (eoc) }ω ´ ωh}0 (eoc) }p ´ ph}0 (eoc)

63 2.2¨ 10´3 ( – ) 1.9¨ 10´4 ( – ) 3.2¨ 10´3 ( – ) 2.1¨ 10´1 ( – )
504 1.7¨ 10´3 (0.4) 8.4¨ 10´5 (1.2) 2.3¨ 10´3 (0.5) 1.2¨ 10´1 (0.9)
4032 9.3¨ 10´4 (0.9) 2.4¨ 10´5 (1.8) 1.2¨ 10´3 (0.9) 6.1¨ 10´2 (0.9)
32256 5.3¨ 10´4 (0.8) 8.0¨ 10´6 (1.6) 6.6¨ 10´4 (0.9) 3.1¨ 10´2 (1.0)
258048 2.8¨ 10´4 (0.9) 2.3¨ 10´6 (1.8) 3.5¨ 10´4 (0.9) 1.6¨ 10´2 (1.0)
2064384 1.4¨ 10´4 (1.0) 6.3¨ 10´7 (1.9) 1.8¨ 10´4 (1.0) 7.8¨ 10´3 (1.0)

Table 1. Errors and estimated order of convergence (eoc) for the HDG
method.

|T | }εpu ´ uhq}0 (eoc) }u ´ uh}0 (eoc) }σ ´ σh}0 (eoc) }ω ´ ωh}0 (eoc) }p ´ ph}0 (eoc)

63 2.6¨ 10´3 ( – ) 2.1¨ 10´4 ( – ) 4.0¨ 10´7 ( – ) 3.2¨ 10´3 ( – ) 2.1¨ 10´1 ( – )
504 1.9¨ 10´3 (0.4) 1.0¨ 10´4 (1.0) 2.9¨ 10´7 (0.5) 2.2¨ 10´3 (0.5) 1.2¨ 10´1 (0.9)
4032 1.0¨ 10´3 (0.9) 2.5¨ 10´5 (2.0) 1.5¨ 10´7 (1.0) 1.1¨ 10´3 (1.0) 6.1¨ 10´2 (0.9)
32256 6.0¨ 10´4 (0.7) 7.8¨ 10´6 (1.7) 7.9¨ 10´8 (0.9) 6.1¨ 10´4 (0.9) 3.1¨ 10´2 (1.0)
258048 3.1¨ 10´4 (1.0) 2.0¨ 10´6 (1.9) 4.0¨ 10´8 (1.0) 3.1¨ 10´4 (1.0) 1.6¨ 10´2 (1.0)
2064384 1.5¨ 10´4 (1.0) 5.2¨ 10´7 (2.0) 2.0¨ 10´8 (1.0) 1.5¨ 10´4 (1.0) 7.8¨ 10´3 (1.0)

Table 2. Errors and estimated order of convergence (eoc) for the MCS
method.

Condition numbers. For both HDG and MCS method, after static condensation
within the puh, uph, ωhq- or pσh, uh, uph, ωhq-block of the finite element matrix respec-
tively, we obtain a symmetric and positive definite diagonal block, which we simply
refer to here as the “A”-blocks of the respective methods. (Of course, due to the in-
compressibility constraint, the entire system is still of saddle point structure.) Both the
A blocks have the same non-zero structure and are expected to have condition number
Oph´2q, but they discretize slightly different operators, namely ε for the HDG method,
and devpεq for the MCS method. As εpuq “ devpεpuqq ` 1

3
divpuq I and the true solu-

tion is divergence-free, adding the (consistent) term 1
3
div uh div vh to the MCS bilinear

form yields an A block that is directly comparable to the one of the HDG method. In
Figure 3 we show approximate condition numbers (cond) of said A blocks for some of
the meshes used in the previous computations and different values of α in ahdg. We see
that in addition to the MCS method not being dependent on any stabilization param-
eter in the first place, there appears to be no possible choice of α that would make the
HDG method’s A block better conditioned than that of the MCS method.
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Figure 3. Approximate condition numbers of the corresponding A
blocks of the HDG (solid lines) and the MCS (dotted lines in the same
color) method on different meshes. Different values of α on the x axis
and approximate condition number (cond) on the y axis.
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