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Abstract. Time-dependent ground deformation is a key observable inactive magmatic sys-
tems, but is challenging to characterize. Here we present a numerical framework for modeling
transient deformation and stress around a subsurface, spheroidal pressurized magma reser-
voir within a viscoelastic half-space with variable material coefficients, utilizing a high-order
finite-element method and explicit time-stepping. We derive numerically stable time steps
and verify convergence, then explore the frequency dependence of surface displacement asso-
ciated with cyclic pressure applied to a spherical reservoir beneath a stress-free surface. We
consider a Maxwell rheology and a steady geothermal gradient, which gives rise to spatially
variable viscoelastic material properties. The temporal response of the system is quantified
with a transfer function that connects peak surface deformation to reservoir pressurization
in the frequency domain. The amplitude and phase of this transfer function characterize the
viscoelastic response of the system,and imply a framework for characterizing general deforma-
tion timeseries through superposition. Transfer function components vary with the frequency
of pressure forcing and are modulated strongly by the background temperature field. The
dominantly viscous region around the reservoir is also frequency dependent, through a local
Deborah number that measures pressurization period against a spatially varying Maxwell re-
laxation time. This near-reservoir region defines a spatially complex viscous/elastic transition
whose volume depends on the frequency of forcing. Our computational and transfer function
analysis framework represents a general approach for studying transient viscoelastic crustal
response to magmatic forcing through spectral decomposition of deformation timeseries, such
as long-duration geodetic observations.

Key points:
• A high-order numerical framework is derived for time-dependent viscoelastic deformation

around magma reservoirs.
• The transfer function characterizes phase lag and amplification between pressurization

at depth and surface deformation.
• The spatial extent of viscous response is frequency dependent and well-characterized by

a local Deborah number.

Plain Language Summary

Ground motions associated with subsurface magma reservoirs are the result both of magma movement and
time-dependent deformation of crustal rocks. We have developed a new computational framework to help
interpret surface deformations associated with magmatic systems embedded within viscoelastic rocks as expected
in volcanic regions. This framework is general in the sense that a broad range of scientific studies can be
explored by specifying particular conditions at domain boundaries or magma reservoir geometries, and we
perform rigorous numerical tests to ensure credible solutions. We then apply the model to study a simple but
highly generalizable type of transient behavior - the cyclic pressurization and depressurization of a spherical
reservoir. We develop a theoretical approach to simply analyze the time-dependent output, and find that
temporal lag and amplification of surface deformation with respect to the reservoir pressure is explained by
an aureole of material surrounding the chamber with a dominantly viscous response, whose size is frequency-
dependent. Our results can be extended to many transient deformation scenarios because a sinusoidal response
forms the basic element of general pressure time-series.
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1. Introduction

Magma reservoirs represent a fundamental link between mantle melting and volcanic activity
seen at the surface. Eruptions that drain these reservoirs are the most dramatic example of
magma chamber mechanics, but a wide spectrum of time-varying surface deformation and other
unrest seen in volcanic regions likely has an origin within crustal storage zones [2, 10, 32, 68].
As a result, understanding controls on time-dependent magma chamber deformation and stress
is a long-standing research topic in volcanology [65, 63]. However, modeling magma reservoir
evolution is a challenging problem because time-dependence may arise from a variety of physical
processes occurring both internal and external to the magma transport system, many of which
leave non-unique signatures in ground deformation patterns.

On sufficiently short time scales, it is appropriate to assume an elastic/brittle rheology of host
rocks. Elastic models have been widely used to interpret geodetic data gathered at volcanoes
[48, 46, 4]. Such models predict that time-dependent behavior comes only from reservoir
magma mass balance/state variable changes [10] or boundary forcing, although poroelastic
effects can also lead to time-dependence [47]. Time dependent deformation and stressing of
the reservoir at longer timescales likely involves ductile response of host rocks [24, 69, 54],
suggesting an overall viscoelastic rheology.

Viscoelastic effects have been identified as defining a notion of magma chamber stability,
providing a mechanism for modulating stresses and deformation associated with pressurization
of the chamber [15, 38, 26, 44]. Viscoelastic effects may play a role in the development of large
silicic reservoirs [36] as well as eruption sequences from long-lived magma reservoirs [13] and
time-dependent ground deformation at active volcanoes in diverse settings [53, 64, 45, 43, 49].
On tectonic timescales, state shifts in the magma transport system reflected by increasing
intrusive-extrusive ratios, and evolving spatial organization of volcanic output around spatial
centers, may also reflect time-evolving viscoelastic behavior [39].

Deformation style is strongly tied to the thermal state of the magmatic system, because
both rock and magma rheology are temperature dependent. Thus it is to be expected that a
viscoelastic response varies spatially, and evolves in time with the transcrustal magma transport
system. Such unsteady effects, both spatial and temporal, are poorly constrained. Instead it is
typically assumed that magma reservoirs reside in a steady state geotherm [14, 27, 30], or that
the mechanical response is well-approximated by a pre-specified shell of viscous material in an
elastic host [6, 38, 13, 62, 67]. Time evolution is often either imposed kinematically through
stress boundary conditions (e.g., to model an eruptive event, [15]) or arises dynamically through
mass and energy balance [38]. Viscous creep independent of time-variable forcing has also been
invoked to explain deformation signals [62, 29], but general time dependent deformation has
not been studied.

In this work, we address two aspects of viscoelastic deformation in magmatic systems. First,
we derive and implement a high order numerical modeling framework for simulating transient
thermo-mechanical behavior of a subsurface magma reservoir in an isotropic, heterogeneous,
viscoelastic domain. Second, we study stress and crustal deformation associated with periodic
pressure variation at the chamber wall. This represents a different sort of idealization than
previous studies: we consider spatially resolved mechanical response, but treat time evolution
as harmonic. In this way we isolate the frequency dependence of the viscoelastic rheology, and
develop a transfer function approach using analytic functions to predict material response.
This idealization might approximate some magmatic forcing scenarios, such as cyclic stress
from seismic waves, periodic magma injection, or glacial cycles, and we note that quasi-periodic
deformation at multiple frequencies has been observed in long-term geodetic timeseries [11].
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But this approach also implies a superposition framework for studying much more general time
evolution.

Our model is developed to handle general axisymmetric geometries in the subsurface and
surface, including lateral loads and topographically complex material interfaces. However,
we focus on the relatively simple and well-studied case of a sphere in a half-space without
remote loading to explore transient effects, deriving material properties from a steady state
temperature distribution within the medium. After detailing the numerical framework we
verify convergence using the method of manufactured solutions [57]. Finally we use the veri-
fied framework to characterize the system’s response to spatially variable viscoelastic material
properties. We develop a transfer function between chamber pressure and maximum vertical
surface deformation to demonstrate that two parameters – the phase lag between pressurization
and surface deformation, and their relative amplitude – imply a frequency-dependent viscoelas-
tic response that depends on chamber temperature and geothermal gradient magnitude. We
demonstrate that this transfer function permits the reconstruction of complex deformation his-
tories, and show that the spatial thermo-rheologic structure beneath the chamber influences
frequency-domain expression of surface deformation.

The paper is organized with mathematical and computational details provided first, followed
by the spectral (and transfer function) analysis and example calculations. In Section 2 we
introduce the governing equations and generic physical problem of interest. In Section 3 we
discuss the computational framework for solving our problem, stability considerations and
resolution tests, and develop the specific non-dimensional time-dependent problem of interest.
Readers wishing to skip such technical details can go directly to section 4, which introduces the
transfer function approach that represents our primary analysis tool. Section 5 then discusses
results of computations and Section 6 discusses implications for magmatic systems.

2. Mathematical Framework

2.1. Problem Formulation and Geometry. We consider a subsurface magma reservoir in
an isotropic, viscoelastic space, see Figure 1. In general the system evolves in time in response
to mass, momentum, and energy balance associated with magma transport in and out of the
reservoir. We focus here on the host response to one particular state variable, a uniform but
time-evolving pressure on the reservoir wall.

We employ a cylindrical coordinate system (r, z, θ) with the origin at the reservoir center.
The assumption of axisymmetry means the problem shows no variation along the θ−coordinate
enabling solutions in the one-sided (r, z)−plane. Figure 1 illustrates the geometry which defines
the computational region surrounding a reservoir. The magma cavity has horizontal axis a > 0
and vertical axis b > 0, with center at the origin, and Earth’s free surface at z = D + b (z
positive upwards). Maximum depth of the computational domain is denoted by Lz and the
maximum lateral distance from the center of radial symmetry is denoted by Lr.

We construct the region outside of the cavity by intersecting a closed, rectangular region
D = {(r, z) ∈ R2 | 0 < r < Lr, −Lz < z < D + b} and a punctured domain B = {(r, z) ∈
R2 | r2

a2
+ z2

b2
> 1}. The region Ω outside of the cavity, defined by Ω = D ∩ B forms our

two-dimensional computational domain. The physical three-dimensional problem is posed on
the revolution of Ω, the three-dimensional domain we denote by Ω̆.

2.2. Governing Equations. We assume sufficiently slow deformation so that quasi-static
viscoelasticity is a valid description of the momentum balance. We assume the medium deforms
according to the Maxwell constitutive law [51]. This material model is chosen for its simplicity
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Figure 1. The region Ω outside a subsurface, spheroidal magma reservoir cen-
tered at the origin is discretized with a high-order FEM. The reservoir has a
horizontal axis a > 0 and vertical axis b > 0. The distance from the top of
the reservoir to the surface is D > b. The region is bounded by a maximal
depth Lz and maximal distance from the radial center Lr. Though an example
triangulation of the domain is shown, actual simulations are performed on a
finer grid of points.

and flexibility. A variety of linear and nonlinear viscoelastic models have been proposed for
crustal rocks at high temperature; the Maxwell model is a useful and easily generalizable
reference case for understanding the phenomenology of viscoelastic deformation [42, 30].

Let u, ε,γ,σ be, respectively, the displacement vector, the total strain tensor, the viscous
strain tensor, and the stress tensor. The time derivative of γ is denoted by γ̇. The relevant
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governing equations are:

divσ = f in Ω̆,(1a)

γ̇ = Aσ in Ω̆,(1b)

σ = E(ε(u)− γ) in Ω̆,(1c)

where ε(u) = (∇u + ∇uT )/2, E is the fourth-order, isotropic elastic stiffness tensor whose
(i, j, k, l)-component in Cartesian coordinates is given by

(2) Eijkl = λδijδkl + µ(δikδjl + δilδjk).

Here, µ denotes the shear modulus, λ denotes Lamé’s first parameter, and δ denotes the
components of the identity tensor. The fourth-order tensor A relates viscous strain to stress,
and is derived from the Maxwell constitutive law [51] to produce the form

(3) Aσ =
1

2η

(︃
σij −

1

3
σkkδij

)︃
,

where η denotes the viscosity and repeated indices indicate summation over that index.
Equation (1a) is the static equilibrium equation where f represents body forces. Equation

(1b) is the aging law for a Maxwell material and Equation (1c) is Hooke’s Law. When supple-
mented by initial and boundary conditions, the system (1a) can be solved in any coordinate
system.

We use the cylindrical coordinate system (r, z, θ), writing the displacement vector field as
u = urer+uzez+uθeθ where er, eθ, and ez denote the unit vectors of the cylindrical coordinate
system. The source f can also be similarly expressed. We assume that uθ and fθ are zero.
Furthermore, by the assumption of axial symmetry, ur and uz are independent of θ. Hence,
employing the cylindrical components of the strain tensor, displacements in the Earth are
related to strains by

(4) ε(u) =
ur
r
eθ ⊗ eθ +

∑︂
i,j∈{r,z}

1

2
(∂iuj + ∂jui)ei ⊗ ej .

The stress tensor can be expressed, omitting its zero components, as

(5) σ = σθθeθ ⊗ eθ +
∑︂

i,j∈{r,z}

σijei ⊗ ej .

The equilibrium equation (1a) then takes the form

(6)

(︃
∂rσrr + ∂zσrz +

1

r
(σrr − σθθ)

)︃
er +

(︃
∂rσrz + ∂zσzz +

1

r
σrz

)︃
ez = f .

Using (4) and (1c) to obtain expressions for the cylindrical components of the stress tensor,
the equilibrium equation (6) can be solved for the components of the displacement in the
two-dimensional meridian (rz) plane.

To reduce the problem to the meridian half-plane where r > 0, we need to impose the
following boundary conditions on the axial boundary Γ0 = {(r, z) ∈ ∂Ω : r = 0}, namely

ur = 0, on Γ0(7a)

σrz = 0, on Γ0.(7b)

The first follows from a “no-opening” condition at r = 0. The second comes from requiring
continuity of stresses in the ez direction at r = 0. Other boundary conditions are imposed by
partitioning the remaining boundary ∂Ω \Γ0. We let Γdisp ⊆ ∂Ω and Γtrac = ∂Ω \Γdisp denote
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a general partitioning of ∂Ω into subdomains where either displacement or traction boundary
conditions are imposed, respectively. Explicitly, these conditions are

u = gdisp(t) on Γdisp,(7c)

σ · n = gtrac(t) on Γtrac,(7d)

where n is the outward unit normal to the domain Ω, and gdisp, gtrac(t) are given, time-varying
boundary data. This general model enables the study of reservoir pressure, lateral loads and
topography, among other studies in axisymmetric geometries.

In addition to boundary conditions, we must also supplement the aging law, Equation (1b),
with an initial condition on viscous strain, namely

(8) γ(r, z, t = 0) = γ
0
(r, z), (r, z) ∈ Ω.

3. Computational Framework

We solve initial-boundary-value problem (Equations (1a),(4)-(8)) numerically by pairing
a finite difference discretization in time with a high-order finite element method (FEM) in
space. As described in this section, at each time step the spatial problem is governed by static
equilibrium, with viscous effects manifested as a time-dependent source term. Simulations are
done using Python code developed on top of the free and open source multi-physics library
NGSolve [60] and the accompanying mesh generator [59]. The Python code is available in a
public repository [23]. We use a two-dimensional mesh of triangles. To capture the magma
chamber boundary accurately, we use nonlinear mappings for those elements with edges on the
curved boundary to improve geometrical conformity [19]. The following subsections outline the
static problem, the temporal discretization, and the details of the specific problem considered
in this work.

3.1. Solving the Static Equilibrium Equation. We solve the equilibrium equations (1a)
subject to boundary conditions (7) using a FEM, which requires the weak form of the problem.
To construct the weak form, we perform the following steps: (i) multiply equation (6) by r and
take the dot product of both sides with a test function v = vrer + vzez, (ii) integrate by parts
on Ω, (iii) replace σij by functions of ui using (4) and (1c), and (iv) incorporate the boundary
conditions of (7), letting v take on homogeneous displacement boundary conditions on Γdisp.
The result is the equation

(9)

∫︂
Ω
E(ε(u)− γ) : ε(v) r drdz −

∫︂
Γtrac

gtrac · v r ds = −
∫︂
Ω
f · v r drdz.

Here the colon denotes the Frobenius inner product. To simplify notation, we let
(︁
·, ·
)︁
r
and

⟨·, ·⟩r respectively denote the integrals over Ω and Γtrac of r multiplied by the appropriate (dot
or Frobenius) inner product of the arguments. Then the above equation may be rewritten as

(10) (Eε(u), ε(v))r = −(f ,v)r + ⟨gtrac,v⟩r + (Eγ,v)r.

The Lagrange FEM is derived by imposing the above equation on a space of piecewise polyno-
mials. Given a triangulation of Ω, denoted by Ωh, the Lagrange finite element space of order
p, denoted by Vh consists of all functions which are continuous on Ω whose restriction to each
element K of Ωh is a polynomial of degree at most p in r and z. The method is high-order,
meaning that polynomials of high degree within each mesh element approximate the solution.
When degree p is used within an element of diameter h, the solution can be approximated
on that element at rate O(hp+1). As h decreases, the solution becomes smoother, thus us-
ing higher p means that the numerical solution is more rapidly convergent than a low-order
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method. In the FEM, the data f and gtrac are integrated while the data gdisp is interpolated.
Assuming the latter interpolation is done, let

V
gdisp

h = {v = vrer + vzez : vr ∈ Vh, vz ∈ Vh, and v|Γdisp
= gdisp}.

Also let

V 0
h = {v = vrer + vzez : vr ∈ Vh, vz ∈ Vh, and v|Γdisp

= 0}.

Then, the FEM computes uh ∈ V
gdisp

h satisfying

(11) (Eε(uh), ε(v))r = −(f ,v)r + ⟨gtrac,v⟩r + (Eγ,v)r, for all v ∈ V 0
h,

provided f ,gdisp,gtrac, and γ are given. Equation (11) leads to a linear system of equations
once a finite element basis of shape functions (which are basis functions determining one degree
of freedom in the finite element system) is used.

3.2. Temporal Discretization. Our time-stepping method is inspired by that of [1] where
viscous strains appear as a time-dependent source term on the equilibrium equation: As can
be seen from Equation (11), once γ is known at any given time, it appears as a known term
and a displacement approximation can be computed by solving (11). However, to compute γ,
we need to apply a time integrator to the aging law, Equation (1b).

To this end, for computational purposes only it is convenient to let C = Eγ, since the use
of C allows us to skip the assembly and inversion of a mass matrix made of inhomogeneous
material coefficients. Since E is time independent, simplifying EAσ = (µ/η)dev(σ), Equation
(1b) implies

(12) Ċ =
µ

η
devσ.

Here dev(σ) denotes deviatoric tensor σ− tr(σ). Time integration of Equation (12) is carried
out using the first-order accurate forward Euler method (chosen for its simplicity as we lay the
computational groundwork; higher order methods will be incorporated in future developments).
At each time step, we solve the weak form of equilibrium equation (Equation (11)) and use
the computed displacement to obtain C at the next time step. To illustrate time-stepping
explicitly, assume all fields are known at time tn. The procedure to integrate to tn+1 over step
size ∆t = tn+1 − tn is as follows:

(1) Use unh to update C via forward Euler

(13) Cn+1 = Cn +∆t
µ

η
dev (Eε(unh)−Cn) .

(2) Compute data fn+1, gn+1
disp , g

n+1
trac at time tn+1 and use them, together with the output

of the previous step, to solve the static equation: compute un+1
h ∈ V

gn+1
disp

h satisfying

(14) (Eε(un+1
n ), ε(v))r = −(fn+1,v)r + ⟨gn+1

trac ,v⟩r + (Cn+1,v)r

for all v ∈ V 0
h.

Verification of both spatial and temporal convergence of this computational method follows in
section 3.4.
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3.3. Model Specifics and Non-Dimensionalization. The majority of analysis in this work
will examine how a spatial distribution of viscoelastic properties impacts deformation around
magma reservoirs subject to cyclic loading. We proceed by idealizing the boundary pressure
as a sinusoid, which approximates a canonical problem in viscoelasticity [20, ], and provides
a framework for studying arbitrary time dependent signals through superposition. We thus
assume a specific boundary partition where Γtrac encompasses the reservoir wall, Earth’s free
surface, and the computational boundary at depth (z = −Lz). Γdisp is the lateral boundary
r = Lr. We then set specific boundary data

(15) gdisp(t) = 0,

so that displacements vanish at r = Lr. At Earth’s free surface and at depth we take

(16) gtrac(t) = 0.

At the reservoir wall we set

−n · gtrac(t) = P (t),(17a)

m · gtrac(t) = 0,(17b)

where

(18) P (t) = P0 sin(ωt).

Equation 17a sets the normal component of the traction vector (the pressure) equal to a
sinusoidal time-varying condition with amplitude P0 and frequency ω. In what follows we will
often refer to forcing period

(19) τ = 2π/ω

rather than frequency. Equation 17b imposes that the shear component of traction be equal
to 0, where vector m = n× ez is tangent to the reservoir wall.

Non-dimensionalization of the governing equations reveals important physical parameters
and re-scales the problem to help reduce round-off errors. We begin by handling the scaling of
the spatial domain before addressing governing equations. Tildes in what follows indicate non-
dimensional variables. Let r = ar̃, z = az̃, D̃ = {(r̃, z̃) ∈ R2 | 0 ≤ r̃ ≤ Lr

a ,−
Lz
a ≤ z̃ ≤ D+b

a }
and B̃ = {(r̃, z̃) ∈ R2 | r̃2 + a2

b2
z̃ ≥ 1}. Then our resulting scaled domain is given by

(20) Ω̃ = D̃ ∩ B̃,

with scaled boundaries Γ̃disp still representing the (scaled) lateral boundary and Γ̃trac the
(scaled) reservoir wall, Earth’s free surface, and computational boundary at depth. We also
scale displacements by a, namely aũ = u, which effectively means that total strain ϵ is not
scaled. We scale stress and time by the amplitude and frequency of the sinusoidal pressure, E
by characteristic shear modulus µ and body force by its magnitude F0 (for example magnitude
of gravitational force), giving

σ = P0σ̃,(21)

E = µ˜︁E,(22)

f = F0
˜︁f ,(23)

tω = t̃,(24)

which implies a scaling of C = P0
˜︁C. The scaled form of the equilibrium equation (1a) is thus

(25) div σ̃ =
aF0

P0

˜︁f ,
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and Hooke’s law Equation (1c) becomes

(26) σ̃ =
µ

P0

˜︁E(ε− γ).

The two dimensionless parameters in Equations 25-26 physically represent the ratio of body
force to reservoir boundary tractions, and a scaled reservoir pressure, respectively.

The modified aging law (Equation (12)) becomes

(27) ∂t̃
˜︁C =

1

De
dev σ̃,

where

(28) De =
ηω

µ
=

2πη

τµ

is the non-dimensional Deborah number, a ratio of elastic pressurization timescale τ/2π to
Maxwell viscous relaxation timescale η/µ, where viscosity η, shear modulus µ and pressur-
ization time τ are understood to be characteristic scales if spatially or time variable. De
commonly appears as a control parameter in models for magma chamber mechanics [36, 34, ],
cycles of eruptions [13, 5, ], and the spatial structure of transcrustal magma systems [39, 35,
]. It will play an important role in our results.

Computationally, all problems considered in this work are solved in this non-dimensional
form. The specific non-dimensional boundary conditions we thus take are

ũ = 0 on Γ̃disp,(29a)

σ̃n = g̃trac(t̃) on Γ̃trac,(29b)

and at the reservoir wall,

−n · g̃disp(t̃) = P̃ (t̃)(30)

m · g̃trac(t̃) = 0.(31)

where P̃ (t̃) = sin(t̃). For all our applications we assume negligible body forces, so aF0/P0 ≪ 1.

3.4. Stability and Verification. Owing to the use of an explicit time-stepping scheme, it
is necessary to establish conditions for which the scheme outlined in the previous section is
stable. As an initial calculation, note that

(32) EAσ =
µ

η
dev σ.

The deviatoric operator in Equation (32) can be expressed as a matrix-vector multiplication,
namely

(33) EAσ =
µ

η
Dσ,

if second-order tensors are stacked into vectors (across rows and removing symmetries)

(34) σ = [σrr, σrz, σzz, σθθ]
T ,
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and matrix D is given by

(35) D =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎣

2

3
−1

3
−1

3
0

−1

3

2

3
−1

3
0

−1

3
−1

3

2

3
0

0 0 0 1

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎦
.

The non-dimensionalized explicit forward-Euler discretization of the aging law (Equation (27))
can therefore be expressed as

(36) ˜︁Cn+1
= (I −∆t̃De−1D)˜︁Cn

+∆t̃De−1D ˜︁Eεn,

the stability of which is determined by the eigenvalues of the growth-factor matrix I−∆tDe−1D
and whether we can bound its spectral radius using an appropriate choice for ∆t. Eigenvalues
for the growth-factor matrix are

λ1 = 1,(37a)

λ2 = 1− 2

3
∆t̃De−1,(37b)

λ3 = 1−∆t̃De−1,(37c)

where λ3 appears as a repeated eigenvalue. To bound their magnitudes by at most 1 demands
that ∆t̃ be smaller than 2De. In addition, the time step must be sufficiently small to resolve any
time-varying boundary data. In this work this amounts to resolving the sinusoidal boundary
data at the reservoir wall. Since the corresponding (angular) Nyquist frequency for sin(t̃) is 1,
the largest time step that resolves this frequency is δt̃ = π, and should be (in practice) a small
fraction of this. A sufficient, stable time step is then chosen by

(38) ∆t̃ ≤ min{2De, δt̃}.
In practice we use more restrictive criteria, namely,

(39) ∆t̃ ≤ min

{︃
De

4
,
δt̃

2

}︃
.

Except for a few limiting cases, the temperature-dependent material parameters will cause De
4

to be the agent that restricts time-step.
Our numerical method is verified for correctness via rigorous convergence tests in both space

and time via the method of manufactured solutions (MMS) [57], with details provided in A.
Code verification could also be done via comparisons against simple analytic models [33], or
benefit from community benchmark efforts, which we further discuss in A.

3.5. Temperature-Dependent Material Parameters. We assume that viscosity of crustal
rocks is described by a temperature-dependent Arrhenius relation, an assumption common to
many thermomechanical models of magmatic systems [14]. This neglects grain-size and stress-
dependent effects [7, ], but parameterizes our assumption that temperature is the dominant
factor controlling crustal rheology during crustal magma transport. In general, temperature
evolves in time in response to magmatism [37], but we assume a steady state geotherm here
as our goal is simply to explore the role of realistic spatial structure of material parameters.

Accordingly, we solve the stationary heat equation

(40) ∇2T = 0 in Ω̆,



SIMULATION OF VISCOELASTIC MAGMATIC SYSTEMS 11

where T (r, z) is the temperature field, which we assume to be axisymmetric. At the top,
bottom and lateral parts of the boundary, we enforce a steady-state geothermal profile given
by

(41) T (z) = Ts − α
(︁
z − (D + b)

)︁
,

where Ts is the surface temperature constant and α is a parameter specifying the temperature
gradient. At the chamber wall we set T = Tc, a constant temperature. We use a finite element
space of order p to solve the heat equation. Here, p is the same order as is used in the finite
element solution of the equilibrium equation. The formulation uses radial weighting to reduce
the problem to the two-dimensional domain Ω and as usual–see e.g., [22]—set zero temperature
flux ∇T = 0 at Γ0, the r = 0 boundary, to maintain our consideration of a one-sided problem.
The solution of this BVP for the heat equation informs the temperature field throughout the
domain, from which the viscosity is deduced according to the Arrhenius formula

(42) η = AD exp

(︃
Ea
RT

)︃
where AD is the Dorn parameter, Ea is the activation energy, and R is the Boltzmann constant.
For numerical computation, we prefer to use the equivalent formula

(43) η = η0 exp

(︃
Ea
R

[︃
1

T
− 1

Ts

]︃)︃
,

where η0 = AD exp
(︂
Ea
RTs

)︂
, to avoid numerical issues associated with very large viscosities

predicted by low temperatures in the near surface. In Equation 43 we use absolute temperature,
so both T and Ts should be converted from degrees Celsius to Kelvin.

Because numerically stable time steps depend on Deborah number (i.e. Equation 38) in
our approach, the exponential dependence of viscosity leads to prohibitively small time steps
at high temperatures. This limits the degree to which we can exactly explore high magma
temperatures without artificially thresholding model temperature.

Elastic parameters are also considered to be temperature dependent. [3] provide smooth
and continuous forms for temperature-dependent Young’s modulus E(T ) and Poisson’s ratio
ν(T ) as

E(T ) = c1

[︃
1− erf

(︃
T − T̄

s

)︃]︃
+ c2T + c3,(44)

ν(T ) =

[︃
1− E

Emax

]︃
· [νmax − νmin] + νmin(45)

where νmin = 0.25, νmax = 0.49 define the range of possible Poisson’s ratios and Emax is the max
value Young’s modulus achieves for a given temperature profile. T̄ is a temperature threshold
for which Young’s modulus decreases by an order of magnitude and c1, c2, c3, s are empirical
parameters. To convert E and ν to λ, µ (the proper elastic moduli for our framework), we
use λ = Eν

(1+ν)(1−2ν) , µ = E
2(1+ν) . Figure 3 demonstrates the spatial pattern exhibited by the

material parameters for a temperature profile characterized by 800◦C reservoir temperature,
0◦C surface temperature and a geothermal gradient of 20◦C/km.

4. Analysis of time dependent viscoelastic deformation

We now develop tools to analyze the time evolution of viscoelastic deformation predicted
from our numerical calculations. Towards our goal of examining how a realistic distribution of
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Figure 2. Number of timesteps required to simulate pressure forcing of various
periods. Number of timesteps decreases with increasing Deborah number (red
curve), until the Nyquist limit is reached (dashed curve). Number of timesteps
per period is a non-monotonic function of temperature (other colored curves)
because both elastic moduli and viscosity are temperature dependent.

viscoelastic properties impacts deformation around magma reservoirs subject to cyclic loading,
we begin with a 1D analysis of the Maxwell model to illustrate inherent properties of the
system which may be generalized in the 2D problem. This analysis is easily generalizable to
other viscoelastic models, and leads to concrete implications for inferring viscoelastic behavior
in magmatic systems from ground deformation.

4.1. Insights from the 1D Maxwell Model. Given the spatial domain x ∈ [0, L], the 1D
strain-displacement relation is given by

(46) ε = ux

and the 1D governing equations (equilibrium, viscous strain evolution and Hooke’s law, respec-
tively) are

∂σ

∂x
= 0,(47a)

γ̇ =
1

η
σ,(47b)

σ = µ(ε− γ),(47c)
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Figure 3. Material parameters used in our reference variable coefficients pa-
rameter study, with finite element mesh overlaid. A. Temperature, obtained
by solving Equation 40 with Tc = 800◦C, surface temperature Ts = 0◦C, and
geothermal gradient α = 20◦C/km. B. Viscosity from Equation 43. C. Young’s
Modulus from Equation 44. D. Poisson’s ratio from Equation 45.
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where σ, ε, γ, and u are, respectively, the 1D stress, total strain, viscous strain, and displace-
ment. Boundary conditions are chosen to reflect the conditions for the 2D problem. The origin
experiences the sinusoidal pressure condition (representing the reservoir) and displacements
vanish at the far boundary, namely

σ
(︁
x = 0, t

)︁
= sin (ωt),(48a)

u
(︁
x = L, t

)︁
= 0.(48b)

We consider t > 0; the aging law Equation 47b thus requires an initial viscous strain to be
specified, which we express in general terms

(49) γ
(︁
x, t = 0

)︁
= γ0(x),

where γ0 as a given function. The Maxwell model thus gives rise to an initial-boundary value
problem defined by Equations 46-49.

We are interested in the response between stress and strain at the reservoir boundary, with
the expectation that viscous relaxation will lead to a phase difference. To do this analysis it
is useful to work with Hooke’s law in rate form, namely,

(50) ε̇ =
1

µ
σ̇ +

1

η
σ.

Following [20], application of the Fourier transform to Equation 50 yields the constitutive law
in frequency space

(51) σ̂(ω) = µ̂(ω)ε̂(ω),

which gives the usual relationship where stress is expressed as a function of strain through a
complex shear modulus µ̂ defined by

(52) µ̂(ω) =

(︃
1

µ
− i

1

ηω

)︃−1

.

The decomposition µ̂(ω) = µ̂1(ω) + iµ̂2(ω) into storage and loss moduli allows us to express µ̂
as

(53) µ̂(ω) = |µ̂(ω)|e−iδ

where δ = − tan−1( µ̂2µ̂1
).

In our applications, however, we are interested in the strain response to an applied (sinu-
soidal) stress, thus we must consider the constitutive relation Equation 51 in the form

(54) ε̂(ω) = d̂(ω)σ̂(ω),

where d̂(ω) = 1/µ̂(ω) is the complex creep modulus given by

(55) d̂(ω) =
1

µ
− i

1

ηω
,

which can be decomposed into d̂(ω) = d̂1(ω) + id̂2(ω) as before, and gives rise to the similar
form

(56) d̂(ω) = |d̂(ω)|e−iβ,
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for β = − tan−1
(︂
d̂2(ω)

d̂1(ω)

)︂
. Applying the inverse Fourier transform to Equation 54 and using 48a

yields

ε(t) = [d ∗ σ](t),
= d̂1(ω) sinωt+ d̂2(ω) cosωt,

= sin(ωt− β),(57)

which gives strain as an explicit function of stress, delayed by phase lag β. Since d̂ is chosen
as the multiplicative inverse of µ̂ note that

|d̂(ω)| =
1

|µ̂(ω)|
,(58a)

β = −δ,(58b)

therefore the phase lag that strain experiences in response to an applied stress will be equal and
opposite when reversing roles and considering stress in response to an applied strain. Note that
we have used the sign convention for the phase lag such that positive values of β correspond
to strain lagging behind stress.

To summarize, the strain response to a sinusoidal stress is also sinusoidal with a phase lag
β, which can be simplified in terms of the Deborah number De by substituting in the real and
imaginary parts of d̂(ω), resulting in

(59) β = tan−1

(︃
1

De

)︃
.

This analytic result provides insight into the physics of the viscoelastic model, as two limiting
cases of the Deborah number (namely De → ∞ and De → 0) yield phase lags of 0 and π/2
(respectively) corresponding to the elastic and viscous limits (respectively). In addition, these
analytic results can be generalized to higher dimensions which we do in the next section, pro-
viding useful code verification metrics as well as providing insight into the frequency response
of more physically realistic modeling scenarios.

4.2. Transfer Function and Analytic Signals. The phase lag analysis for the 1D problem
of the previous section can be generalized using the theory of Linear Time-Invariant (LTI)
systems such as the viscoelastic problem we consider here. For general LTI systems, one can
characterize some output signal y(t) as the linear transformation of a system input x(t), where
we consider one-sided signals (i.e. they are 0 for t < 0) [58]. The response y can be determined
as a convolution of the input x with the system impulse response h, namely

y(t) = (x ∗ h)(t)

=

∫︂ t

0
x(t′)h(t− t′) dt′.(60)

The transfer function connecting the output signal y(t) given the input signal x(t) we denote
H{y(t) |x(t)}(iω), however we drop the argument within curly braces or functional dependence
within parenthesis when these is implied via context. The transfer function is defined as

H(iω) = L{h}(iω)

=
L{y}
L{x}

(iω),(61)

where L denotes the Laplace transform (a function of the complex variable s) and we have
evaluated at s = iω. The transfer function thus provides the amplitude of the system output
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as a function of frequency of the input signal. As an example, Equation 54 illustrates how
d̂ = H{ε(t) |σ(t)}, i.e the transfer function when stress is the input signal and strain is the
output.

If we consider specific input and output signals x(t) = Ain sin(ωt) and y(t) = Aout sin(ωt−ϕ),
then we can use the Laplace transform to calculate the transfer function, namely,

H(iω) =
Aout

Ain

(−s sin(ϕ) + ω cos(ϕ))/(s2 + ω2)

ω/(s2 + ω2)

⃓⃓⃓⃓
⃓
s=iω

=
Aout

Ain
e−iϕ,(62)

i.e. a constant, independent of ω. Performing an inverse Laplace transform indicates that the
corresponding system impulse response is a delta function, namely, h(t) = (Aout/Ain)δ(t−ϕ/ω).

Equation 62 illustrates the important point that evaluation at s = iω must take place after
the ratio is computed, so that the poles in the Laplace transforms of the sinusoids x and y are
removed. In numerical studies making use of the discrete Fourier transform, this evaluation
cannot be done after the ratio is computed, which can lead to division by zero. An alternative
means for defining the transfer function therefore is via the concept of analytic signals, which
have straight-forward numerical approximations and avoid potential division by zero.

Analytic signals are defined in the following manner. Consider the real valued signal z(t)
and denote its Fourier transform by ẑ(ξ). Define the function

(63) ẑa(ξ) = 2H(ξ) ẑ(ξ)

(where H is the Heaviside step function), which contains only the non-negative frequency
components of ẑ(ξ). The analytic signal corresponding to z, denoted za(t), is a complex-
valued function obtained by transforming ẑa back to the time domain using the inverse Fourier
transform, yielding

(64) za(t) = z(t) + iH{z}(t),
where H is the Hilbert transform. Properties of Hilbert transforms mean that for input signal
x(t) and response signal y(t) of an LTI system, we have that

(65) ya(t) = (h ∗ xa)(t).

Considering the analytic signals xa(t) = −iAine
iωt and ya(t) = −iAoute

i(ωt−ϕ) associated with
the input and output signals under consideration, plugging these into (65) yields

(66) Aoute
i(ωt−ϕ) = Aine

iωtH(iω).

Equation (66) illustrates the fact that for an input signals of form eiωt (called a characteristic
function), the response signal is given by eiωtH(iω), indicating that the output signal is simply
a scaling of the input by H(iω).

We can solve (66) for the transfer function, namely,

(67) H(iω) =
Aout

Ain
e−iϕ,

previously obtained using Laplace transforms. The amplitude |H| =
⃓⃓
Aout
Ain

⃓⃓
is often referred to

as the gain because it describes how the frequency content in the output signal is amplified in
response to the input. And finally, ϕ = −arg(H) is the phase lag, which agrees with that of
the 1D Maxwell model considered in the previous section.

As a corollary, if the transfer function is known, we may directly relate the input and
output signals. For example, let x(t) = A sin (ωt− ψ), with phase ψ, be an input signal
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and let H(iω) = |H(iω)|e−iϕ be the transfer function. The analytic input signal is then

xa(t) = −iAei(ωt−ψ) and (65) implies that the the analytic output signal is ya(t) = H(iω)xa(t).
The desired output signal y(t) can be recovered by taking the real part of its analytic signal,
namely

(68) y(t) = |H(iω)|A sin (ωt− ψ − ϕ).

In other words, a sinusoidal input function implies a sinusoidal output function, modulated by
a phase lag ϕ and amplitude gain |H|.

If {Ak}nk=1, {ωk}nk=1, {ψk}nk=1 are sequences of amplitudes, frequencies, and phases, respec-
tively, then a composite input signal can be expressed

(69) x(t) =
n∑︂
k=1

Ak sin (ωkt− ψk).

Note that each component is associated with a period τk = 2π/ωk. By superposition, if
{H(iωk)}nk=1 are (known) associated transfer functions with phase lags {ϕk}nk=1, then the
corresponding output signal is given by

(70) y(t) =
n∑︂
k=1

|H(iωk)|Ak sin (ωkt− ψk − ϕk).

In discussion section 6, we illustrate this result for a specific composite input function defin-
ing magma reservoir pressure through time and numerically calculated transfer function for
resulting surface displacements.

In the sections that follow, we explore numerically how the transfer function links reservoir
pressure to surface displacements and strains. Following the notation for the transfer function,
we let ϕ{y(t) |x(t)} denote the phase lag between the output signal y(t) given the input signal
x(t), but drop the argument in curly braces when it is implied via context.

4.3. Numerical Calculations of the Transfer Function. The analytic signal correspond-
ing to a real, discrete time-series is implemented in the Python SciPy library (via the python
function scipy.signal.hilbert(). The transfer function connecting an input signal x(t) to
output signal y(t) is computed via the ratio of corresponding analytic signals, from which we
can compute phase and amplitude. All scripts are available in the code repository. In prac-
tice, there exists an initial spin-up period (∼4 cycles) before solutions settle into a sinusoidal
response and it is necessary to compute the transfer function once out of this phase.

In addition to the spin-up phase, the output signal can be shifted to oscillate around a
non-zero value, which can complicate the calculation of the phase lag using our numerical
techniques. The 1D analysis of the previous section illustrates why this occurs. Specifying the
initial condition Equation 49 impacts the evolution of the displacement and stress fields in the
following way: suppose γ0(x) = 0 for each x ∈ [0, L]. We can simplify the boundary condition
Equation 48 by taking P0 = ω = 1. The sinusoidal pressure imposed at the left boundary
along with Equation 47a imply a uniform stress field

(71) σ(t, x) = sin t.

Integrating Equation 47b yields the viscous strain

(72) γ(t) = −1

η
cos t+

1

η
,
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and solving Equation 47c for total strain gives the solution

(73) ε(t) =
1

µ
sin t− 1

η
cos t+

1

η
,

which illustrates how the strain response is sinusoidal with a shift of 1/η. Although strain
starts initially at 0, it fluctuates around the non-zero value 1/η, corresponding to a volume
change (length change in 1D). To avoid this situation, one could specify a different initial
viscous strain, i.e. γ0(x) = −1/η which would yield a strain response fluctuating around zero.
In the 2D problems considered in this work, it is difficult to know a priori the initial viscous
strain that would preclude a volume change. Thus to compare the phase-lag response, fields
that do not fluctuate around zero must first be shifted to do so. The spin-up phase contributes
an exponentially decaying component in the output signal, therefore we calculate approximate
phase and amplitude after 4 pressurization cycles.

The sinusoidal pressure forcing we impose at the reservoir wall given by Equation 17a is
considered the input signal P (t) for all of our studies. To verify correctness of our numerical
methods, we first consider as the output signal the normal component of strain at a single
spatial point on the wall, namely εrr(r = a, z = 0, t). Because at the reservoir wall the stress-
strain relation effectively reduces to a 1D problem at a point, our numeric calculations are
verified by comparing our numerical calculations of transfer function amplitude and phase lag
against the theoretical stress-strain relationship for a Maxwell material for different forcing
periods τ (see Equation 19), as evidenced in Figure 4. In addition we compute the phase lag
observed in the vertical component of displacement at Earth’s surface uz(r = 0, z = D + b, t)
as well as the transfer function amplitude (gain).

5. Computational Results

Viscoelastic behavior of magma reservoirs is often characterized in terms of deformation of
a flat free surface induced by pressurization of a spheroidal reservoir [62, 29, 66]. Even in this
relatively simple case, the problem is complex because a large number of control parameters
matter and trade off in non-unique ways to generate surface deformation patterns. An addi-
tional challenge is that the problem is generally not amenable to analytic analysis such as has
been conducted in simplified limits [15, 38, 6].

Having established our computational framework, we will now focus on a specific and rela-
tively unexplored part of this problem here, the frequency dependence of surface deformation.
All fixed parameters used in this study are listed in Table 1, unless otherwise noted. In the
constant coefficient case studied in Figure 4 (a spherical reservoir in a uniform viscoelastic
halfspace), sinusoidal forcing at the reservoir wall results in surface deformation patterns that
are simply parameterized in terms of the Deborah number (Equation 59). De ≈ 10 signifies the
onset of viscous response in host rocks, while for De < 1 the host rock response is dominantly
viscous in the sense that phase lag ϕ between surface deformation is more than halfway to the
viscous limit.

We construct constant coefficient models by choosing constant values of elastic parameters µ
and λ through spatially averaging the non-constant coefficient calculations (Figure 4, bottom
axis). For viscosity we suppose that a forcing period of 1 year yields a surface phase lag of
0.3 rad. From this phase lag we compute the associated Deborah number and solve Equation
28 for viscosity. The resulting constant material parameters are: µ = 16.0 GPa, λ = 16.7
GPa, η = 2.20× 1017Pa s. We can then associate a Deborah number De with a forcing period
τ via Equation 28 and examine the transition to a viscous response as a function of forcing
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Table 1. Parameters used in Applications (un-
less otherwise noted).

Symbol Explanation Value
a Ellipse semi-major axis 1500 m

b Ellipse semi-minor axis 1500 m

D Reservoir depth beneath Earth’s surface 3500 m

Lr Domain length in radial direction 20000 m

Lz Domain length in vertical direction 20000 m

P0 Reservoir pressure amplitude 10 MPa

AD Dorn parameter 109 Pa s

A Material-dependent constant for viscosity 4.25× 107 Pa s

Ea Activation energy 141 kJ/(mol)

R Boltzmann’s molar gas constant 8.314 J/(mol K)

Tc Reservoir temperature 800◦C

Ts Surface temperature 0◦C

α Geothermal gradient 20◦C/km

νmin Min Poisson’s ratio 0.25

νmax Max Poisson’s ratio 0.49

Emax Max Young’s modulus 4.0× 1010 Pa

c1 Parameter in model for E 1.8× 1010 Pa

c2 Parameter in model for E −3.5× 106 Pa/◦C

c3 Parameter in model for E 4.3× 109 Pa

s Parameter in model for E 120 ◦C

T̄ Temperature threshold 924◦C

period. In this example τ = 1 yr corresponds to maximum surface displacement that lags
behind maximum chamber pressure by ∼16 days at similar amplitude to the elastic limit,
while τ = 10 yr corresponds to a phase lag of ∼1.9 years with ∼3× amplitude to the elastic
limit.

However, uniform viscosity is a poor approximation to crustal rheology in magmatic regions.
To understand what changes with more realistic temperature-dependent viscosity and elastic
constants, we also study how pressure forcing period affects ground deformation in the variable
coefficient problem outlined in Section 3.3.

Figure 5 left axes show time series of maximum vertical surface displacement and radial
strain at the reservoir wall (plotted versus dimensionless time) for several representative forcing
periods τ associated with forcing by cyclic pressurization of the chamber (right axes). All
quantities are normalized to facilitate comparison of phase lag as a function of forcing period,
with amplitudes given in the legend. We see that phase lag differs in magnitude between
surface and chamber wall.

Figure 6 plots the spatial variation in vertical and horizontal components of surface displace-
ments uz, ur as well as the scalar von Mises stress σv =

√
3J2 with J2 the second deviatoric

stress invariant for four positions in the pressure cycle (ω = 0, π/2, π, 3π/2 radians) and three
forcing periods. Black and white contours represent level curves of the spatially dependent
Deborah number.
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Figure 4. Phase lag ϕ of the transfer function between reservoir pressure
and radial strain at the reservoir wall (ϕ{ϵrr(r = a, z = 0, t|P (t)}, red
dashed curve) and vertical displacement at the surface overlying the reservoir
(ϕ{uz(r = 0, z = D + b, t)|P (t)}, solid red curve). Crosses come from the 1D
analytic prediction (Equation 59). Right axis and blue curve plot the ampli-
tude of the transfer function |H{uz(r = 0, z = D+b, t|P (t)}| normalized by the
transfer function amplitude in a purely elastic limit (which uses the same aver-
aged elastic coefficients but with η = 1× 134 making viscous effects negligible).
Upper x axis is the Deborah number, lower x-axis dimensionalizes into period
of sinusoidal pressure forcing using η = 2.20 × 1017 Pas, λ = 16.7 GPa and
µ = 16.0 GPa. Vertical dashed lines correspond to threshold Deborah numbers
associated with onset of viscous response in host rocks.

Finally, Figure 7 shows the transfer function phase ϕ{uz(r = 0, z = D + b, t) |P (t)} and
normalized amplitude |H{uz(r = 0, z = D + b, t) |P (t)}|/|Helastic{uz(r = 0, z = D + b) |P0}|
for a sweep through pressure forcing period τ . The elastic normalization Helastic is computed
for each temperature separately, due to temperature dependence of elastic parameters E and ν
(non-constant coefficient corrections to the known spherical cavity in half space elastic solution
[71]). Transfer function results are computed for three choices of reservoir temperature Tc =
800, 900, 1000◦C in Figure 7. The simulations are carried out at 37 logarithmically-spaced
forcing periods between 0.01yr and 100yr. For each forcing period and reservoir temperature,
we compute the transfer function phase and amplitude over 10 complete pressurization cycles.
Because of computational burden associated with the highest reservoir temperature of 1000◦C
(Figure 2) that lead to very small Deborah numbers, we set a maximal effective temperature
of 900◦C for computing material parameters in this case. We also perform an additional
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Figure 5. Temporal evolution (time non-dimensionalized by τ) associated with
non-constant coefficient simulations at select forcing periods. Colored curves
correspond to different forcing periods and normalization amplitudes u0, ϵ0,
dashed curves show pressure normalized by P0. A. Normalized maximum ver-
tical surface displacement. In dimensional time, peak vertical surface displace-
ment for τ = 0.01, 0.1, 1, 10 years occurs 10.0 min, 12.7 hr, 17.6 days, and 6.3
months after peak reservoir pressure, respectively, associated with phase lags
ϕ{uz(r = 0, z = D + b, t|P (t)} = 0.012, 0.091, 0.303 and 0.331 radians. B.
Normalized radial strain at the cavity wall, illustrating that phase offset of de-
formation from pressure forcing varies spatially through the domain.

mesh refinement in space to mitigate poor resolution at longer forcing periods for the 1000◦C
reservoir.

In contrast to the constant coefficient case, Figures 5-7 demonstrate that temperature de-
pendent material parameters strongly impact the frequency dependence of system viscoelastic
response. Most pronounced is a saturation of phase lag at ∼ 0.3 radians and muted ampli-
fication of displacements relative to the constant coefficient case. As evidenced by the large
σv (which measures deviatoric shear stress magnitude), viscous effects are confined near the
reservoir wall. This results in more pronounced mechanical lag at the reservoir wall than at the
surface (Figure 5) and concentration of shear stress σv through the cycle in a narrow aureole
around the chamber (Figure 6).
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Figure 6. Spatial pattern of surface displacements uz, ur (top lines) and
subsurface distribution of von Mises stress σv (bottom colors, normalized by
P0 = 10 MPa) for dimensionless times 0, π/4, π/2, 3π/4 during a pressure cycle.
Black contour is De = 1, white contour is De = 10, illustrating that a local
Deborah number contour approximates the spatial region of elevated deviatoric
stress and viscous strain around the chamber. A. Forcing period τ = 0.1 yr,
max σv = 20.9 MPa. B. Forcing period τ = 1 yr, max σv = 42.2 MPa. C.
Forcing period τ = 10 yr, max σv = 100.7 MPa. Supplemental movies S1-S3
show time evolution of these simulations in more detail.
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Figure 7. Transfer function between reservoir pressure and maximum vertical
surface displacement H{uz(r = 0, z = D+b, t)|P (t)} as a function of sinusoidal
pressure forcing period τ . Colored curves correspond to different reservoir tem-
peratures, each case assumes surface temperature Ts = 0◦C and geothermal
gradient α = 20 C/km. A. Phase lag ϕ{uz(r = 0, z = D + b, t)|P (t)} (in radi-
ans). B. Amplitude |H{uz(r = 0, z = D + b, t)|P (t)}| normalized by the cor-
responding variable coefficient elastic case at each temperature. For the three
reservoir temperatures explored here, |Helastic{uz(r = 0, z = D + b)|P0}| =
6.509× 10−9, 6.822× 10−9, 7.163× 10−9 m/Pa for Tc = 800, 900, 1000◦C respec-
tively.

The strong spatial variability in material parameters now implies a spectrum of Maxwell
relaxation times as has been noted in other studies, [30], and hence spatially variable Deborah
number. Nonetheless, we see that a local value of De still characterizes the region experiencing
significant viscous strain for each forcing period. Figure 6 shows that De ≈ 10 effectively
bounds the region experiencing significant von Mises stress, and hence viscous strain, in excess
of chamber overpressure P0, with De = 1 once again a measure of the viscous region centroid.
For small forcing periods the viscous region is significantly reduced (De = 1 does not appear for
τ = 0.1 year forcing period). Both contours are asymmetric with depth due to the geothermal
gradient. To isolate viscous effects, the transfer amplitudes for Figure 7 are normalized using
the variable coefficient elastic limit. That is, elastic parameters are computed using a thermal
profile but viscosity η = 1×1034Pa·s. Then this variable coefficient elastic problem is simulated
and a transfer function Helastic is computed from the output.

The transfer function curves in Figure 7 have more complex structure than their constant
coefficient counterpart in Figure 4. First, the phase lag ϕ{uz(r = 0, z = D + b, t) |P (t)} is
non-monotonic, with two local maxima superimposed on a sigmoidal increase from 0 to ∼ 0.3
radians over three orders of magnitude in forcing period. The second of these is a global
maximum for the range of forcing periods we explored (100 years maximum), and appears
to reflect the finite region around the chamber in which viscous strains occur. Increasing the
reservoir temperature from 800◦C to 1000◦C shifts this global maximum as well as the sigmoidal
uptick in phase lag to shorter periods, which suggests that the local maxima are due in part to
an expanded viscous shell around the reservoir (i.e., larger region where De < 10). As will be
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discussed in the next section, we speculate that a non-monotonic phase lag at longer periods
occurs because larger regions of the domain begin to contribute to the surface displacements.
We expect that the shape of this phase lag curve as metric of viscoelastic response likely
depends on spatial rheologic structure, boundary conditions, and chamber geometry, although
a parameter exploration is out of the scope of this study.

The apparent global maximum seen in the phase lag in Figure 7 is not mirrored by the
amplitude of displacements. Relative to the elastic limit transfer function amplitude show a
continuous increase in maximum displacements at increasing τ , mirrored by the spatial pattern
of uz and ur in Figure 6. There is an inflection point that corresponds to the local minimum in
ϕ for the lower reservoir temperatures, but viscous amplification is otherwise a monotonically
increasing function of τ , with amplification factors at 100 yr forcing period ∼3.8×, ∼5× and
∼6.3× for 800◦C, 900◦C, and 1000◦C chamber temperatures. At small τ the amplification
factor is asymptotic to the variable coefficient elastic limit (dashed line) in all cases.

6. Discussion

This work makes two primary contributions. First, we develop a rigorous numerical frame-
work based on a high-order finite element method for the computation of deformation and
stress around axisymmetric magma reservoirs. Second, we study a particular problem - sinu-
soidal pressurization/depressurization of a spherical reservoir in a half-space - and demonstrate
how surface deformation patterns are frequency dependent. This section is organized into a
discussion associated with each contribution as they relate to the phenomenology of viscoelastic
deformation around volcanoes.

6.1. Computational Considerations for Time-evolving Magmatic Systems. Viscoelas-
tic deformation of volcanoes has been studied analytically and numerically by numerous au-
thors [33, 63, 70]. However, we are unaware of a systematic analysis of the numerical and
computational issues associated with this problem. As volcanic deformation datasets become
better resolved in space and time, and as magma reservoir models are generalized to include
more physical processes over an increasing range of timescales, neglecting these numerical and
computational considerations is likely to be a major factor limiting scientific progress.

We derived conditions on the time step, which guarantees stability of the aging law, and
showed that the numerical solution converges to the exact solution at the theoretical rates
of convergence in both space and time. However, in practice, even these 2D simulations are
computationally expensive because a system of equations (the discretized equilibrium equation)
must be solved at each time step, and this constitutes the bulk of the computational load. We
perform a direct solve of the system while it is still possible to hold the matrix factorization in
system memory. For larger problems (e.g. in 3D or with larger domains sizes or if a finer spatial
resolution is required), matrix-free iterative methods on parallel machines would be necessary
[9]. Furthermore, if the relevant time scale of interest is the forcing period τ , which can be
much longer than the minimum viscous relaxation time η/µ (so that De≪ 1), the problem can
become arbitrarily numerically stiff: very small time steps are required for numerical stability,
much smaller than that required to accurately resolve the sinusoidal pressure forcing.

To address this corresponding computational burden, an implicit time stepping scheme
(such as backward Euler) would need to be applied, or alternative schemes such as splitting
algorithms [8]. For problems in which total strains are large (e.g., dominated by viscous flow)
it may also be advantageous to reformulate the governing equations in terms of split viscous
and elastic strain rates (rather than strains), as is commonly done in mantle dynamics models
[50]. A disadvantage of this approach is that elastic stresses are less explicitly resolved, which
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is not acceptable for the present application. Still, one drawback of our method is that it
is not robust in the incompressible limit (ν = 0.5). More sophisticated locking-free mixed
finite element techniques [21] could be employed to solve the equilibrium equations stably in
the incompressible limit, a potential necessity in fully coupled fluid-solid magmatic models.
Codes developed for large-scale geodynamic applications commonly include compressible fluid
but incompressible solid mechanics [31]. This difference in approach implies that extensions of
our computational framework to a broader range of problems might require further numerical
developments.

The inclusion of boundary tractions (to represent background tectonic stress, for example)
can be explored here directly by setting specific values of the boundary data. Topography
at the surface or at depth can be included by modifying the axisymmetric domain geometry.
Complex time-evolving forcing can be included so long as the highest frequency is resolved by
the timestep, as we demonstrate in the next section. But highly multiscale time evolution,
such as might be expected for pressure at the reservoir wall over eruption cycles [10, ], may
require adaptive time-stepping techniques to integrate efficiently through regions of both slow
and fast evolution. Similar challenges arise in the modeling of long-term earthquake cycles
[16], and similar timestepping approaches could be leveraged for simulating volcanic activity.

6.2. Frequency Dependent Magmatic Deformation. We have studied here a magma
chamber problem that, while simplified in some respects, has a strong basis in past observations
and represents a template for future advances. In the elastic limit, corrections for less idealized
geometry and material heterogeneity are known [61], and elastic parameter trade-offs have been
explored to some extent [12, 56]. But viscoelastic behavior is far less well understood. Case
studies have demonstrated important trade-offs in geometry, constitutive law, and thermal
state, as well as complications associated with time-dependent rheology [25, 63, 29, 30]. But
general time-dependence introduces significant complexities.

The cyclic forcing studied here represents a powerful framework to explore phenomenology
of transient magma chamber deformation. While magma pressure histories are not generally
sinusoidal, linear viscoelasticity (in any form, not just the Maxwell model) implies that arbi-
trary forcing histories may be constructed through appropriate superposition. The analysis of
section 4.2 details how knowledge of the transfer function can be used to relate such composite
signals. We illustrate this approach with three examples.

First, consider a reservoir pressure history (the input signal) given by the 2τ -periodic rect-
angular pulse of unit width

(74) P (t) = P0 (H(t)−H(t− 1)) ,

with τ > 1. The complex Fourier series representation for P (t) can expressed as

(75) P (t) =

∞∑︂
n=−∞

cne
iωnt,

where ωn = nπ/τ and the complex Fourier coefficients are given by

(76) cn = P0
1

τωn
e−iωn/2 sin(ωn/2).

Then the output signal y(t) can be expressed in terms of its Fourier series

(77) y(t) =
∞∑︂

n=−∞
dne

iωnt
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Figure 8. A. Amplitudes and phases of input pressure signal, Equation
(69). B. Input pressure timeseries (red curve) along with numerically computed
maximum surface displacement (dashed blue curve) and analytic prediction
based on the transfer function, Equation 70.

with coefficients

(78) dn = H(iωn)cn,

i.e. the coefficients of the input signal, scaled by the transfer function H. This example
demonstrates that sequences of impulsive pressure changes (such as eruptions) that are non-
harmonic in time can still be characterized with the framework developed here.

As a second example, if the pressure history is given by a unit impulse at t = t0, namely

(79) P (t) = P0δ(t− t0),

then Equation 60 implies that the output signal is simply

(80) y(t) = h(t− t0),

i.e. the system impulse response. This pressure history represents a simple model for sudden
pressure perturbation [62]. The implied ground deformation in this case is the impulse response
function of the magma chamber/host rock system.

These examples demonstrate the transfer function approach in a forward modeling frame-
work. Frequency-domain inversion of magmatic pressure histories from ground motions, a
common scenario since reservoir pressure is generally unknown, by extension involves seeking
weights for the forcing periods represented in Figure 7 to match general time-dependent defor-
mation data. To demonstrate this explicitly, we present a third example in which we construct
a non-harmonic input pressure signal by summing sinusoids at a subset of forcing frequencies
explored in Figure 7 with random phase and amplitude (assuming an 800◦C chamber repre-
senting a lower bound to the viscoelastic response) corresponding to Equation 69. Weights
and phases are displayed in Figure 8.A. We compute the output signal from Equation 70 and
show that the predicted surface deformation matches the numerically computed output (Figure
8.B). Numerical displacements shown here are after a spin-up to make sure the output is in
steady state with the input.

Outputs of interest are thus easily found given knowledge of the transfer function. Of
course, in reality this transfer function is unknown and would need to be computed as part of
an inversion. Further studies will be needed to quantify the variability of the transfer function
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as control parameters are varied. This will determine the sensitivity of phase lag and amplitude
spectrum to rheologic model, chamber geometry, and temperature structure.

Figure 8.B also demonstrates the non-trivial impact of frequency-dependent phase lag and
amplitude on ground deformation. Even though a relatively narrow range of frequencies is
present in the forcing function (2π/ωk = τk ∼ 0.2 − 2 yr in equation 69), we see that shorter
period forcing generates in-phase ground displacements, while longer period ground motions
are out of phase with chamber pressure. These effects would be amplified for warmer (more
viscous) host rocks and longer forcing periods, and should be observable in geodetic timeseries
with several day resolution (phase lag associated with 1 year forcing period from Figure 7 is
∼ 18 days). We also see that the ground displacement amplitude is a function of frequency as
predicted from the transfer function. It is not simply proportional to the pressure as would be
expected from elasticity [48], and reflects the amplitudes of each component period shown in
fig 8.A scaled by the transfer function.

An interesting challenge implied by our analysis with respect to observations however is
how to find initial conditions. Our time-dependent steady-state (purely oscillatory) implicitly
starts from a unstressed state, but as illustrated through 1D analysis (Section 4) the initial
strain determines the equilibrium position around which steady viscoelastic oscillations occur.
In the 2D variable coefficients case the choice of initial strain that will result in a particular
chamber size (or geometry) is less trivially found - equilibrium magma chamber volume is
not an independent parameter but rather a model outcome. From a geophysical perspective,
this implies that absolute stress histories are needed to interpret general surface displacement
timeseries at volcanoes, and could play an important role in eruption cycles as it does for
earthquake cycles [17].

Another important implication of this model is that the volume of crustal rock around
the chamber that experiences viscous strain over a chamber pressure cycle depends on the
frequency of forcing. As demonstrated by Figure 4, De = 10 effectively marks the onset of
viscous host response to cycling pressure forcing. Figure 6 extends this to variable coefficients,
suggesting that De ≈ 10 effectively bounds the region in which significant deviatoric shear
stresses (as measured by σv in excess of P0) occur.

We suggest that the frequency-dependent De ≈ 10 contour represents an effective outer
edge to the viscoelastic “shell” at a given frequency of forcing. This shell has been largely
considered fixed in size by previous models for viscoelastic magma chamber mechanics [15,
36, 38, 13, 62, 44]. Our model demonstrates that viscoelastic shell size even for a steady
temperature distribution dependents on the time history of reservoir stress - like equilibrium
reservoir size, it is a transient model output.

6.3. Implications for Transcrustal Magmatic Systems. Magma reservoirs that feed vol-
canic eruptions likely sit near the top of transcrustal magma transport networks characterized
by high temperatures and partial melt [65, ]. Some of this magma accumulates episodically
into high melt fraction reservoirs such as we model here. But it is to be expected that, as
transcrustal magma transport networks mature, a significant fraction of the crust is heated
and remains hot for extended periods of time. What are the implications of this rheological
structure for ground deformation?

We can begin to answer this question by noting that the bulk crustal rheology of magma
storage zones as expressed by surface deformation depends on frequency of forcing, as it does
on the spatial structure of melt and temperature [52]. This has been long recognized for
crustal rheology in other settings [55, 41, ]. But volcanoes offer a particularly interesting
case for exploring crustal rheology, because different histories of heating – all else equal – will
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Figure 9. Spatial regions associated with a local Deborah number De = 10
for varying periods τ of the chamber pressure forcing function (colored curves),
illustrating end member thermal regimes. Magma reservoir is black semi-circle
in all panels. A. Reservoir temperature Tc = 800◦C with geothermal gradient
α = 20◦C/km. B. Reservoir temperature Tc = 800◦C with geothermal gradient
α = 35◦C/km. C. Reservoir temperature Tc = 1200◦C with geothermal gra-
dient α = 20◦C/km. D. Reservoir temperature Tc = 1200◦C with geothermal
gradient α = 35◦C/km.
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have distinct deformation frequency response curves (transfer functions) in the frequency band
where geophysical observations are routinely made.

Figure 9 plots the De = 10 contour representing onset of viscous mechanical response
for different pressurization periods, from 0.1 to 1000 years. We then consider end member
steady state thermal regimes: chamber boundary temperature of Tc = 800◦C and 1200◦C,
and geothermal gradient of α = 20◦C/km and 35◦C/km. In the cold extreme (Figure 9A),
we see that viscoelastic behavior is confined to a shell around the chamber in all but 1000
year forcing. This is consistent with commonly used models of isolated magma chambers. At
long forcing periods however the mid/lower crust is activated and starts to creep, defining a
mid-crustal brittle-ductile transition that depends on background geothermal gradient. In the
hot extreme (Figure 9D), we see that viscoelastic response of the near-chamber region extends
continuously into the mid-crust for forcing periods as low as 10 years. This defines a spatially
coherent viscous domain induced by magmatic heating [39, ], activated by long-period forcing.

While we leave further exploration of this to future work, we note that some of the structure
seen in phase lag variations in Figure 7 likely reflect changes to the shape as well as volume
of the viscous near-chamber region. It is notable that significant sensitivity of viscoelastic
response to forcing period and variations in thermal structure in the 0.1 − 10 year range,
where geodetic observations are increasingly common. Because magma transport is unsteady
at many scales, ground deformation in volcanic regions will likewise include contributions from
viscoelastic deformation defining the crustal thermo-rheologic footprint of magmatism on a
range of timescales.

Appendix A. Verification via Convergence Tests

We verify the accuracy of our numerical method using the method of manufactured so-
lutions (MMS) [57] and explain this technique in the context of the dimensional problem
(computationally we solve the non-dimensionalized problem). The MMS verification tech-
nique lets us choose arbitrary solution fields u∗(r, z, t), C∗(r, z, t) to act as exact solutions to
any initial-boundary-value problem, even those without a known analytic solution) necessary
for measuring convergence. The key point is that u∗ and C∗ satisfy the governing equations
and boundary conditions with particular choices of source terms and boundary data which we
detail in this section.

We choose a manufactured solution to the initial-boundary-value problem Equation (1a),(4)-
(8) based on the well-known solution to the pressurized magma cavity problem in an elastic
half-space [48, 61] given by

(81) ue =
P0a

3

4µ(r2 + z2)3/2

[︃
r
z

]︃
.

which satisfies the reservoir pressure conditions Equations (17a)-(17b). Define the manufac-
tured solutions u∗, C∗ by

u∗(r, z, t) = (2− e−t)ue,(82)

C∗(r, z, t) = (1− e−t)Eε(ue),(83)

which satisfies equilibrium and specifies all boundary data. It does not however satisfy the
aging law, and to correct for this discrepancy a source term is added, namely

(84) Ċ = EAσ +G.



30 RUCKER, ERICKSON, KARLSTROM, LEE, AND GOPALAKRISHNAN

Table 2. Parameters used in Convergence Tests
and their Symbols.

Symbol Explanation Value
a Ellipse semi-major axis 4 km

b Ellipse semi-minor axis 4 km

D Reservoir depth beneath Earth’s surface 5 km

Lr Domain length 10 km

Lz Domain depth 10 km

µ shear modulus 0.5 GPa

λ Lamé’s first parameter 4 GPa

η Viscosity 0.5 GPa-s

P0 Chamber Pressure 10 MPa

Table 3. Spatial convergence data, measured with respect to the discrete
L2-norm, for a single time step of ∆t = 10−7 using polynomials of degree 3.

h ∥C −Ch∥ C-rate ∥u− uh∥ u-rate
h/2 5.25× 10−9 1.84× 10−8

h/4 7.17× 10−10 2.87 1.31× 10−9 3.81
h/8 9.13× 10−11 2.97 8.41× 10−11 3.96
h/16 1.14× 10−11 3.00 5.24× 10−12 4.00

Table 4. Temporal convergence data measured at point (Ã, 0) under the
discrete L2-norm.

∆t ∥C −Ch∥ C-rate ∥u− uh∥ u-rate
∆t/2 1.75× 10−1 1.18× 10−6

∆t/4 8.85× 10−2 0.99 5.96× 10−7 0.99
∆t/8 4.46× 10−2 0.99 3.01× 10−7 0.99

Here, the source term G is determined from the manufactured solutions to be

(85) G = e−tσ∗ − µ

η
dev σ∗,

where σ∗ is the manufactured stress and can be obtained by computing

(86) σ∗ = Eε(ue).

All parameters used are given in Table 2. Table 3 shows the spatial errors ∥C −Ch∥ and
∥u− uh∥ when computing approximations to C∗ and u∗ after a single time step, using a
stable step size of 10−7 and the discrete L2-norm. Successive mesh refinements are made using
polynomials of degree 3 as a basis for the FEM space. Convergence rates agrees with FEM
theory which predict a convergence rate of p+1 for u∗ and p for C∗ when polynomials of degree
p are used [40]. The same convergence pattern is observed for polynomials with degree greater
than 3 except that the L2-error drops below machine precision leading to round-off error in
the rate computation.
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To measure the convergence in the temporal domain we select a single point in space and
perform successive mesh refinements in time. Table 4 shows that both C and u exhibit rate-1
temporal convergence, consistent with forward Euler.

The benefit of convergence tests based on the MMS technique is that solutions can be
manufactured for problems with more physical complexities, as opposed to relying on simple
problems with known analytic solutions such as those highlighted in [33]. With MMS, rigorous
convergence can be obtained at the exact theoretical rate, a desirable outcome for high-order
numerical methods. That being said, the MMS technique requires making specific choices for
source and boundary data, which can sometimes alter the underlying physics of interest. Thus
code verification can benefit further from community based efforts, as done extensively in the
earthquake community [28, 18]. In community benchmarking, all mathematical details of a
problem are specified and different modeling groups compare code output and seek quantitative
comparisons. These exercises can be done for problems with or without a known analytic
solution; the simple problems detailed in [33] (including the homogeoneous, viscoelastic “Del
Negro” model, [14]) could serve as the first benchmark problem statements for the magma
reservoir community code verification efforts, with further benchmark problems containing
increasingly physical and/or geometrical properties where analytic solutions are not known.

Open Research

Software consists of Python code developed on top of the free and open source multi-physics
library NGSolve [60] and the accompanying mesh generator [59]. All source code is freely
available in the public repository [23].
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[60] J. Schöberl. NGSolve. http://ngsolve.org, 2010–2022.
[61] P. Segall. Earthquake and volcano deformation. Princeton University Press, 2010.
[62] P. Segall. Repressurization following eruption from a magma chamber with a viscoelastic aureole. Journal

of Geophysical Research: Solid Earth, 121(12):8501–8522, 2016.
[63] P. Segall. Magma chambers: what we can, and cannot, learn from volcano geodesy. Philosophical Transac-

tions of the Royal Society A, 377(2139), 2019.
[64] F. Sigmundsson, V. Pinel, B. Lund, F. Albino, C. Pagli, H. Geirsson, and E. Sturkell. Climate effects on

volcanism: influence on magmatic systems of loading and unloading from ice mass variations, with examples
from Iceland. Philosophical Transactions of the Royal Society A, 368(1919), 2010.

[65] R. S. J. Sparks, K. Cashman, and E. Calais. Dynamic magma systems: Implications for forecasting volcanic
activity. Elements, 13(1):35–40, 2017.

[66] M. Townsend. Linking surface deformation to thermal and mechanical magma chamber processes. Earth
and Planetary Science Letters, 577:117–272, 2022.

[67] M. Townsend, C. Huber, W. Degruyter, and O. Bachmann. Magma chamber growth during intercaldera
periods: Insights from thermo-mechanical modeling with applications to Laguna del Maule, Campi Flegrei,
Santorini, and Aso. Geochemistry, Geophysics, Geosystems, 20(3):1574–1591, 2019.

[68] D. Walwer, M. Ghil, and E. Calais. Oscillatory nature of the Okmok volcano’s deformation. Philosophical
Transactions of the Royal Society A, 506:76–86, 2021.

[69] T. Yamasaki, T. Kobayashi, T. Wright, and Y. Fukahata. Viscoelastic crustal deformation by magmatic
intrusion: A case study in the Kutcharo caldera, eastern Hokkaido, Japan. Journal of Volcanology and
Geothermal Research, 349:128–145, 2018.

[70] Y. Zhan and P. Gregg. How accurately can we model magma reservoir failure with uncertainties in host
rock rheology? Journal of Geophysical Research: Solid Earth, 124(8):8030–8042, 2019.

[71] X. Zhong, M. Dabrowski, and B. Jamtveit. Analytical solution for the stress field in elastic half-space
with a spherical pressurized cavity or inclusion containing eigenstrain. Geophysical Journal International,
216(2):1100–1115, 2019.

Department of Computer and Information Science, University of Oregon, Eugene, OR, USA

Department of Computer and Information Science, University of Oregon, Eugene, OR, USA

Department of Earth Sciences, University of Oregon, Eugene, OR, USA

Department of Mathematics and Statistics, Portland State University, Portland, OR, USA

Department of Mathematics and Statistics, Portland State University, Portland, OR, USA

http://ngsolve.org

	Plain Language Summary
	1. Introduction
	2. Mathematical Framework
	2.1. Problem Formulation and Geometry
	2.2. Governing Equations

	3. Computational Framework
	3.1. Solving the Static Equilibrium Equation
	3.2. Temporal Discretization
	3.3. Model Specifics and Non-Dimensionalization
	3.4. Stability and Verification
	3.5. Temperature-Dependent Material Parameters

	4. Analysis of time dependent viscoelastic deformation
	4.1. Insights from the 1D Maxwell Model
	4.2. Transfer Function and Analytic Signals
	4.3. Numerical Calculations of the Transfer Function

	5. Computational Results
	6. Discussion
	6.1. Computational Considerations for Time-evolving Magmatic Systems
	6.2. Frequency Dependent Magmatic Deformation
	6.3. Implications for Transcrustal Magmatic Systems

	Appendix A. Verification via Convergence Tests
	Open Research
	Acknowledgments
	References

