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ABSTRACT. We introduce two new lowest order methods, a mixed method, and a hy-
brid Discontinuous Galerkin (HDG) method, for the approximation of incompressible
flows. Both methods use divergence-conforming linear Brezzi-Douglas-Marini space
for approximating the velocity and the lowest order Raviart-Thomas space for ap-
proximating the vorticity. Our methods are based on the physically correct viscous
stress tensor of the fluid, involving the symmetric gradient of velocity (rather than
the gradient), provide exactly divergence-free discrete velocity solutions, and optimal
error estimates that are also pressure robust. We explain how the methods are con-
structed using the minimal number of coupling degrees of freedom per facet. The
stability analysis of both methods are based on a Korn-like inequality for vector fi-
nite elements with continuous normal component. Numerical examples illustrate the
theoretical findings and offer comparisons of condition numbers between the two new
methods.
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1. INTRODUCTION

In this work we introduce two new methods for the discretization of the steady
incompressible Stokes equations in three space dimensions. Let €2 — R? be an open
bounded domain with Lipschitz boundary 02 that is split into the Dirichlet boundary
I'p and outflow boundary I'y. The Stokes system for the fluid wvelocity v and the
pressure p is given by

—div(ve(u)) + Vp=f in Q, (1a)
divu =0 in Q, (1b)

u=0 onlp, (1c)

(—ve(u) +pl)n =0 on 'y, (1d)

where e(u) := (Vu + Vu')/2 is the symmetric gradient, f : Q — R3 is an external
body force, v is twice the kinematic viscosity, n is the outward unit normal vector
and I € R3*3 is the identity matrix. We assume that both I'p and I'y have positive
boundary measure, and any rigid displacement vanishing on I'p vanishes everywhere
in Q. (As usual, when I'y is empty the pressure space must be adapted to obtain a
unique pressure [18], but we omit this case for simplicity.) Next, define the wviscous

stress tensor [23] by o = ve(u) and the vorticity by w = curlu. Using them, we can
1
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rewrite the above system as

vldeveo — Vu+ k(w) =0 in Q, (2a)

—dive+Vp=f inQ, (2b)

c—ol =0 inQ, (2¢)

divu =0 in , (2d)

u=0 onlIp, (2e)

(0 —pI)n =0 on Iy. (2f)

Here we used the deviatoric part of the tensor 7 given by devr := 7 — tr(7)I, the

matrix trace tr(r) := 30 | 7;, and the operator s : R® — {7 € R**3 : 7 + 7T = 0}

defined by

0 —vs 1
k(v) = S| vs 0 —u

Note the obvious identities
Vv = e(v) + k(curlv), 2k(v)w = v X w, (3)

for vector fields v and w (the first of which was already used in (2a)). We will refer to
system (1) as the primal formulation and system (2) as the mixed formulation.

The literature on discretizations of (1) and (2) is too vast to list here. The relatively
recent quest for exactly divergence-free velocity solutions and pressure-independent
a priori error estimates for velocity, often referred to as pressure robust estimates [30,
28], has rejuvenated the field. A recurring theme in this vast literature, from the
early non-conforming method of [10] to the more recent [29], is the desire to improve
computational efficiency by minimizing inter-element coupling. However, less studied
are its side effects on stability when the actual physical flux replaces the often-used
simplified diffusive flux, i.e., when

—div(ve(u)) replaces —div(rVu), (4)

even though an early work [11] cautions how the lowest order method of [10] can become
unstable when doing so. Such instabilities arise because the larger null space of € ne-
cessitates increased inter-element coupling (as explained in more detail below) and are
manifested in certain lowest order cases with insufficient inter-element coupling. In this
work, focusing on the lowest order case, we identify new stable finite element methods,
with the minimal necessary inter-element coupling, that yield exactly divergence-free
and pressure robust velocities. New methods based on both the primal and the mixed
formulations are designed.

Yet another reason for focusing on the lowest order case is its utility in precondi-
tioning. Roughly speaking, a common strategy for preconditioning high order Stokes
discretizations involves combining local (high order) error dampers via, say block Ja-
cobi or other smoothers, with a global (low order) error corrector such as multigrid (or
even a direct solver) applied to the smaller lowest order discretization. From this point
of view, it is desirable to have stable low order versions (that remain stable under (4))
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FiGure 1. Configurations of adjacent elements after deformation by
piecewise rigid displacements of two adjacent elements T .

of high order methods for design of preconditioners, an interesting topic which we shall
not touch upon further in this paper.

To delve deeper into the mechanics of the above-mentioned instability, consider the
kernel of e, consisting of rigid displacements of the form  — a + b x x with a,b € R3.
Reasonable methods approximating the operator — div(ve(u)) produce element matri-
ces whose nullspaces contain these rigid displacements. Ideally, when these element-
wise rigid displacements are subjected to the inter-element continuity conditions of the
discrete velocity space, they should equal element-wise restrictions of a global rigid
displacement on 2 (which can then be eliminated by boundary conditions). However,
if the inter-element coupling in the discrete velocity space is so weak to allow for the
existence of a v in it that does not equal a global rigid displacement on €2 even though
u|7 is a rigid displacement on every mesh element T, then instabilities can arise [11].

The discrete velocity space we have in mind is the lowest order (piecewise linear)
H(div)-conforming Brezzi-Douglas-Marini (BDM') space [4]. (A basic premise of
this paper is the unquestionable utility of H (div)-conforming velocity spaces to obtain
exactly divergence-free discrete Stokes velocity fields, well established in prior works [8,
9, 29, 20, 21]). Hence, to understand how to avoid the above-mentioned instability
while setting velocity in the BDM! space, we ask the following question: how many
coupling degrees of freedom (dofs) are needed to guarantee that two rigid displacements
U4, given respectively on two adjacent elements Ty, coincide on the common interface
F=0TI'ndT_?

The pictorial representations of the deformations created by u4 in Figure 1 lead
to the answer. Three of the pictured deformations are just translations (generated
by the a-vector in @ + b x x). For a unit vector b, letting R} denote the unitary
operator that performs a counterclockwise rotation by angle 6 around b, it is easy to
see that Riz = z + (b x x) + O(#?) as  — 0. Therefore the deformation created by
the rigid displacement b x x can be viewed as an infinitesimal rotation about b. These
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FiGURE 2. Classification of facet dofs in our new methods into three
types: (1) normal velocity components in the form of BDM" facet dofs,
(2) tangential facet velocities, (3) normal vorticity as RT" facet dof.

deformations are portrayed in Figure 1 as rotations about three linearly independent b-
vectors. The first row in Figure 1 illustrates deformations generated by piecewise rigid
displacements which are given by two b-vectors coplanar with F' and an a-vector normal
to F. These rigid displacements are forbidden in the BDM® space. Indeed, recall [4]
that the BDM® dofs on the facet F are given by the linear functionals u — SF u-nqgds
for all linear polynomials ¢ on F', where n is a normal vector on F'. These represent
three dofs illustrated in left diagram of Figure 2. If these three dofs coincide for two
rigid displacements u+, then the corresponding normal component must be continuous
on F'. This continuity forbids the above-mentioned deformations to be generated by
elements of the BDM® space. We summarize this by saying that the rigid displacements
portrayed in the first row of Figure 1 are “controlled” by the three BDM! dofs of the
facet F' which are illustrated in the left diagram of Figure 2.

It remains to control the rigid displacements of the second row of Figure 1 using three
additional dofs per facet. To this end, our new methods have two additional spaces:
(i) one that approximates the in-plane components of the velocity on facets, illustrated
in the middle diagram of Figure 2, used to control the first two rigid displacements
in the second row of Figure 1; and (ii) a second space, schematically indicated in the
last diagram of Figure 2, that controls the third deformation in the second row of
Figure 1. The latter deformation arises from piecewise rigid displacements of the form
us = by xx with b4 collinear to n, a unit normal of F. Since curl(by x x) = 2b4, we can
make the two rigid displacements coincide on F' by requiring continuity of n - curl us.
While continuity of n - curluw certainly holds if u is the exact Stokes velocity, it does
not generally hold for v in BDM". Hence, keeping in view that w = curl u represents
vorticity, we tncorporate this constraint in our new methods by approrimating vorticity
w in the lowest order Raviart-Thomas space. This is our second additional space. Its
single dof per facet is shown schematically in the last diagram of Figure 2.

In the first part of the paper we will employ these additional spaces to construct
a novel HDG method to approximate (1) and present a detailed stability and error
analysis. HDG methods have become popular ever since its introduction in [7] which
showed how interface variables, or facet variables, can be effectively used to construct
DG schemes amenable to static condensation. In the method presented here, the inter-
face variable approximates the tangential components of the velocity. The key technical
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ingredient in the analysis that reflects the insight garnered from the above pictorial dis-
cussion is a discrete Korn-like inequality for the BDM! space (see Lemma 3.1 below,
and the version with interface variables in Lemma 3.2).

The second part of this work discusses the derivation of a novel mixed method for
the approximation of (2) and is motivated by our previous two papers [20, 21] and the
many other works on discretizing (2) such as [12, 13, 14, 15]. In [21] we derived the
“Mass-Conserving Stress-yielding” (MCS) formulation where the symmetry of o was
incorporated in a weak sense by means of a Lagrange multiplier that approximates
w = curlu. While the w there was approximated using element-wise linear (or higher
degree) functions without any inter-element continuity requirements, the new mixed
method we propose here will approximate w in the lowest order Raviart-Thomas space
instead. The lowest order case that was proved to be stable in [21] had nine coupling
dofs per facet. We are able to reduce this number to the minimal six (the dimension of
rigid displacements) in this paper. This minimal coupling was achieved earlier in [35]
using a bubble-augmented velocity space which is a subspace of a degree-four vector
polynomial space. Since higher degrees necessitate more expensive integration rules,
we offer our simpler elements as an alternative.

Other methods that approximate the operator div(rVu), such as [10, 29, 20], are
able to reduce the number of coupling dofs per facet even further. Since our focus here
is on methods that approximate div(ve(u)), we restrict ourselves to a brief remark on
this. Since the kernel of V (applied to vector fields) is three dimensional, we expect the
minimal number of coupling dofs per facet to be three when approximating div(rVu).
A method with this minimal coupling was achieved early by [10]. To also obtain
pressure robust and exactly divergence-free solutions, prior works [29, 20| settled for a
slightly higher five coupling dofs per facet in the lowest order case. It is now known that
this can be improved by employing the technique of “relaxed H(div,2)-conformity,”
see [26, 27|, which results in a method with the minimal three coupling dofs per
facet and yet, thanks to a simple post-processing, provides optimal convergence orders
and pressure robustness. While on the subject of coupling dofs, an explanation of
our focus on three-dimensional (3D) domains is in order. On two-dimensional (2D)
domains, the space of rigid displacements only has three dimensions. In the lowest
order 2D case, BDM! space provides two coupling dofs per facet edge, and the space
of tangential facet velocities adds one more coupling degree of freedom. Thus the
minimal facet coupling (of three dofs) needed to eliminate the rigid displacements are
more immediate in 2D case when compared to the 3D case, which is why restrict to
the 3D case henceforth.

The new HDG method and the new mixed method proposed in this paper both have
the same coupling dofs, the same velocity convergence orders and the same struc-
ture preservation properties like pressure robustness and mass conservation. On closer
comparison, two advantages of the mixed method are notable. One is its direct approx-
imation of viscous stresses. Another is the absence of any stabilization parameters in
it. In fact, in our numerical studies, the conditioning of a matrix block arising from the
parameter-free mixed method was found to be better than the analogous HDG block
for all ranges of the HDG stabilization parameter we considered.

Outline. We set up general notation in Section 2 and continue with a description of
the variational framework used throughout the paper. Finite element spaces, a discrete
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Korn-like inequality, and resulting norm equivalences are introduced in Section 3. A
list of interpolation operators into these spaces and their properties with references to
literature can also be found there. In Section 4 we introduce and analyze the HDG
method for the primal set of equations (1) and in Section 5 we do the same for the MCS
method for the mixed set of equations (2). Finally, in Section 6 we perform numerical
experiments to illustrate and complement our theoretical findings.

2. NOTATION AND WEAK FORMS

By M we denote the vector space of real 3 x 3 matrices and by K we denote the
vector space of 3 x 3 skew symmetric matrices, i.e., K = skw(M), where skwr =
s(r —77) for 7 € M. Further, let D = dev(M). To indicate vector and matrix-
valued functions on 2, we include the range in the notation, thus while L*(Q) =
L?(Q,R) denotes the space of square integrable and weakly differentiable R-valued
functions on €2, the corresponding vector and matrix-valued function spaces are defined

by L*(Q,R%) := {u: Q > R u; € L*(Q)} and L*(Q,M) := {7: Q@ - M| 7;; € L*(Q)},
respectively. For any Q < Q, we denote by (-,-)g the inner product on L*(Q) (or its
vector- or matrix-valued versions). Similarly, we extend this notation and write | - |g
for the corresponding L?>-norm of a (scalar, vector, or matrix-valued) function on the
domain €. In the case Q = Q we will omit the subscript in the inner product, i.e. we
have (-,-)g = (+,-) and we will use the notation || - [ = || - |q.

In addition to the differential operators we have already used, V, ¢, curl, we under-
stand div ® as either Z?:l 0;P; for a vector-valued function ®, or the row-wise diver-

gence 23:1 0;7; for a matrix-valued function 7. In addition to the standard Sobolev
spaces H™(2) for any m € R, we shall also use the well-known spaces H(div,{2) = {v e
L*(Q,R3) : dive € L?(Q)} and H(curl,Q) = {v e L*(Q,R3) : curlv € L*(2,R3)}. We
use Hj 5(2), Hop(div,Q) and Hy p(curl, Q), to denote the spaces of functions whose
trace, normal trace and tangential trace respectively vanish on I'g, for B € {D, N}.
The only somewhat nonstandard Sobolev space that we shall use is

H(curldiv, Q) := {7 € L*(,D) : div T € Hy p(div, Q)*}, (5)

where Hy p(div, 2)* is the dual space of Hy p(div,€?). In the case I'p = 092, as proved
n [20], the dual of Hy p(div,Q) equals H '(curl,Q), so the condition that divr €
Hy p(div,Q)* in (5) is the same as requiring that curldivr € H~1(2). This explains
the presence of the operator “curldiv” in the name of the space in (5).

We denote by T a quasiuniform and shape regular triangulation of the domain (2
into tetrahedra. Let h denote the maximum of the diameters of all elements in 7.
Throughout this work we write A ~ B when there exist two constants ¢,C > 0
independent of the mesh size h as well as the viscosity v such that cA < B < CA.
Similarly, we use the notation A < B if there exists a similar constant C' (independent
of h and v) such that A < C'B. Henceforth we assume that v is a constant. Due to
quasiuniformity we have h ~ diam(7T) for any 7" € 7. The set of element interfaces
and boundaries is denoted by F. This set is further split into facets on the Dirichlet
boundary, Fp = {F € F : F' < I'p}, facets on the Neumann boundary Fy = {F € F :
F < I'y} and facets in the interior F° = F\(Fy u Fp). Also let Fop = Fo U Fp.

For piecewise smooth functions v on the mesh, [v] and {v} are functions on F whose
values on each interior facet equal the jump (defined up to a sign) of v and the mean
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of the values of v from adjacent elements. On boundary facets, they are both defined
to be the trace of v. On each element boundary, and similarly on each facet on the
global boundary we denote by n the outward unit normal vector. Then the normal
and tangential trace of a smooth enough vector field v is given by

v, =0v-n and v =v—v,N.

Accordingly, the normal trace is a scalar function and the tangential trace is a vector
function. In a similar manner we introduce the normal-normal (nn) trace and the
normal-tangential (nt) trace of a matrix valued function 7 by

T

Ton =T :n®n=n"1 and 7, = (Tn),.

For any 2 < ©, we denote by Pk(fl) = Pk(Q,R) the set of polynomials of degree at
most k, restricted to Q. Let P*(Q,R?) and P*(Q, M) denote the analogous vector-
and matrix-valued versions whose components are in P*(Q). With respect to these
spaces we then define H’é, the L2(Q)-projection into the space P¥() or its vector- or
matrix-valued versions. We omit subscript from Hg if it is clear from context. For the

space of functions the restrictions of which are in P¥(T) for all T € T we write simply
P*(T). The analogous convention holds for H*(T), L*(F), etc.

The standard [18] variational formulation of (1) is to find (u, p) € Hj (2, R?) x L*(Q)
such that

v(e(u),e(v)) — (dive,p) = (f,v) for all v e Hy ,(Q,R?), (6a)

—(divu,q) =0 for all g € L*(12). (6b)

However our novel methods use H (div)-conforming spaces for the approximation of the
velocity u. Another weak form where velocity is set in H (div) was given in [20, 21, 25]

using ¥%™ := {r € H(curldiv,Q) : 7 = 7"}. It finds (0, u,p) € 9™ x Hy p(div, Q) x
L?(2) such that

(v to,7) + {div T, u)gy = 0 for all 7€ X%™, (7a)
—{div o, v)giy — (dive,p) = (f,v)  for all v € Hy p(div, ), (7b)
—(divu,q) =0 for all g e L*(2), (7c)

where %™ := {7 € H(curldiv,Q) : 7 = 7%}. Here (-, )qiy denotes the duality pairing
on Hy p(div, Q)* x Hy p(div, Q). Note that since o € L*(Q2, D) we have tr(c) = 0 which
is motivated by (2a). In [25], a detailed well-posedness analysis of (7) was provided,
but in this paper, (7) will serve merely to motivate the new mixed method of Section 5.

3. THE FINITE ELEMENTS USED AND THEIR PROPERTIES

In this preparatory section, we define the standard finite element spaces used to
construct our methods, their natural interpolators, and a number of discrete norm
equivalences revealing equivalent norms involving piecewise £(-). Lemma 3.2 below
will be used in the analysis of the HDG scheme while the analysis of the MCS scheme
will additionally need Lemmas 3.3-3.4. We begin with the finite element spaces used
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in this paper:

Vi, :={vn € Hop(div,Q) : vp|r € PYT,R?)}, (8a)
V= {On € L*(F,R*) : 0, = 0 on I'p, and for all F € F,

Onlr € P°(F,R?) and (0p)n|r = 0}, (8b)
Wi, := {n, € Hop(div, Q) : mu|r € P*(T,R?) + 2P°(T,R) for all T € T}, (8c)
S = {m € L*(Q,D) : 7|r € PYT, D), (14)mt|r € P°(F,n7)}, (8d)
Qn = P°(T). (8e)

Note that for any 7, € ¥, on a facet F', (7,),; is a constant function on F' taking
values in ny, where ny denotes the orthogonal complement of np, a unit normal of
F. This is indicated by the notation (73,),; € P°(F,nz) in (8d). Also any 0 €
I7h is tangential and takes values in n# on each facet F'. Note also that V},, which
equals Hy p(div, Q) n BDM! in the notation of §1, is the lowest order Brezzi-Douglas-
Marini space while W), is the lowest order Raviart-Thomas space [4]. The space ¥y,
is a discontinuous version of the “nt-continuous” space introduced in [20], for which
simple shape functions were exhibited there. All of these finite element spaces are
obtained by mappings from a single reference finite element. (All these maps extend to
curvilinear elements, although we restrict to affine equivalent elements in our analysis
here.) The maps are compatible with the degrees of freedom of the spaces. (For ¥, the
appropriate map is given in [20] and compatibility with degrees of freedom is proved in
[20, Lemma 5.7], while for the other spaces, the mappings are standard.) In the case
of V}, and W), the maps are Piola maps which also preserve divergence-free subspaces.

3.1. A discrete Korn-type inequality. Korn inequalities for piecewise functions
were given in [5, Theorem 3.1]. A further refinement was given in [31, Theorem 3.1].
To describe it, let I denote the facet-wise L? projection onto Ry := {t + a n x
r:tent, ae R}, the space of tangential components (on a facet F') of the rigid
displacements (or simply the space of two-dimensional rigid displacements on F'). Let
H) (T, R?) := {u: ue H'(T,R?) for all elements T € T and [u], = 0 on all facets
F e Fop}. A minor modification of the proof of [31, Theorem 3.1] shows that

IVul|3> < Je(uw)|5 + h*HHR[[u]tHio , forallue H, p(T,R%). (9)
Here and throughout, we use | - |3 to abbreviate > .| - |7 with the understanding

that any derivative operators in the argument of these norms are evaluated summand
by summand, e.g., the gradient and e are evaluated element by element in (9). This
notation is similarly extended to facets, so | - |% , = Zpcs, , | - |3 Note how nor-
mal components are controlled in (9) through the space H, ,,(7,R?), while tangential
components are controlled through the jumps [u];. The next result shows that a part
of the right hand side of (9) can be traded for a norm of the jump of n - curlw when u
is in V},.
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Lemma 3.1. For all uy € V3,
JeCun) B+ 7 R Lunlel5 |~ lleCun) B+ 2 0],
+ h [curl uhﬂ”“i—‘op'
Proof. By Pythagoras theorem,
e = [ Gende . + (00 = T0°) fun .

Hence (10) would follow once we prove that for all '€ F and all u;, € V3,

Alewlunluly + 35 JeCun)fr ~ A" =IO [unley + D) ez, (1
TeTr TeTr

where Tp ={T' €T : F < dT}.

To prove (11), first note that, restricted to every facet F, II® — TI° is the L*(F)-
orthogonal projection onto the one dimensional span of rp = ngp x (r — zr) where
Tp = ITII Sdex is the barycenter of F'. Computing this one-dimensional projection,

(7 =11 [un]e| , = (e, [un])r 7/ |re]%- Therefore,
0~ )], = 1Oz LeDel (12)

To simplify the numerator of the last term, let w equal uy| for some T € Tp. We
claim that

(rp,w)p = (rp,e(w)(x — zr))r + %(\x —xp?, np - curlw)p. (13)

To see why, recalling that w is linear in 7" (and hence in F'  ¢T), for any = € F|
w(z) =w(zp) + Vw (z — xp)
=w(zp) +e(w)(z —zp) + 5 curlw x (x — xp),

where we have used (3). Since rp is orthogonal to constants on F,

(rp,w) = (rp,e(w)(x —zp))r + %(np X (r—xp),curlw x (x — zF))p.

Now, since (x — x) L n for any x € F, using the identity (a x b) - (¢ x b) = |b|*(a - c) —
(a-b)(c-b) to simplify the last term, we obtain (13).
The equivalence of (11) is a consequence of the identity

0 ) = oA e et bl

immediately obtained by combining (12) and (13). Indeed, by applying Cauchy-
Schwarz inequality to the terms on the right hand side of (14), simple local scaling
arguments give h~!|(IT1F — HO)[[uhﬂtHi < ey, le(un) |7 + h|[curl uhﬂnué, thus prov-
ing one side of equivalence in (11). To prove the other side, we begin by noting that
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curl(uy) is constant on each element, so

(|z — zp|?, [curluy],) r

P2 [eurlunlu . < A2

2rellr
0 (e - eI e
< K@ =IO [undelp + 5 leCun)lz,

TeTr
where we have used (14) and local scaling arguments again. Squaring both sides and
applying Young’s inequality, (11) is proved. O

3.2. Norm equivalences. The product space for the kinematic variables is given by
Up :=V, x V), x Wj,. For the analysis we define the norms

Jun, Unl% = [Vun|F + b7 (up, — Tn )37,
llewn, @ns won|Z 2= e (un) |5 + R T (un — )i 3 + Bl (curluy, — wh)a| 27,
Wp, Up, wh |z = |e(un) |7 - wp, — Un)i|| 57 curl up, — w7,
[ 12 := lle(un) |7 + 7T )il3r + | curl [E
lun, Tn, wi?, == || dev Vuy — %%(wp) |7 + AT (w, — T )il 37,

where we have used | -[|3; to abbreviate Y .| - |37. We will shortly establish relation-
ships between these norms (Lemma 3.4). That these are all norms on U}, may not be
immediately obvious, but follows from Lemma 3.2 below (where we critically use that
uy, is single valued on facets). As we shall see later, [|-]|. is the natural norm to analyze
the new HDG method in §4, while | - |. features in the analysis of the MCS method
in §5. All the above norms involve the interface variable Uy, so they may be referred
to as “HDG-type” norms. In contrast, “DG-type” norms were used in Subsection 3.1,
where Lemma 3.1 and (9) imply

IVurlr s leCun)llF+ b~ [0Tunli[5, | + ol [ewrlun]ally, - (15)

A similar discrete Korn-type inequality also holds for HDG-type norms, as seen in the
next lemma.

Lemma 3.2. For all (uy, Up,wy) € Uy, we have the Korn-like inequality
lun, Unlw < (lun, tn, whl]. - (16)

The reverse inequality holds in the sense that for any (up,uy) € Vi, % ‘A/h there exists a
wp, € Wy, such that

[ wn, U, wall, < un, dnllv- (17)

Proof. To prove (16), first note that on an interior facet F' = 0T, n d1_ € Fy shared
by two elements T € T, letting ui = up|r,, since @, is single valued on F, we have
ul —uy = (uj —u)— (u;, —u). Moreover, on a facet F' € Fp, up|p = (u, —Up)|p. Thus
by triangle inequality,

I Lundi[, , < 21T (un — @n)el3r (18)
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where we have increased the right hand side to include facets on I'V also. Similarly,
since the normal component of the given wy, € W), is continuous across F' € Fy and zero
on Fe F D,

| [curl uhﬂnHi < 2| (curluy — wh)anT. (19)

Using (18) and (19) in (15), we obtain the estimate (16).
To prove (17), consider a function w, € W), satisfying

n-wy =n-{curlu,} on oT\I'",
n-wp =0 on 0T n TP,

on the boundary of every element T € 7. Since curl uy, is piecewise constant, by the well
known degrees of freedom of the Raviart-Thomas space W}, these conditions uniquely
fix an wy, € Wj. Then, |(curlu, —wy), | F equals zero for F € Fy, equals 1| [curl uh]]nHF
for F' € Fy, and equals ||(curluy,),|r for F' € Fp, so

2
| (curluy, — wp)n| 37 < |[curl uh]ano’D.
Therefore, for this choice of wy, we have

~ 2 _ ~
llwn, @n, nllZ < lleCun) - + p|[ewrlunlalz, | + A (un = @n)ell3r-

By a local scaling argument A/ [curl uhﬂnuzf < | curluy|?. Using this in the above

inequality and recalling that |Vup|3> = |le(un)|> + ||(curluy)|?, we complete the

proof of (17). O
Lemma 3.3. For any up €V, wp, € Wy, and T € T,

| curluy, — wp|3 ~ hll(curluy, — wp)u |3z, (20a)

| curls(wn)lz ~ |K(wn) 7z ~ | diven|r, (20b)

)+ et —cnlf ~ | dev Vi, — () 0
+ h2|| div w3 + | div w3

Proof. The first equivalence follows by standard scaling arguments (by equivalence of
norms in the lowest order Raviart-Thomas space). Equivalence (20b) also follows by
local scaling arguments and [21, eq. (4.14)]. We continue on to prove (20c). Applying
the Pythagoras theorem twice,

1
el + Sl eurlw, — w7 = [Vun = rlwn) |z

L.
= | dev Vuy, — k(ws)|5 + gH div up |3 (21)
We also have, due to (20b),

hZH divwh”?p ~ h2H Curl(n(wh))H?p = h2H curl (m(wh — curl uh)) H2T

(22)
< |wp — curl UhH2T

Here we have used an inverse inequality and the observation that derivatives of curl uy €
PY%(T) vanish. Combining (21), (22) and the continuity of the L? projection, we con-
clude that the right side of (20c) can be bounded by the left side.
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For the reverse inequality,
| dev Vuy, — k(wn) |7 = [TI°(dev Vup, — r(wn)) 7 + [ (T-T1")(wn) |7
< | dev Vuy — T(en) 3 + h2re(eon) Py
~ || dev Vuy, — Ik (wp) |3 + B[ div wp, |3 (23)

Here, we used that dev Vu, € P°(T), a standard approximation estimate for the L2
projection, followed by (20b). The proof is then concluded using (21). O

Lemma 3.4. For all (uy, up,wy) € Uy,
llns @y wnllZ ~ Nuns Gns wnl2 ~ en, Gnswnlf, + | divun|§ + | dives]s.
Proof. This is a direct consequence of Lemma 3.3. 0J

3.3. Interpolation operators. In subsequent sections we will require the interpola-
tion operators into the spaces in (8a)-(8e), denoted by

Iy Hy o (T) = Vi, Iw: Hy p(T) > Wy, Iy« L*(F,R?) > Vi, In:Y — %,

where ¥ = {r € H'(T,D) : [r]. = 0}. Of course, the natural interpolation for Qy,
denoted by I : L*(Q) — Qp, is simply the L?-orthogonal projection. The definitions
and properties of the remaining interpolants are summarized in this subsection.

An H(div)-interpolation into Vj, denoted by Iy : H) ,(T) — V4, is defined using
the standard degrees of freedom (see e.g., [4, Proposition 2.3.2]):

f(u—]vu)nq ds =0 forall ge P'(F) and F € F. (24)
F

A well-known consequence of (24) is that
div(lyu) = Igdivu, (25)

for all u in the domain of Iy. The interpolant Iy : H) ,(T) — Wi, defined by
(w—Tww)n,q)r = 0 for all g € P°(F) and all F € F, is also standard. The interpolation
operator for the stress space Iy, : ¥ — X, borrowed from [20], is defined by

J (Is0 — 0)pi - qds =0, for all ge P°(F,R%) with ¢, =0, forall Fe F, (26)

F

J (Isoc — 0) : qdz =0, for all g e P°(T,D), forall TeT. (27)
T

Finally, the tangential L?-projection on facets, Iy, : L*(F,R?) — V), is defined as usual
by ((u — Ipa), q)r = 0 for all g € PY(F,R*) with g, = 0 on all F € F.

To note the salient approximation properties of these interpolants, first observe that
for auw e H'(Q,R*)n H*(T), we have curl(u) € H) ,(T). Hence (Iyu, Ipuy, Iy curl(u))
is in U} and using standard scaling arguments and the Bramble-Hilbert lemma, we get

Mu — Iyu, uy — Ipuy, curlu — Iy curlumj + |u — Iyu, up — If/utsz

+hle(lyu — w37 < P2 |ulfeen.  (28)
Also recall that [20, Theorem 5.8] implies that for all o € X,

lo = Isoll§ + h (0 = Is0)ulor < P2lolin - (29)
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4. AN H(div)-CONFORMING VELOCITY—VORTICITY HDG SCHEME

4.1. Derivation of the HDG method. To derive our new HDG scheme for (6), let
u, p be a sufficiently smooth exact solution of (1). (A sufficient smoothness condition
is quantified in Lemma 4.1 below.) Let v, € V}. Then, multiplying (1a) by v, and
integrating by parts on each element,

(f,vn) = (—div(ve(u)) + Vp,vp) = —(p,divoy) + Z J ve(u) @ e(vp) do
TeT YT (30&)

+ (p —ve(u))n - vy, ds,

TeT LT\FN

where we used the symmetry of e(u) and the boundary condition (1d). Since p is
smooth, [vp], = 0 on Fo p,

0=— f pn - vy ds. (30b)

Let 9, € V. Since Dy, is single-valued on all facets, 9, = 0 on I'p (see (8b)), and e(u)
is continuous across interior facets,

0= ve(u)n - vy ds. (30¢)

TeT LT\FN
Adding (30a)—(30c),

,vp) = —(p,divuy, ve(u) : e(vy,) dz ve(u)n - (Uy — vy) ds,
(F.on) = —(p ”T;L (u) : <(en) +LT\FN (w)n - (i — vn)

Since (V)¢ = Op, [un]ln = 0 on Fy p and £(u) is smooth, we may replace (05, —vy,) by its
tangential component (05, — vp,); in the last term above. Furthermore, on I'y, we have
e(u)n - (Vp, —vp)e = €(u)pnt - (U, — vp)y = 0 since the tangential part of (1d) shows that
g(u)ne = 0 on I'y. Hence we may also replace 07\I'y by 07T in the last term. Thus,

(f,vn) = —(p,divuy) Z J ve(u) @ e(vy) da —I—J ve(u)n - (0 — vp) ds. (31a)
TeT or
Next, let w = curl(u) and 4 = u; on each element boundary ¢7. Then, obviously,

0= Z J ve(vp)n - (U —u)pds + Z f °(@ — ) - 11°(0), — vp):ds,  (31b)
TeT YT TeT oT

0= Z hf v(curlu — w)y,(curl v, — np), dz, (31c)

TeT

for any test function 7, € W), and constant o > 0, i.e., if u,u and w are replaced by
up, Uy and wy,, respectively, then the terms on the right are consistent terms.
Adding the equations (31a)—(31c), we obtain

Vahdg(u7 aa W; U, @}w 77h) - (le Uh,p) = (fa vh)7 (32&)



14 J. GOPALAKRISHNAN, L. KOGLER, P. L. LEDERER, AND J. SCHOBERL

where
a"® (2,2, 0; vn, On,nn) = (e(2),(vn))r
+ ()1, (On = vn)i)or + ((Z = 2)i e(on)n)or
a ~ ~
+ 7 (I1°(2 — 2),, I° (D), — Uh)t)&T + h ((curl z = 6),,, (curlvp, — 14)n) 57 -
Here and throughout, (-,-)7 = > per ()7 and (-, -)a7 = Dper (-, )or, extending our
prior analogous norm notation to inner products. Of course, from (1b), we also have
(divu, gs) =0, (32b)
for all ¢, € Q. Equations (32a)—(32b), after replacing (u,u,w) by (up,dn,ws), yield
the following discrete formulation: find (up, up,ws) € Uy and pp, € @, such that
v a8 (up, Un, Wh; U, O, 1n) — (pa, divon) = (f, vn), (33a)
—(divuy, qy) =0, (33b)
for all (vp,, 0, nn) € Uy and g, € Qp,. Note that this method enforces TI°(uy); = 0 on
I'p as a consequence of how the last term of (31b) manifest in the method. Due to the
Dirichlet conditions built into W}, (see (8c)) the method also penalizes |TI° curl(up ), 1),
through the manifestation of the consistent term (31c) in the method. System (33) may
be thought of as a nonconforming HDG discretization of the standard weak form (6).
Note that a"®(u,,w; vy, Oy, mp) is well defined for any (vh,on,n,) € U, and any
(4, U, w) € Uyeg, where
Ureg = (Hy p(Q) n H*(T) x L*(F) x H, p(T), (34a)
Qreg 1= Q N H'(T). (34b)
Lemma 4.1 (Consistency of the HDG method). Suppose the exact solution (u,p) of
(6) is regular enough so that u, together with u = u; on facets and w = curlu, satisfies

(u,U,w) € Uy and suppose p € Qreg. Then any ((un, Up,wn),pn) € Uy x Q solving
(33) satisfies

va™®(u — up, uy — Tp, w — Wk Vh, On, ) — (divon, p — pr) = 0,
for all (v, 0p,np) € Up,.
Proof. This follows by subtracting (33) from (32). O

4.2. Pressure robust error analysis of the HDG scheme. We follow the usual
mixed method approach and proceed to combine continuity and coercivity of a'® with
a discrete Stokes inf-sup condition, or the LBB [4] estimate. The latter implies the
stability of (33), which also implies its unique solvability. We begin by noting that by
local scaling arguments, there is a mesh-independent ¢; such that

hle(vn) |37 < cile(vn)|7, vpeVy, TeT, (35)

since £(vy) is constant on T. For the same reason, II' may be introduced into the
second and third terms in the definition of a®(uy,, Uy, wy; vp, On, wh), €.g.,

(e(un)n, (O — v)e) o7 = (e(un)n, II° (0, — v)y) or (36)

~ 2 ~ 2 — ~
Let [Ju, @, w2 4 = llu, @ w[Z + hlle()n3r + AT -T1%)(w — @) 27
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Lemma 4.2 (Continuity of of a™®). For any (u,U,w) € Uy, (up,Upn,wn) € Uy,
(Vn, O, wn) € Uy and q, € Qp,

Vahdg<u7 av W5 Uh, aiuwh) SV H|u7 a7w|“5,+ |th7 ah) h | e+ (37>
I/ahdg(uha ah? Wh; U, ®h7 Wh) S v H|uh7 aha Whms H|vha ®h7 77hH|5 9 (38>
(divun, gn) < [lun, @n, whll, [gallo- (39)

Proof. Inequality (37) follows from Cauchy-Schwarz inequality, while (38) follows by ad-
ditionally employing (35) and (36). The estimate (39) is a consequence of x| div u||F =
le(un) 7 — || deve(un)Z < [le(un)l7- O

Lemma 4.3 (Coercivity of a™®). There is a mesh-independent oy > 0 such that for
all @ > ag and all (up, up,wy) € Up,

Vahdg(uhv aha Wh; Up, ’a}“ (.Uh) 2V H|Uh7 ah»whﬂﬁ : (4())

Proof. By (36) and Young’s inequality with any 8 > 0,

~ ~ 1 ~
% o B, n) > () — (Bhleamn)nlZy + 5 100 — e[ )
+ ah ™I (un — )37 + bl (curlup, — wa)a 37
Hence using (35), and choosing, say 8 = 1/(2¢;) and a = 2/, (40) follows. O

Lemma 4.4 (LBB condition for the HDG method). For any p, € Qy, there exists a
(U, On, mn) € Up with ||vn, On, ma|, < [pafo and div v, = p. Consequently,

div vy, pp
sup TR (41)
(Vh,0h M )EUR ‘HU’U Uh, nh‘“g

Proof. By classical results [18], there exists a u € H'(2) such that
divo =pp,  [vlm@ = [pafo- (42)

Put v, = Iyv and v, = Iyv on each facet. Then, (42) and (25) imply dive, =
div(Iyv) = I divv = p,. Moreover, (as alluded to in [29]) it is easy to show that

lon, Unlle S vl @)- (43)
Choose ny, € W), as in (17) of Lemma 3.2. Then, by (42)-(43),
[on, O mwll. < flvn, Onlle < |vllar) < Ipallo
concluding the proof. 0

Theorem 4.5 (Error estimates for the HDG method). Let u,u,w,p denote the exact
solution that satisfies the reqularity assumption of Lemma 4.1 and let ((wp, Upn,wn), pr) €
Un x Qy be the discrete solution of (33). Then the errors in uy, Uy, wy, can be bounded
independently of the pressure error by

llw = un, wp — Up,w — wil, < hluf gz, (44)
Furthermore, the pressure error satisfies

v p = pulo < hllulzziry + v pl ) (45)
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Proof. Let E = (u—up, & —Up,w —wp) and Ey, = (Iyu—up, [pU—Up, Iww —wy). Then
& = F — E), represents the interpolation errors. Since Ej, € Uy,
V| En||? < vate(Ey; Ey) = va" ¥ (E — &£; E)) by Lemma 4.3
= (div(Iyu — uy),p — pn) — va™&(E; Ey) by Lemma 4.1.
By (25), div(Iyu) = Ipdivu = 0. Moreover, by (33b), div u, = 0. Hence

2
v||Ew]|Z = —va" ¥ (& Ep) < v [|EN. o NI Enll. . (46)
by Lemma 4.2. Now we claim that
Bz = IER] - (47)
To see this, first note that local scaling arguments give
R = T3 < [ Vonl 7 (48)

for any v;, € Vj,. Then, letting E} = Iyu — uy, E,? = Iyu — Uy, note that on each facet,
(I -1 (Bt — E}) = (I —1I°)E}. Hence the extra terms in H\Eh|\|§+ that are not in
|| En]|? can be bounded by applying (48) and (35) with v, = E} to get

B2 < N ElIZ + 123, BRI < IR,
by Lemma 3.2. This proves (47). Using (47) in (46), we conclude that || Ex ||, < [|€]]. -
Combining with triangle inequality,

£ < €l + £l < €]

where we have applied (28) in the last step. This proves (44).
For the pressure estimate, we begin with triangle inequality and Lemma 4.4:

S hllulla2em), (49)

‘€,+ ~

v p = pulo < v 'p = Igplo + v Iop — prlo

v1(div vy Iop — pn)
<v i p—Ioplo + sup =
” N H (Vh,0n,mn )EUR H‘Ufu Uh, 77h|\|€

To bound the numerator of the supremum, we use Lemma 4.1:
v (div oy, Igp — pr) = v~ (divos, p — pu) = a"®(E; va, O, mn)
< IEIl. llvn, On, mall. -

Hence the already proved estimate (49), together with the standard L? projection error
estimates finish the proof of (45). O

5. AN MCS FORMULATION WITH H (div)-CONFORMING VORTICITY

In this section we derive a new mixed method for the approximation of (2), motivated
by the weak formulation (7). Let oy, € ¥ and (v, Uy, np) € Uy. Defining

(div op; Un, Uns M, 2= (div on, vn)7 — ((08)nns (Vh)n) o7
— ((on)nt; @On)e) o7 + (on, £(00)) 7

consider the terms on the right. When (oy,),; is continuous across element interfaces,
the first two terms together realizes the duality pairing introduced in Section 2, namely
{div o, vp )giv, per [21, Theorem 3.1]. The third term is used to impose the nt-continuity
of the viscous stress (and prior works [20, 21, 25] provided enough rationale to employ

(50)
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nt-continuous finite elements for viscous stresses). Note, that a similar nt-continuous
approximation of the gradient (but not the physical viscous stresses £(u)) was also
already considered in [17]. Due to the Dirichlet conditions built into V, on I'p (see
(8b)), this term is comprised only of integrals over facets in the interior and on I'y,
with the latter enforcing o,; = 0 in 'y as demanded by (2f). Finally, the last term
above is used to weakly incorporate the symmetry constraint (2c). This technique of
imposing symmetry weakly is widely used in finite elements for linear elasticity [1, 2,
3,6, 14, 19, 34].

Viewing (7) in terms of {(div -, )y, , we are led to the following mixed method: find
(up, Up,wp) € U, and (op, pp) € (X x Q) satisfying

v Y op, ) + {div ; up, Up, wiu, = 0, (5la)

—{div op; Vn, Op, pw, — (divos, pr) + c(wn, mn) = (f, vn), (51b)

—(div up, qn) = 0, (51c)

for all 7, € Xy, (vp,Op,mn) € Up, and g, € @y, with the stabilizing bilinear form
c(wn,mn) = vh*(divwy, divy,)q. Note that since wy, approximates the vorticity w =

curl(u), we have divw = 0, so ¢(-, -) is a consistent addition. Although the formulation
(51) is very similar to the formulations from [20] and [21], note the following differences.
First, while the nt-continuity of viscous stresses was built into the spaces in [20, 21],
now it is incorporated as an equation of the method by the well-known hybridization
technique. Second, although we use the same local stress finite element space as in
[20], we use the weak symmetric setting from [21]. In the latter, the Lagrange mul-
tiplier for the weak symmetry constraint was given by an element-wise discontinuous
approximation, whereas here it is in the div-conforming W/,.

5.1. Stability of the MCS method. From the terms in (51), we anticipate that the
norms |- ||y, and |- |. are more natural for the analysis of the MCS method (in contrast
to the HDG method). The latter appears in the next lemma.

Lemma 5.1 (Continuity of MCS formulation). The bilinear forms in (51) are contin-
uous in the sense that for all o, T, € 3Xp, pr € Qn, Mn € Wi and (up, Up,wp) € Uy, in
addition to the obvious estimates

v on,m) < v P onlor™ P mllo,  and  c(wn, mn) < vh*| divwnlo | div o,
the following estimates hold:

wp, Un, wh|e |Pnllo, (52a)

(le uhaph) g ‘
< llonllo lun, tn, wple. (52b)

(div on; up, Un, wn)u,

Proof. Inequality (52a) is proved just like (39). To prove (52b), let us first note an

equivalent and more compact form of (div oy; vy, Up, nn v, obtained by integrating (50)
by parts (see e.g, [21, eq. (3.11)]), namely

{div on; v, On, n)u, = —(0n, Vop — £000))7 + ((Oh)nt, (Un — Un)i)oT (53)

Using (53), the fact that oy is trace-free, the Cauchy-Schwarz inequality, and the
following estimate (which follows by a local scaling argument using a specific mapping
mentioned in the beginning of §3),

W2\ (0n)nell o < llonll T, (54)
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we get

. ~ _ ~ 1/2
IV Op; Up, Up, Wh U, < ||Ohj0 €V Vup — K\Wh) || T Up — Up|loT
( Yo < lowllo (| dev Y, — r(wn) |5 + b T 12"

A~ . 1/2
< lonllo (lwn, @n, wnlZ, + 2| dive,|Z)"”

where the last inequality is due to the same argument as in (23). Thus (52b) follows

from Lemma 3.4. U
Lemma 5.2. For any (up, Up,wy) € Uy, there exists a (Th, qn) € X X Qp satisfying

I7allo + lanllo < lun, @, whlu, + | divuno, (55)

(div 73, up, Uny Wi, — (divug, gn) = ([un, U, willo, + | divus]o)?. (56)

Proof. For each element T € T and each facet F' < 0T, there are matrix fields S¢', ST,

supported on 7', with the following properties: on T, both S, SI" are constant matrices

in D, their boundary trace (SI'),|r, for i € {0, 1}, are constant unit-length vector fields

on F that form a basis for the tangent space ng, and (S!),;| vanishes on all other
facets I’ # F in Fj,. Such matrix fields are exhibited in [20, Lemma 5.1]. Given any
(uh,ah,wh) € Uh, set

o= >0 Y DL (S M0 dev(Vuy, — k(wi))) A7ST

TeT FcoT ie{0,1}
1 ~
T = Z 2 Z \/—EHO(uh —up); S
TeT FcoT ie{0,1}

where Ar is the linear barycentric coordinate function associated to the vertex opposite

to the facet F. Since A'S!" has a vanishing nt-trace and I1° dev(Vuy, — k(wy,)) € D, we

see that 7, = Y72+ 7174, for any 40,71 € R, is an element of 3. Also set g, = — div uy,

so that —(divup, gn) = | divuy|2. For these choices, (55) obviously holds as long as v

is chosen independent of h and v. Indeed, such ~; can be chosen to also ensure that
(div 73 up, Un, whpu, 2 [, Gn, whllg, |

so that (56) also holds. This follows from an argument which (we omit and) is similar
to that detailed in [21, Lemma 6.5], proceeding simply by appropriately combining
Young and Cauchy-Schwarz inequalities. O

The combined bilinear form of the MCS method (51) is given by
B(oh, W, Uny Wiy P Thy Vhy Ons s Gn) =1 (0n, ) + {div 735 up, Un, wi o,
—{div on; Ok, Uk, 0w,
— (divup, qn) — (pr, divos) + c(wn, 7n)-

Define a norm on the product space S, = ¥, x V}, x ‘A/h x Wy x Qn by

| s Ty whs Pals, = v~ 2 (lonllo + Ipallo) + 2| un, Gn, wle.

Lemma 5.3 (Inf-sup condition for MCS method). For anyr = (op, up, Up, Wh, Pr) € Sh,
be arbitrary, there exists an s € Sy, such that

B(r;s) = HrH%h, and (57)

[slls < 7lls.- (58)
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Proof. We will find the required s as a sum of three terms, each in Sj, and each

depending on the given r. The first term is set using s* = (o, un, Up,wpn, —pp), for
which we obviously have

B(r,s*) = v ou[g + vh?| divwslg, (59a)

[s* s, < lIrls- (59b)

The second term is § = (v73,,0,0,0,vq,) € Sy, where 7, € ¥j, and ¢, € Q) are as in

Lemma 5.2 obtained using the given components uy,, Up, wp, of r. The lemma gives some
C > 0 such that

B(r;3) = v (on, vrh) + v{div ;5 up, U, wiow, — v(divug, g,)
2 (on70) + v (lun, ns conlfy, + | divun). (60a)

513, = v (lvralld + lvanld) < Cv(Jun, @n,wnl?, + Idivunld).  (60b)

The third term is s® = (0, —v "oy, —v "0, —v"'n,,0) € S), where (vy, O, m) € Uy, is
as in Lemma 4.4 obtained using the given component p;, of r. The lemma implies that
div vy, = pp and

B(r;s%) = v pn|2 — v Xdiv on; v, On, i, + v e(Wh, mn), (61a)
[s215, = vIv ™ on, v On, v 2 < v a5 (61Db)
Note that to obtain the last inequality, we have also used Lemma 3.4.

Now letting 8 > 0, a constant yet to be chosen, put s = Bs* + 5 + s®. Then,
combining (59a), (60a) and (61a),

B . N
B(r;s) 2 =|on|§ + Brh®| divws|§ + v]un, Gn, wil7,

v . (62)
+ v divu,|§ + ;thHg — (p1 + p2 + p3),

where p1 = (o, ), p2 = —v Xdivoy; vp, On, Mh)u,, p3 = v c(wh, my). By (60b) and
Young’s inequality,

C v ~ .
P1 < %HO’}IH(Q) + E(Huh7uh7whH2Uh + || div uh”%)

To bound ps, note that by Lemma 5.1, ps < v~ on|ol|vn, On, 71|, so by (61b), there is
a C2 > 0 such that py < v=2|oy]lo (3C20~|ps2)"?. Thus
CA

1
< — 2 _ 2_
pr < SNl + ol

To bound ps, we recall from Lemma 3.4 that h| divnsllo < |vn, Ok, 7alle. Hence by (61b),
there is a C’ > 0 such that ps < (vY/2h divwpo) (%C’V‘lﬂphﬂg)m, S0

C'v
P3 < 5

, 1
P2 diveonl[§ + 2 [lpalls
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Using these estimates for p; in (62),
26 — (C + C»)
2v

26 —-C'
2

B(r;s) 2 lowlls + vh?| div whg

v ~ v, .. 1
+ 2 Jun, B conl, + 2] divunl? + o ol

Since C', C® and C” are mesh-independent constants, choosing § > max(C +C%,C")/2
and recalling the norm equivalence of Lemma 3.4, we prove (57). Of course, inequal-
ity (58) follows from (59b), (60b), and (61b). O

5.2. Pressure robust error analysis of MCS scheme. In addition to the spaces
Useg and Qeq, the a priori error analysis will now also use a stress space with improved
regularity, Yo := X%™ n H'(T,D). Note that the integrals in the terms defining
B(o,u,u,w,p;-) are well-defined for 0 € Xy, (U, s, w) € Useg, and p € Qreg, 50 B(-, )
can be extended to such non-discrete arguments.

Lemma 5.4 (Consistency of the MCS method). Assume that the exact solution (o, u, p)
of (7) fulfills the regularity assumption (u,u;,w) € Ueg and (0,p) € Lyeg X Qreg, where
w = curl(u). Let (op, up, Up,wn,pr) € Sy be the solution of (51) and let (T, vy, Un, Mh, qn)
Sh be an arbitrary test function. Then

B(o — op,u — up, Uy — Up, W — Why D — D’ Ths Vh, Un, Mhy @n) = 0. (63)

Proof. Since o is symmetric we have that o : k(n,) = 0. Next, using the regularity
assumptions, starting from (53), we get

—{div &; v, Un, M), — (divow, pn) = (0 = pl : Vop)7 — (e, -(Vn — Un)i)oT
= —(div(e = pI),vn)7 — (Ont, (vn — Vn)i)or + ((0 — pI)n,vp)or
= —<d1V<O' - p[)a Uh)'T + (anta ﬁh)ﬁT - ((U - p[)nn7 (Uh)n)ﬁT

= —(div(o = pI),vn)7 + Y. ([o]nt; B0)F — ([(& = pD)]oms (vn)n)

=—www—mnwmf+j (0 = pD)n (U0 — g dls
I'n

= —(div(c — pI),vn) = (f,vn),
where the boundary integral vanished using (2f) given on I'y. Next, since v~ 1o =
e(u) = Vu — k(w) we have
v o, ) + (div T u, U, whp,
= v (0, m) = (Thy Vu — K(w)) 7 + (Tar, (u = w)e)or = 0.

The final remaining term in the bilinear form is also zero since (divu,gq,) = 0 as the
exact solution is divergence free. 0

Theorem 5.5 (Error estimate for the MCS method). Assume that the exact solution
(o,u,p) of (7) fulfills the regularity assumption (u, s, w) € Ueg and (0, p) € Byeg X Qreg,
where w = curl(u). Let (up, Up,wp) € Uy and (op, pr) € Xp X Qp, be the solution of (51).
Then we have the pressure robust error estimate

v o = onllo + [u — wp, ue — Tpyw — wile < Rl g2 (64)
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Furthermore, the pressure error can be bounded by
v p = pallo < h(lulmzer + v Pl ) (65)

Proof. As in the proof of Theorem 4.5, let E = (0 — o, u — up, uy — Up, w — Wh, P — Pr),
Ey, = (Ino —on, Ivu—up, Tpu, — Up, Iyww —wh, Iop —pr), and let the interpolation error

be & = E — E},. Now, using Lemma 5.3, choose s = (73, Up, Up, M, qn) such that

B(Ep; s)

HEhHSh < ” :
SHSh

By the consistency of the MCS formulation (63) we have
B(En;s) = B(E—E&;s) = B(&; ).
Hence, if we prove that
B(&;s) < vl gz sl s, (66)

then |Ej|s, < v"/2h|lu|g2(7), which is enough to yield the stated pressure-independent
estimate (64): indeed, letting £ := (0 — op, u — up, 4y — Up,w — wp,0), By := (o —
on, Iyu — up, Ipuy — Uy, Iyw — wy, 0), and € = £ — Ej, we would then have

|E|ls, < |Els, + |Enls, < Els, + |1 Enls, < v*h|u]mzr), (67)

using the interpolation estimates (28)—(29) to bound |€||s,. Inequality (67) obviously
implies (64). Therefore we focus on proving (66) and proceed to separately inspect
each term forming its left hand side.

Let &7 with j € {0, u,U,w,p} denote the corresponding components of the interpo-
lation error. Then (53) implies

(divTy; £, EY,E%) = (1, K(EY) = VE )7 + (Th)ns (E* = EM)o)or-

As (7h)ne is constant on each facet, we can insert I1° in the last term, so several
applications of the Cauchy-Schwarz inequality with A'/? and h~? weights for the
boundary terms yields

(divm; €% < (Imllo + h' 21 (T)uiller) (1€ E v + [K(E¥)]o)
< |nllohllu] 2, (68)

where we used (54) again and the interpolation estimate (28) in the last step.
Next consider the symmetrically opposite term in B. Since Vv, € P°(T) and £ is
orthogonal to facet-wise and element-wise constant functions (see (26)—(27)), we have

—(div E7; vh, Opy My, = (€7, Vo, — k(mn))7 — (Eoys (U — Un)e)oT
= —(&°, (I =T)k(m)) 7 — (E5, (I = T1°) (v, — Dp)e)ar

1€%o |vh, Dny mile + B721E o7 |vn, Dalw-

N

where on the right hand side of the last inequality, the first term is obtained using (20b)
and Lemma 3.4, while the second term is obtained using (48). Thus, the interpolation
estimate (29) and Lemma 3.2 imply

(div 75 v, 0w, vy, < V|l 2y [on, 0w, ma - (69)
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The remaining terms are easy: by Cauchy-Schwarz inequality,

v (€7, m) < hllulmzirmlo, (70)
and by the definition of Iy, I and (25),
(divE¥,divn,) =0, (divE“ qn) =0, and (EP,divuy) =0, (71)

where the last equation is due to divv, € P°(T). Summing up (68), (69), (70), and
(71), we prove (66), and hence (64).

The pressure error estimate (65) follows along the same lines as in the proof of
Theorem 4.5. U

6. NUMERICAL EXAMPLES

In this last section we present a simple numerical example to provide a practical
illustration of the theoretical asymptotic convergence rates as well as to compare the
two new methods we presented. Both methods were implemented within the finite
clement library NGSolve/Netgen (see [32, 33] and www.ngsolve.org). Testfiles and
our computational results are available at [24].

The computational domain is given by Q = (0, 1)% and the velocity field is driven by
the volume force determined by f = —divo + Vp with the exact solution given by

1
o = ve(eurl(v,,v)), and p:=a° +5° +2° — 5

Here v := 2%(x — 1)%y*(y — 1)?2%(2 — 1)? defines a given potential and we choose the
viscosity v = 1074, While this would lend itself to homogenous Dirichlet conditions
being prescribed on the whole boundary, as we assume || > 0 throughout the paper,
we instead opt to impose non-homogenous Neumann conditions on I'y := {0} x (0,1) x
(0,1) and homogenous Dirichlet conditions only on I'p := 0\I'y. Note that this
requires the additional source terms SFN (Crn—np)(vp)n ds and SFN 001, ds to be provided
as data for the methods.

Convergence. An initial, relatively coarse mesh was generated and then refined mul-
tiple times. With the larger problem size on finer meshes in mind, we used a GMRes
Krylov space solver preconditioned by an auxiliary space method using a lowest order
conforming H'! space (see e.g., [16], and for details specific to the MCS case, see [22])
with relative tolerance of 107!, Errors measured in different norms and their estimated
order of convergence (eoc) are listed in Table 1 for the HDG method and Table 2 for
the MCS method. For the HDG method we chose the stabilization parameter a = 6.
As predicted by the analysis from Theorem 4.5 and Lemma 5.5, the velocity error
measured in the seminorm [e(u — uy) o, the L%-norm of the vorticity, and the pressure
errors converge at optimal linear order. Furthermore, for the MCS method, we also
observe optimal convergence for the stress error. In addition, we also plotted the L*-
norm error of the velocity. From an Aubin-Nitsche argument one may expect a higher
order of convergence whenever the dual problem shows enough regularity [4, 20]. Not
surprisingly therefore, we observe quadratic convergence for the L?-norm of the velocity
error for both methods.
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71| le(uw = un)lo (coc) Ju—unfo (coc) Jw —whlo (coc) [lp — palo (coc)

63| 221073 () 1.9-107% () 3.2.1073 (~) 2.1-107! ( - )

504 | 1.7-1073 (0.4) 8.4-107° (1.2) 2.3-1073 (0.5) 1.2-10~" (0.9)
4032 | 9.3-107* (0.9) 2.4-1075 (1.8) 1.2-1073 (0.9) 6.1- 1072 (0.9)
32256 | 5.3-10~* (0.8) 8.0-107% (1.6) 6.6- 10~* (0.9) 3.1- 102 (1.0)
258048 | 2.8-10~* (0.9) 2.3-10°% (1.8) 3.5-10~* (0.9) 1.6- 1072 (1.0)
2064384 | 1.4-107% (1.0) 6.3-1077 (1.9) 1.8-10~% (1.0) 7.8- 103 (1.0)

TABLE 1. Errors and estimated order of convergence (eoc) for the HDG

method.

71| lle(u = un)lo (coc) |u—unlo (coc) |lo = onfo (coc) [w — whlo (coc) [lp = pullo (eoc)
63| 26-107% (-) 21-107* () 4.0-1077 (=) 3.2:1073 (—) 2.1-107* (—)
504 | 1.9-107* (0.4) 1. 0 107* (1.0) 2.9-1077 (0.5) 2.2-1072 (0.5) 1.2-10~! (0.9)
4032 | 1.0-107* (0.9) 2.5-107° (2.0) 1.5-1077 (1.0) 1.1-1073 (1.0) 6.1- 1072 (0.9)
32256 | 6.0-107* (0.7) 7.8-107% (1.7) 7.9-107® (0.9) 6.1-10~* (0.9) 3.1- 1072 (1.0)
258048 | 3.1-107* (1.0) 2.0-107% (1.9) 4.0-107® (1.0) 3.1-107* (1.0) 1.6- 1072 (1.0)
2064384 | 1.5-107* (1.0) 5.2-1077 (2.0) 2.0-107® (1.0) 1.5-10~* (1.0) 7.8- 1073 (1.0)

TABLE 2. Errors and estimated order of convergence (eoc) for the MCS

method.

Condition numbers. For both HDG and MCS method, after static condensation
within the (up, Uy, wp)- or (on, up, Up, wp)-block of the finite element matrix respec-
tively, we obtain a symmetric and positive definite diagonal block, which we simply
refer to here as the “A”-blocks of the respective methods. (Of course, due to the in-
compressibility constraint, the entire system is still of saddle point structure.) Both the
A blocks have the same non-zero structure and are expected to have condition number
O(h™2), but they discretize slightly different operators, namely ¢ for the HDG method,
and dev(e) for the MCS method. As e(u) = dev(e(u)) + 3 div(u)I and the true solu-
tion is divergence-free, adding the (consistent) term % div uy, div vy, to the MCS bilinear
form yields an A block that is directly comparable to the one of the HDG method. In
Figure 3 we show approximate condition numbers (cond) of said A blocks for some of
the meshes used in the previous computations and different values of o in a®. We see
that in addition to the MCS method not being dependent on any stabilization param-
eter in the first place, there appears to be no possible choice of o that would make the
HDG method’s A block better conditioned than that of the MCS method.
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o [T]=4032
17| = 32256

o |T| = 258048
4 —HDG

oy MCS

cond

FiGURE 3. Approximate condition numbers of the corresponding A
blocks of the HDG (solid lines) and the MCS (dotted lines in the same
color) method on different meshes. Different values of o on the x axis
and approximate condition number (cond) on the y axis.
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