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Abstract. Electromagnetic wave propagation in optical fiber amplifiers obeys Maxwell
equations. Using coupled mode theory, the full Maxwell system within an optical fiber
amplifier is reduced to a simpler model. The simpler model is made more efficient through
a new scale model, referred to as an equivalent short fiber, which captures some of the
essential characteristics of a longer fiber. The equivalent short fiber can be viewed as a fiber
made using artificial (unphysical) material properties that in some sense compensates for its
reduced length. The computations can be accelerated by a factor approximately equal to
the ratio of the original length to the reduced length of the equivalent fiber. Computations
using models of two commercially available fibers – one doped with ytterbium, and the other
with thulium – show the practical utility of the concept. Extensive numerical studies are
conducted to assess when the equivalent short fiber model is useful and when it is not.

1. Introduction

“Scale models” are ubiquitous in fields such as fluid dynamics. They are physical or
numerical models that preserve some of the important properties of an object being modeled
while not preserving the original dimensions of the object. The main goal of this paper is
to formulate and study a miniature scale model of an optical fiber laser amplifier. Our scale
model reduces fiber length to increase computational efficiency. While unable to preserve
all properties of the original electromagnetic solution, our numerical scale model is able
to approximately replicate the original fiber’s power distribution, as we shall see in later
sections. After this introductory section, we will begin by describing a simplified model of
beam propagation in fibers. This model will then be used to derive, justify, and verify the
scale model.

The importance of fiber amplifiers in enabling our current world of long-distance fiber
optics and submarine telecommunications cannot be overlooked [4]. High power fiber am-
plifiers also have many other uses, for example, as defensive speed-of-light weapons. High
output powers have been achieved by solid-state optical fiber laser amplifiers [10]. Numeri-
cal modeling of these optical devices has also been effectively used by many [11, 13, 18, 20].
Yet, simulation of full length fibers remains cumbersome and far from being routine. This is
because of the long simulation times and the large computational resources required. Simula-
tions using the full Maxwell system are too expensive since there are millions of wavelengths
within any realistically long fiber. As an example, consider the full Maxwell simulation of
Raman gain attempted in [14]: more than five million degrees of freedom was needed to
simulate an extremely short fiber containing 80 wavelengths (less than 0.0001 m). Although
a full Maxwell model of a realistically long (10 m) fiber can be written out (and we shall
do so in Subsection 2.1), its numerical solution is beyond the reach of today’s simulation
capabilities.
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Therefore, simplified models form the current state of the art. It is somewhat surprising
how unreasonably effective these models have proved to be, despite the drastic simplifications
used in their derivation. The state of the art in fiber amplifier simulation consists of beam
propagation methods using coupled mode theory (CMT). We shall introduce the reader to
the CMT model in Subsection 2.2 as a simplification of the full Maxwell model. To facilitate
cross-disciplinary readership, we make an effort to enunciate the assumptions behind such
simplifications. Even though it is not common in the optics literature to view CMT in the
backdrop of emerging developments in reduced-order models, one may view it as essentially
an example of a physics-based reduced-order model. Indeed, in CMT, the electromagnetic
solution is expressed using a “reduced basis” consisting of transverse guided modes of the
fiber that encapsulates the energy-transport mechanism in fibers.

Even the simplified CMT model is computationally too demanding to ably assist with
the important open issues in the subject today. One of these issues is what is currently
recognized to be the main roadblock to power scaling of beam combinable fiber amplifiers,
namely the nonlinear transverse mode instability (TMI). TMI can be described as a sudden
breakdown in beam quality at high power operation, first observed experimentally [5]. As
pointed out in the review [10], when attempting to design highly coherent lasers capable
of sustained high (average) powers, a practically uncrossable limit was encountered due to
the TMI. After intensive speculations on the cause of TMI, the prevailing theory seems to
be that the cause is a temperature-induced grating. We believe that numerical modeling is
essential for investigating the TMI, and other nonlinearities that arise inside fiber amplifiers,
since experimental evidence is mostly limited to examining the amplifier output, rather than
the onset of physical effects that occur inside of the glass fiber along its length. The current
difficulty in using numerical models is the excessive simulation times: indeed any numerical
technique used must be able to solve for the electromagnetic field within a long fiber a vast
number of times. Given the great computational burden of capturing length scales as small
as 10 µm, and time scales as small as 10 µsec (for the thermal problem), techniques that
further accelerate the numerical simulations have the potential to significantly enhance the
ability for computer modeling to inform experimental designs and configurations in a timely
manner. It is our intent to contribute such an acceleration technique by developing the above-
mentioned scale model (in Sections 4–5). Studies of its application to TMI investigations
are postponed to the future.

The models are tested using two commercially available examples of doped step-index
fibers, one with ytterbium (Yb) doping in the fiber core, and another with thulium (Tm)
doping. Both are examples of large mode area (LMA) fibers which support more than one
guided transverse core mode. LMA fibers are of great interest since they permit greater
light amplification per unit length and help mitigate the onset of other detrimental optical
nonlinearities. Unfortunately, they are also more susceptible to the TMI, and hence stand
most to benefit from advances in numerical simulation. Our active gain model for these
fibers utilizes the population dynamics of Yb and Tm ions. Active gain in fiber amplifiers
appears as a nonlinear coupling term between the Maxwell systems for the (1) less coherent
“pump” light that supplies energy for amplification, and the (2) highly coherent “signal”
(laser) light. The gain mechanism involves exciting the outer most electron of the dopant
(Yb or Tm) by absorbing the pump light, and producing more coherent signal light via
stimulated emission that allows the excited electrons to return to their ground state. We
have included a simplified, yet very typical, mathematical formulation for the dopant ion
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population dynamics in Section 3. A few of the initial results obtained in this work for the
simpler Yb-doped case were announced earlier in the conference proceedings [6]. We begin
by deriving the CMT model next.

2. The CMT model

Physics-based reduced-order models are now being used successfully in various simulation
techniques [19]. In this section, we introduce such a model for an optical fiber amplifier
starting from Maxwell equations. We will start from the Maxwell system and describe the
assumptions that lead us to the simplified CMT model consisting of a system of ordinary
differential equations (ODE).

2.1. The full Maxwell model. Suppose the optical fiber amplifier to be modeled is aligned
so that it is longitudinally centered along the z-axis; the transverse coordinates will be
denoted by x and y in the Cartesian coordinate system. The core region of the fiber,
{(x, y, z) : x2 + y2 < r2core}, is enveloped by a cladding that extends to radius rclad. The
fiber is a step-index fiber, i.e., its refractive index is a piecewise constant function that takes
the value ncore in the core region and nclad in the cladding region. There is usually another
polymer coating that surrounds this inner cladding (composed of fused silica); however, this
second cladding/coating can readily be neglected for this analysis since the laser light is
mostly guided in the fiber core region. We want to model a continuous wave, weakly guided
(ncore−nclad � 1), polarization maintaining, large mode area (LMA) fiber. There are various
arrangements in which this fiber amplifier could be seeded and pumped. We consider the
co-pumped/clad-pumped configuration, wherein a highly coherent laser light – which we shall
refer to as the signal– is injected into the fiber core area at the beginning of the fiber (z = 0).
The pump light is injected into the fiber at z = 0, and unlike the signal, it enters both core
and cladding.

Let ~Es, ~Hs and ~Ep, ~Hp denote the electric and magnetic fields of the signal and pump light,
respectively. The signal and pump fields are assumed to be time harmonic of frequencies ωs
and ωp respectively, i.e.,

~E`(x, y, z, t) = Re
[
~E`(x, y, z)e−ı̂ω`t

]
, ~H`(x, y, z, t) = Re

[
~H`(x, y, z)e−ı̂ω`t

]
,

Here and throughout, we use the subscript ` ∈ {s, p} to distinguish between signal and

pump fields. Note that the ~E` and ~H` are real valued while ~E` and ~H` are complex valued.
The signal field ~Es, ~Hs and the pump field ~Ep, ~Hp, are assumed to independently satisfy
Maxwell equations, but are coupled through the electric polarization terms of the form
~P` ≡ ~P`( ~Es, ~Ep), ` ∈ {s, p}, which appear in the following time-harmonic Maxwell system,

curl ~E` − ı̂ω`µ0
~H` = 0,

curl ~H` + ı̂ω`ε0 ~E` = −ı̂ω` ~P`,
` ∈ {s, p}, (2.1)

where ε0 is the electric permittivity and µ0 is the vacuum magnetic permeability.
All interactions between the propagation medium and the electromagnetic field are mod-

eled through electric polarization terms. The traditional polarization model includes linear
susceptibility, namely the background material interaction ~P bg

` given as a function of the
index of refraction of the medium that the light propagates through. Other examples of
polarization terms include those that account for linear loss, active laser gain (~P ag

` ), thermal
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effects, and optical nonlinearities such as Brillouin scattering, Raman scattering, and Kerr
effects. Here we focus on active gain polarization and the linear background polarization,
namely,

~P bg
` ( ~E`) = ε0(n

2 − 1) ~E`, ~P ag
` ( ~E`) = − ı̂ε0cn

ω`
g` ~E`, ` ∈ {s, p},

where c is the speed of light and g` is the active gain term that depends on ~E` in some non-
linear fashion. Examples of g` are given in Section 3. Typical optical operating frequencies
imply that within a fiber of realistic length there are several millions of wavelengths. Even
if a mesh fine enough to capture the wave oscillations is used, the pollution effect [3] in
wave propagation simulations destroys the accuracy of finite element solutions at the end
of millions of wavelengths. Hence, without further simplifications, the above-described full
Maxwell model is not a feasible simulation tool for realistic fiber lengths. We proceed to
develop a physics-based reduced model.

2.2. Coupled mode theory. Experiments indicate that the vast majority of the laser signal
is contained within the guided core modes of the fiber, and, likewise, most of the pump light
is within the guided cladding modes. This is the basis of an electric field ansatz that CMT
uses. Before giving the ansatz, let us eliminate ~H` from (2.1), to obtain the second order
equation

curl curl ~E` − ω2
` ε0µ0

~E` = ω2
`µ0

~P` (2.2)

solely for the electric field. Substituting

~P` = ~P bg
` + ~P ag

` = ε0(n
2 − 1) ~E` −

ı̂ε0cn

ω`
g` ~E` (2.3)

into (2.2), using c = 1/
√
ε0µ0 and simplifying we get,

curl curl ~E` − k2`n2 ~E` + ı̂k`ng` ~E` = 0, (2.4)

where k` = ω`/c is the wavenumber corresponding to the frequency ω`.

Next, we assume that the electric field ~E` can be expressed as

~E`(x, y, z) = U`(x, y, z)êx,

i.e., it is linearly polarized in a fixed transverse direction, which is taken above to be the
x-direction (where êx denotes the unit vector in the x-direction). Furthermore, since ~E` has
high frequency oscillations along the z-direction, its variations along the transverse directions
may be considered negligible. It is therefore standard in optics to neglect grad div ~E`. These
assumptions imply that the vector equation (2.4) becomes the following scalar Helmholtz
equation for U`,

−∆U` − k2`n2U` + ı̂k`ng`U` = 0. (2.5)

Due to the high wave number k`, even this simplified scalar field problem is computationally
intensive. We now proceed to further reduce this scalar model using CMT.

CMT is usually useful in the analysis of the interaction between several near-resonance
guided modes. For step-index fiber waveguides these modes are called linearly polarized
transverse guided core modes [2], often referred to simply as LP modes. Mathematically
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speaking, these modes are finitely many non-trivial functions ϕm(x, y), m = 1, 2, . . . ,M`,
that decay exponentially at the edge of the cladding region and satisfy

(∆xy + k2`n
2)ϕm = β2

mϕm, m = 1, . . . ,M`, (2.6)

where βm is the corresponding propagation constant and ∆xy = ∂xx + ∂yy denotes the trans-
verse Laplacian operator. The CMT approach to solve (2.5) expresses the solution using the
ansatz

U`(x, y, z) =

M∑̀
m=1

A(`)
m (z)ϕm(x, y)eı̂βmz, (2.7)

where A
(`)
m (z) denotes the complex field amplitude of mode m. Therefore, the wavenumber

(k`n) for the entire electric field envelop (U`) is now decomposed into individual propagation
constants (βm) corresponding to each guided mode, and the field envelop is now decomposed

into parts of amplitudes A
(`)
m having transverse profiles described by ϕm.

Knowledge of the form of the solution is thus incorporated a priori into the ansatz. In
particular, the physical intuition that the ϕm-component should oscillate longitudinally at

an approximate frequency of βm is built in. This justifies the next assumption that A
(`)
m (z)

is a slowly varying function of z (having built the fast variations in z into the eı̂βmz term).

Accordingly, for each A
(`)
m , we neglect the second-order derivative d2A

(`)
m /dz2 for all m =

1, . . . ,M`. Doing so after substituting (2.7) into (2.5) and using (2.6) we obtain

M∑̀
m=1

dA
(`)
m

dz
ϕmβme

ı̂βmz =
1

2

M∑̀
m=1

A(`)
m k`ϕmng`e

ı̂βmz, 0 < z < L. (2.8)

The next step is to multiply both sides of (2.8) by the complex conjugate of ϕl, namely ϕl,
and integrate. We integrate over Ωz, which represents the fiber cross section having the con-
stant longitudinal coordinate value of z. Then, simplifying using the L2(Ωz)-orthogonality
of the modes,

dA
(`)
l

dz
=

M∑̀
m=1

eı̂(βm−βl)zK
(`)
lm(I`, I`c) A

(`)
m , 0 < z < L, (2.9)

for l = 1, . . . ,M`, where K
(`)
lm is the mode coupling coefficient, given by

K
(`)
lm(I`, I`c) =

k`
2βl

∫
Ωz

g`(I`, I`c)n(x, y)ϕm(x, y)ϕl(x, y) dx dy, (2.10)

`c ∈ {s, p} \ {`}, and Is, Ip denote the signal and pump irradiance, respectively, which are
formulated later in this subsection.

For the pump light, the number of guided cladding modes is exceedingly large: Mp > 105.
Rather than modeling each of these modes, it is sufficient to approximate the pump field as a
plane wave, which effectively acts as the composition of all of the pump guided modes [13, 18].
Accordingly, we set Mp = 1 and the normalized mode ϕp1 = (

√
πrclad)−1 (without a transverse

dependence). Since the cladding region is many times larger than the core, the corresponding
propagation constant is estimated as if this mode travels in a uniform medium of refractive
index nclad, i.e., we set β1 = kpnclad = ωpnclad/c. Then (2.9) yields

dA
(p)
1

dz
= Kp

11(Ip, Is)A
(p)
1 , (2.11)
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for 0 < z < L, where

Kp
11(Ip, Is) =

1

2πr2cladnclad

∫
Ωz

gp(Ip, Is)nclad dx dy =
1

2
〈gp〉. (2.12)

Here 〈gp〉 = |Ωz|−1
∫
Ωz
gp dx dy denotes the mean value of gp taken over Ωz, the area of the

fiber cross section out to r = rclad.
The irradiance is proportional to the square of the field envelop magnitude, I` = n|U`|2/(µ0c).

Using (2.7),

I`(x, y, z) =
n

µ0c

∣∣∣∣∣
M∑̀
m=1

A(`)
m (z)eı̂βmzϕm(x, y)

∣∣∣∣∣
2

. (2.13)

For the pump plane wave, this reduces to

Ip(z) =
n

µ0cπr2clad

∣∣∣A(p)
1 (z)

∣∣∣2 .
Using the equation (2.11) and its complex conjugate, elementary simplifications lead to the
following governing ODE for the pump irradiance:

dIp
dz

= 〈gp〉Ip, (2.14)

In view of (2.14), instead of A
(p)
1 , we shall use Ip(z) as our pump unknown. There is no need

for the amplitude A
(p)
1 in the remainder of the model. Hence from now on, we write Am for

A
(s)
m dropping the superscript. We shall also simply write M for Ms and Klm for K

(s)
lm .

Next, consider the signal irradiance, namely the ` = s case in (2.13). To highlight the

dependence of Is on Am ≡ A
(s)
m , we use A ≡ [A1(z), . . . , AM(z)]t to collectively denote the

set of all signal mode amplitudes and write

Is ≡ Is(x, y, z, A) =
n

µ0c

∣∣∣∣∣
M∑
m=1

Am(z)eı̂βmzϕm(x, y)

∣∣∣∣∣
2

. (2.15)

Note that the modes ϕl(x, y) and the propagation constants βl may be precomputed (and
the cost of this precomputation corresponds to the “off-line” computational cost in this
reduced-order model).

In order to complete the CMT model (assuming we have expressions for g`), we need to
provide initial conditions at z = 0, the beginning of the fiber. What is usually known is
the power contained in the pump and signal light. The initial pump irradiance I0p = Ip(0)

can be calculated from the initial pump power P 0
p provided at the inlet in a co-pumped

configuration, by I0p = |Ω0|−1P 0
p . We assume that we also know how the signal light is split

into various modes at the inlet, i.e., we may set A(0) to some given A0 = [A0
1, . . . , A

0
M ]t. In

practice, most of the signal power is usually carried in the first fundamental mode.
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To summarize, the CMT model computes

Y (z) = [Ip(z), A1(z), A2(z), . . . , AM(z)]t, 0 < z < L,

where each Am(z) is a signal mode amplitude in the fiber core, and Y (z) satisfies the ODE
system

dY

dz
=

[
〈gp(Y )〉 0

0 φ(z) ·K(Y )

]
Y, 0 < z < L, (2.16a)

Y (0) = [I0p , A
0]t z = 0, (2.16b)

where φ(z) is an M ×M matrix defined by φlm(z) = eı̂(βm−βl)z, K(Y ) is a matrix of the

same size whose (l,m)th entry is K
(s)
lm (Is, Ip) defined in (2.10), and φ(z) ·K(Y ) denotes the

Hadamard product of φ and K, i.e., [φ ·K]lm = φlmKlm.

3. Thulium and ytterbium doped fiber amplifiers

Thulium (Tm)-doped fiber amplifiers [8, 9] can operate in eye-safe laser wavelengths (larger
than 1.4 µm) and can reach an atmospheric transmission window (2.1–2.2 µm). There are
efficient high-power LEDs that operate in the range of 0.79-0.793 µm, which is a peak ab-
sorption bandwidth for Tm-doped fibers. Cross-relaxations and upconversions occur in Tm-
doped amplifiers. Even though Tm-doped fibers usually have better TMI suppression com-
pared to other rare-earth ion doped fibers [18], ytterbium (Yb)-doped fiber amplifiers have
also emerged as excellent candidates for high power operation due to their high-efficiencies
and low amplified spontaneous emission gain. Yb-doped amplifiers are usually pumped at
976 nm and can lase around 1064 nm very efficiently. The dynamics of both these ion pop-
ulations are explained below. They complete our model by giving expressions for g` to be
used in (2.16).

3.1. Tm-dopant ion dynamics. The Tm ion population dynamics are schematically rep-
resented in Figure 1. The model involves four manifolds. The total number of Tm ions (per
volume) is

Ntotal = N0(x, y, z, t) +N1(x, y, z, t) +N2(x, y, z, t) +N3(x, y, z, t) (3.1)

where N0 represents the ground state (manifold 0) ion-population concentration, while N1,
N2, and N3 denote ion concentrations at excitation manifolds 1,2 and 3, respectively. What
we have named energy manifolds 0,1,2, and 3, represent Tm energy levels usually written as
3H6

3F4,
3H5 and 3H4, respectively.

Pump light of frequency ωp = 793 nm excites the Tm ground state ions into higher energy
manifolds, thus depleting manifold 0 at the rate νpσ

abs(ωp)N0 while increasing the excited
manifold j at the rate νpσ

ems(ωp)Nj, where σabs and σems represent measurable absorption
and emission cross sections of Tm [1], and

ν` =
I`
~ω`

, ` ∈ {s, p}

represents the flux of photons of frequency ω`. We must also take into account the fact
that an excited ion in manifold j can decay spontaneously to a lower energy manifold k
at the rate 1/τjk. An excited ion in manifold j can also decay non-radiatively to the next
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3H5

3H4
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793nm
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Figure 1. Simplified diagram of Tm energy levels

lower energy manifold at the rate Γj. Finally, an excited Tm ion can also undergo cross-
relaxation, wherein it transfers part of its energy to a ground state ion so both can end up
in an intermediate energy level. Cross-relaxation is represented by the slanted arrows in
Figure 1, while the other processes are represented by up/down arrows. The rate constant
for the cross-relaxation is denoted by κR. Cross-relaxation, which creates two excited Tm
ions for every pump photon (a two-for-one process), increases the amplifier efficiency (while
upconversions, which are neglected in our model, decrease fiber efficiency). Following [12],
these processes are modeled by

∂tN3 = ψabs
p N0 −

(
ψems
p νp +

1

τ32
+

1

τ31
+

1

τ30
+ Γ3 + κRN0

)
N3 (3.2a)

∂tN2 =
( 1

τ32
+ Γ3

)
N3 −

( 1

τ21
+

1

τ20
+ Γ2

)
N2 (3.2b)

∂tN1 = ψabs
s N0 +

( 1

τ21
+ Γ2

)
N2 +

( 1

τ31
+ 2κRN0

)
N3 −

( 1

τ10
+ Γ1 + ψems

s

)
N1 (3.2c)

Ntotal = N0 +N1 +N2 +N3 (3.2d)

where

ψabs
` = σabs(ω`)ν`, ψems

` = σems(ω`)ν`, ` ∈ {s, p}.

In our simulations, we have set ωs to correspond to signal light of wavelength 2100 nm.
Next, we make the simplifying assumption that all the time derivatives ∂t in (3.2) may

be neglected. By doing so, we are neglecting the time variations in the ion populations
that occur at an extremely small time scale of around 10−5 s. Equations (3.2a)–(3.2c) after
setting ∂t = 0 immediately yield N1, N2, N3 in terms of N0. The last equation (3.2d) then
gives a quadratic equation for N0. To express this solution, first define

δi =
i−1∑
j=0

τij + Γi, γ0 =
1

ψems
p + δ3

γ1 = ψabs
p γ0, γ2 =

τ−132 + Γ3

δ2
,

γ3 =
τ−131 + γ2(τ

−1
21 + Γ2) + γ−11 ψabs

s

ψems
s + δ1

, γ4 =
2ψabs

p + ψabs
s

ψabs
p (ψems

s + δ1)
.
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2F7/2

2F5/2

ground

emissionabsorption

Nground

Nexcited

Figure 2. A simplified diagram of two Yb energy levels

Then, the steady-state solution is given explicitly by

N0 =
γ0κRNtotal − γ1(1 + γ2 + γ3)− 1

2κR(γ0 + γ1γ4)

+

√
(1− γ0κRNtotal + γ1(1 + γ2 + γ3))2 + 4(γ0 + γ1γ4)κRNtotal

2κR(γ0 + γ1γ4)
, (3.3a)

N1 =
(γ3 + γ4κRN0)γ1N0

1 + γ0κRN0

, N2 =
γ2γ1N0

1 + γ0κRN0

, N3 =
γ1N0

1 + γ0κRN0

. (3.3b)

Using this, we set the gain expressions by

gs = σems(ωs)N1 − σabs(ωs)N0 (3.4)

gp = σems(ωp)N3 − σabs(ωp)N0. (3.5)

This completes the prescription of the CMT model (2.16) for Tm-doped fiber amplifier.

3.2. Yb-dopant ion dynamics. The model for population dynamics of Yb ions is simpler
as it can be modeled using only two energy states, the ground state and one excited state
manifold, as shown in Figure 2. Hence, instead of (3.1), we now have

Ntotal = Nground(x, y, z, t) +Nexcited(x, y, z, t)

where Ntotal denotes the total population concentration in the fiber, Nground represents the
ground state ion-population (in 2F7/2) and Nexcited denotes the excited state ion-population
(in 2F5/2). The absorption and emission that models the two-state dynamics now result in

∂Nexcited

∂t
= ψabs

s Nground − ψems
s Nexcited (3.6a)

+ ψabs
p Nground − ψems

p Nexcited −
Nexcited

τ
,

Ntotal = Nground +Nexcited, (3.6b)

where now we must use the absorption and emission cross section values [15] of Yb for
σabs, σems while computing ψabs

` , ψems
` . The parameter τ is the upper level radiative lifetime

of the excited state. As in the Tm case, we assume that the system has already reached
the steady-state solution. Putting the time derivative in (3.6) to zero, a simple calculation
shows that

Nexcited = Ntotal

ψabs
s + ψabs

p

ψabs
s + ψems

s + ψabs
p + ψems

p + τ−1
. (3.7)
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Parameter Value Units Parameter Value Units

λp = 2πc/ωp 9.76× 10−7 m λs = 2πc/ωs 1.064× 10−6 m
σabs(ωp) 1.429× 10−24 m2 σems(ωp) 1.776× 10−24 m2

σabs(ωs) 6× 10−27 m2 σems(ωs) 3.58× 10−25 m2

Ntotal 3× 1026 ions/m
3

τ 8× 10−4 s
ncore 1.450 971 – NA 0.06 –
rcore 1.25× 10−5 m rclad 2× 10−4 m
P 0
p 1000 W P 0

s 25 W

Table 1. Parameters used in Yb-doped fiber simulation

Parameter Value Units Parameter Value Units

λp = 2πc/ωp 7.93× 10−7 m λs = 2πc/ωs 2.110× 10−6 m
σabs(ωp) 4.4686× 10−25 m2 σems(ωp) 0 m2

σabs(ωs) 1.7423× 10−27 m2 σems(ωs) 1.173 97× 10−25 m2

τ10 6.2232× 10−3 s τ20 5.5179× 10−3 s
τ21 2.5707× 10−1 s τ30 1.3949× 10−3 s
τ31 1.7033× 10−2 s τ32 6.8446× 10−2 s
Γ1 2.592 88× 103 Hz Γ2 2.927 55× 107 Hz
Γ3 8.059 43× 104 Hz – – –

Ntotal 3× 1026 ions/m
3

κR 1.17× 10−21 m3

ncore 1.439 994 – NA 0.1 –
rcore 1.25× 10−5 m rclad 2× 10−4 m
P 0
p 1100 W P 0

s 30 W

Table 2. Parameters used in Tm-doped fiber simulation

Finally, the active gain expressions are modeled in terms of the above Nground and Nexcited

by

g` = (σems
` Nexcited − σabs

` Nground), for ` ∈ {s, p}. (3.8)

When this is substituted into (2.16), the model for Yb-doped fiber amplifiers is complete.

3.3. Basic simulations. We report the results obtained from simulation of the CMT model
for two 10 m long fibers, one doped with Yb and the other with Tm. The fiber parameters
are collected from data sheets of commercially available exemplars of these fibers (specifically
NufernTM fibers – see nufern.com). All parameters used for the simulation of both the fibers
are reported in Tables 1 and 2.

We solve the CMT system (2.16) using the classical 4th order explicit Runge-Kutta method
(in complex arithmetic). The phase terms φlm(z) = eı̂(βm−βl)z in the ODE system oscillate
at a wavelength not smaller than the so-called mode beat length

2π

max
l,m=1,...,M

|βl − βm|
. (3.9)

An ODE solver applied to solve (2.16) must take sufficient number of steps per mode beat
length to capture the effect of these oscillations in the solution. Prevailing theories [13]
point to the potential importance of the mode beating term in thermal effects, so we must
be careful to treat these oscillations with the needed accuracy if the model is to be extendable
to incorporate thermal effects in the future. In all our simulations, we used 50 ODE steps
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per mode beat length, except for results mentioned in the penultimate paragraph of this
section, which discusses the sensitivity of the model to the number of points per mode beat
length.

Before running the ODE solver, we precompute the propagation constants βj, the mode
beat length, and of course, the modes. The modes, i.e., the eigenfunctions of (2.6) are com-
puted using the FEAST spectral approximation technique, whose mathematical analysis, as
well as application to fiber optics, was studied thoroughly in [7]. For step-index fibers, we
can compute the modes ϕl exactly in closed form (see [2, 16]) as quickly described next. One
first computes the propagation constants by solving the characteristic equation of the fiber
as follows. Let Ji and Ki denote, respectively, the standard Bessel function and the modi-
fied Bessel function of second kind of order i. Then we solve for X satisfying the so-called
“characteristic equation” of the fiber, namely setting the fiber’s “numerical aperture” NA=√
n2
core − n2

clad, we solve XJi−1(X)Ki(
√

NA2 −X2) +
√

NA2 −X2 Ji(X)Ki(
√

NA2 −X2) =
0 by a bisection-based root-finding method. This equation arises from the matching condi-
tions at the core-cladding interface. For each i, enumerating the roots of the characteristic
equation as Xij, j = 0, 1, . . ., the propagation constants are given by

βij =
√
n2
corek

2
s −X2

ijr
2
core.

Set Rij = Xij/rcore and Gij =
√
β2
ij − ncladk2s . The exact LP modes take the following form

in polar coordinates:

ϕij(r, θ) =

{
Ki(Gijrcore)Ji(Rijr) cos(iθ), 0 ≤ r < rcore

Ji(Rijrcore)Ki(Gijr) cos(iθ), rcore ≤ r < rclad.
(3.10)

The mode ϕij is usually called the “LPij” mode. Although one can use interpolants of (3.10)
into the finite element space within the CMT model, the resulting interpolants do not usually
satisfy the mode orthogonality properties to machine precision. Therefore, we use the above-
mentioned FEAST technique, which do give numerical mode approximations that orthogonal
to machine precision on a given mesh.

For the particular case of the Tm parameters in Table 2, we find that the fiber only
has the LP01 and LP11 modes, while for the Yb fiber with the parameters set in Table 1,
we found four modes LP01, LP11, LP21 and LP02. In our simulation the fiber geometry
was meshed using finite elements (with curved elements at the cladding boundary and at
the core-cladding interface) and the relevant LP modes were interpolated into the degree
p Lagrange finite element space based on the mesh. Integration involving finite element
functions is broken into a sum over integrals over all mesh elements and a sufficiently high
quadrature rule is used to approximated an element integral. This is how we approximate
all required integrals, such as in the computation of the coupling coefficient (2.10), as well
as in power computations. Note that each step of the multi-stage ODE solver requires many
such integrations.

To quantitatively describe the light amplification results of the simulation, we compute
the signal and pump power, after the approximate Y (z) = [Ip(z), A(z)t]t has been computed,
as follows:

Ps(z) =

∫
Ωz

Is(x, y, z) dxdy, Pp(z) =

∫
Ωz

Ip(z) dxdy = |Ωz|Ip(z). (3.11)
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Figure 3. The simulated distribution of powers along the Tm-doped (left)
and the Yb-doped (right) fiber amplifier. The pump power Pp and the signal
power Ps, as defined in (3.11), are shown. The black dotted line plots Ps +Pp.

The initial condition Y (0) is set so that the entire signal power is fed into the LP01 mode at
the inlet z = 0. Initial pump power P 0

p was set 1000 W for the Yb case and 1100 W for the
Tm case. Figure 3 shows the distribution of the computed Ps and Pp (marked “signal” and
“pump” there) for the Tm and Yb-doped fibers. The energy transfer from the pump light
to the signal light is clearly evident. We used p = 5 Lagrange elements for these plots. The
use of 50 steps per mode beat length implies that the Yb case required 421,014 RK4 steps,
while the Tm case required 302,340 steps of the ODE solver to cover the 10 m fiber.

Before we conclude this section, we give our rationale for the above-used choice of 50
points per beat length. Table 3 summarizes the sensitivity of the CMT model to the number
of points per mode beat length. We considered the case with 90% input power in the
fundamental mode (FM) and the remaining 10% in the next higher order mode (HOM)
LP11. Numerical measures of “errors” were computed by comparing to a reference solution
Y ref obtained with very large (996) points per beat length. The relative error in signal and
pump powers (labelled EP ) and the maximum of errors in Ym relative to maxm maxz |Y ref

m (z)|
(labelled EY ) are shown in Table 3 for various values of points per beat length (PPB). Each
points-per-beat(PPB) value in the table corresponds to a number of ODE steps equalling a
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4 stage Runge-Kutta 7 stage Runge-Kutta
PPB Ep EY EP EY

7.8 2.24e-09 1.97e-08 2.68e-11 1.34e-10
15.6 7.63e-11 1.30e-09 4.76e-13 2.48e-12
31.1 2.76e-12 8.22e-11 4.31e-13 2.21e-13
62.3 3.08e-13 5.15e-12 4.00e-13 2.02e-13

124.5 4.14e-13 3.78e-13 6.00e-13 3.02e-13
249.1 4.10e-13 2.31e-13 3.01e-13 1.56e-13
498.1 4.23e-13 2.13e-13 3.68e-13 2.08e-13

Table 3. Convergence comparison using 4 and 7 stage Runge Kutta ODE solvers

power of 2. Values were chosen this way to facilitate comparison of the coarse solutions with
the reference solution on identical coarse points. With 50 PPB, the relative error, compared
to the reference solution, is less than 10−10 (when using the classical RK4 or the 7-stage
Dormand-Prince ODE solvers), which is much more accurate than the laboratory threshold
(±5%) for experimental errors. Hence we decided to run all our simulations with 50 PPB.

Each of the hundreds of thousands of ODE steps for traversing the fiber required (multiple)
integrations over the fiber cross section (to compute integrals such as the one in (2.10)). As
already mentioned, these integrations were performed using finite element quadratures. In
unreported experiments, we have attempted to reduce the cost of these integrations by hyper-
reduction techniques common in reduced-order models [17]. One such technique is to use
reduced-order quadratures to approximate the cross-section integrals instead of using finite
elements to perform the integration precisely. Our pilot studies into this used Gaussian
quadrature rules on a disc (core) and an annulus (cladding) of order as high as 20. In cases
where this resulted in substantial reductions in computational cost, we unfortunately also
observed unacceptably large deviations from the results presented above. Further studies are
needed to conclude if other hyper-reduced quadratures, specifically taking the modes into
account, might prove more useful. In the next section, we describe a completely different
line of inquiry that has yielded considerable acceleration in our simulations.

4. The equivalent short fiber concept

In this section, we present the concept of a nearly equivalent short fiber, which is an
artificially short fiber with unphysical parameters that can mimic a longer physical fiber in
some respects. Being shorter, the equivalent fiber can be solved using fewer steps of an ODE
solver, thus providing significant reductions in computational cost.

To explain the rationale behind the equivalent short fiber approach, first consider applying
an ODE solver to solve the CMT model (2.16). As mentioned in the previous section, very
large number of ODE steps were needed to solve the CMT system (2.16) on a 10 m long fiber.
Therefore, it would be extremely useful to reduce the fiber length (and hence the number of
ODE steps) while still preserving the relevant physical processes in the fiber amplifier. We
shall now show that this is possible to some extent using the computational scale model of
an equivalent short fiber described below.

To begin with, one might consider shortening the z-domain in (2.9) using a dimensional
analysis. Note that the left hand side of (2.9) has dimension V/m (volts per meter), and
Klm has units of m−1. Therefore, by non-dimensionalization, one is led to believe that a
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shorter fiber of length L̃� L might, in some ways, behave similarly to the original fiber of
length L, provided its coupling coefficient is magnified by L/L̃. However, not all nonlinear
systems admit scale models that are perfect replicas of the original. Below we shall identify
what properties of such a shorter fiber can be expected to be close to the original.

We introduce the variable change

ζ(z̃) = z̃L/L̃.

A fiber of length L, under the variable change z̃ = ζ−1(z) = zL̃/L becomes one of length L̃.
Under this variable change, (2.9) and (2.14) become

L̃

L

d

dz̃
Al

( z̃L
L̃

)
=

M∑
m=1

eı̂(βm−βl)z̃L/L̃ Klm

(
A
( z̃L
L̃

)
, Ip

( z̃L
L̃

))
Am

( z̃L
L̃

)
(4.1)

L̃

L

d

dz̃
Ip

( z̃L
L̃

)
= 〈gp〉 Ip

( z̃L
L̃

)
(4.2)

for all 0 < z̃ < L̃. In other words, defining Âl = Al ◦ ζ and Îp = Ip ◦ ζ, the above system

may be rewritten as the following system on the shorter domain 0 < z̃ < L̃ for Ŷ = [Âl, Îp]
t,

dŶ

dz̃
=

 (L/L̃) 〈gp(Ŷ )〉 Îp
M∑
m=1

eı̂(βm−βl)z̃L/L̃ (L/L̃) Klm(Ŷ ) Âm,

 . (4.3)

Supplemented with the same initial data at z = z̃ = 0, (4.3) is exactly equivalent to (2.16),
i.e.,

Ŷ = Y ◦ ζ. (4.4)

In other words, the solution of (4.3), being the pull back of the original solution Y to the
shorter domain, is a perfect replica of the original solution Y .

Unfortunately, (4.3) on 0 < z̃ < L̃ offers no computational advantages over the original
system (2.16) on 0 < z < L. This is because the mode beat length of (4.3) has been reduced
by a factor of L̃/L due to the variable change. So in order to solve the ODE system (4.3),
keeping the same number of steps per mode beat length, the total number of steps needed
to solve the system has not been reduced. This leads us to consider another mode coupling
system with the same mode beat length as the original system (2.16).

Let Ỹ (z̃) = [Ĩp(z̃), Ã1(z̃), · · · , ÃM(z̃)]t solve

dỸ

dz̃
=

[
〈(L/L̃)gp(Ỹ )〉 0

0 p(z̃) · (L/L̃)K(Ỹ )

]
Ỹ , 0 < z̃ < L̃, (4.5a)

Ỹ (0) = [I0p , A
0]t z̃ = 0. (4.5b)

Clearly, (4.5) is not the same as (4.3) due to the differences in the phase factors. Therefore,

unlike the solution Ŷ of (4.3), the solution Ỹ of (4.5) is not a perfect replica of the original
solution Y . Nonetheless, we shall now proceed to argue that (4.5) is a practically useful
scale model of (2.16) as it approximately preserves the power distribution from the original.
Power, unlike the amplitude A, is the quantity that can be, and actually is, experimentally
measured.
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Let Pl and P̃l be respectively the powers contained in the lth mode for the physical and
equivalent fiber, defined by

Pl(z) =

∫
Ωz

n

µ0c
|Al(z)ϕl(x, y)|2 dx dy, 0 < z < L,

P̃l(z̃) =

∫
Ωz

n

µ0c
|Ãl(z)ϕl(x, y)|2 dx dy, 0 < z̃ < L̃.

One may express these in terms of

Φl =

∫
Ωz

n

µ0c
|ϕl|2 dx dy,

as Pl(z) = |al|2Φl, where al(z) = Al(z)eı̂βlz.
To obtain an equation for Pl(z), we may start from the second equation of the block

system (2.16), or equivalently from (2.9), which can be rewritten as

eı̂βlzdAl/dz =
M∑
m=1

Klm(z)eı̂βmzAm(z).

Then using dal/dz = eı̂βlz∂zAl + ı̂βlal, we have

dal
dz

= ı̂βlal +
M∑
m=1

Klm(z)am(z).

Using also the complex conjugate of this equation, we have

d|al|2

dz
= al

dal
dz

+ al
dal
dz

= ı̂βlalal − ı̂βlalal +
M∑
m=1

K lmalam +Klmalam,

i.e.,

d|al|2

dz
= 2

M∑
m=1

Re
[
Klm(Y ) alam

]
,

for all l = 1, . . . ,M , or equivalently,

dPl
dz

= 2Kll(Y )Pl + ρl(Y ), (4.6)

where

ρl(Y ) = 2Φl

M∑
m=1
m6=l

Re
[
Klm(Y ) alam

]
, (4.7)

for l = 1, . . . ,M .
To the system (4.6), let us also add the pump power using the index l = 0, i.e., let

P0(z) ≡ Pp(z) as defined in (3.11). Then integrating (2.14), we obtain dP0/dz = 〈gp〉P0. All
together, we have thus obtained an equation for Pl for all l = 0, . . . ,M ,

dP

dz
=

[
〈gp(Y )〉 0

0 2diag[K(Y )]

]
P +

[
0

ρ(Y )

]
, (4.8)

where P = [P0, P1, . . . , PM ]t and diag[·] denotes the diagonal part of a matrix.
To understand the motivation for the remaining arguments, we now highlight an obser-

vation concerning (4.8). A scale model providing a perfect replica of the original power
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distribution is easy to obtain if the system (4.8) were an autonomous system: indeed, if
there exists a function F of P alone such that dP/dz = F (P ), then by merely scaling F
by L/L̃, we obtain an equivalent system that provides perfect replicas of the original power
distribution on the shorter fiber of length L̃. However (4.8) is not autonomous, in general.
Yet, for practical fibers, our numerical experience suggests that (4.8) behaves almost like an
autonomous system. Therefore our strategy now is to view (4.8) as a perturbation of an
autonomous system.

Of particular interest is the fact that if the fiber amplifier was robustly single-mode (M = 1
for the laser signal), then the governing system (4.8) would be autonomous. This can be
achieved by not using a LMA amplifier, but one of a smaller fiber core size and/or a lower
numerical aperture (NA) such that the fiber core can only support only one guided core
mode, the fundamental mode (indexed by m = 1), at the signal wavelength. However, even
with a LMA fiber, if one were to account for fiber bending effects, which cause the higher-
order core modes (indexed by 1 < m ≤M) to leak into the cladding region more so than for
the fundamental mode, then the fiber would operate nearly as a single-mode fiber. Actual
fiber amplifiers are almost always wrapped on a spool rather than stretched out straight, thus
ensuring this fiber bending effect. This provides us with greater confidence of autonomous
system-like behavior, even in real-world implementations of fiber laser amplifier systems.

Recall from (2.10) that Klm is defined using gs(Is, Ip), where Is takes the form in (2.13).
We define the following perturbation of Is,

Is(P ) =
M∑
m=1

n

µ0c
|amϕm|2 =

M∑
m=1

n

µ0cΦm

Pm |ϕm|2 .

It seems difficult to characterize when Is − Is is small a priori (as it depends, e.g., on the
localization and orthogonality of the specific fiber modes) but after a CMT calculation, we
may check if this difference is small a posteriori. Deferring for the moment the matter of
the size of Is − Is, let us proceed to define γ`(P ) = g`(Is(P ), Ip) = g`(Is(P ), P0/|Ωz|), for
` ∈ {s, p}. They represent the gain functions obtained by replacing Is by Is. The new gain
functions in turn prompt the definition of a new mode coupling coefficient: instead of (2.10),
we now consider

κlm(P ) =
ks
2βl

∫
Ωz

γs(P )n(x, y)ϕm(x, y)ϕl(x, y) dx dy.

for all l,m = 1, . . . ,M . Additionally let

κ00(P ) =
1

2
〈γp(P )〉P0,

and κ0l = κl0 = 0, for all l = 1, . . . ,M . We may now view these κlm as entries of an
(M + 1)× (M + 1) matrix, using which (4.8) can be expressed as

dP

dz
= 2κ(P )P + η (4.9)

where η ∈ RM+1 is defined by

η(z) =

[
〈gp(Y )− γp(P )〉 0

0 2 diag[K(Y )− κ(P )]

]
P +

[
0

ρ(Y )

]
.
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We view η as a function of z, i.e., η : [0, L] → RM+1. The z-dependence is clear once we
express the z-dependence of the solution Y ≡ Y (z) and power P ≡ P (z). Equation (4.9)
shows that power is governed by a perturbation of an autonomous system whenever η is
small enough to be viewed as a perturbation.

Returning to consider (4.5), we define analogous quantities for the short fiber, namely

ãl(z) = Ãl(z)eı̂βlz, P̃0 =

∫
Ωz

Ĩp dx dy, P̃l = |ãl|2Φl,

for l = 1, . . . ,M . Then we may repeat the above arguments starting from (4.5) to obtain
the following analogue of (4.9).

dP̃

dz̃
= 2

L

L̃
κ(P̃ )P̃ + η̃, (4.10)

where η̃ : [0, L̃]→ RM+1 is now given by

η̃ =

[
〈gp(Ỹ )− γp(P̃ )〉 0

0 2 diag[K(Ỹ )− κ(P̃ )]

]
P̃ +

[
0

ρ(Ỹ )

]
.

Note that ρ(Ỹ ) is defined by (4.7) after replacing not only Y by Ỹ , but also al (which depends
on Y ) by ãl (which depends on Ỹ ).

To conclude this analysis, it now suffices to compare (4.10) and (4.9). Applying the change
of variable ζ to (4.9), we get

d

dz̃
(P ◦ ζ) = 2

L

L̃
κ(P ◦ ζ)P ◦ ζ +

L

L̃
η ◦ ζ. (4.11)

Comparing (4.10) and (4.11) we see that when η and η̃ are negligibly small compared to the
other terms, Pl ◦ ζ and Pl solve approximately the same equation, and consequently

P ◦ ζ ≈ P̃ . (4.12)

We summarize this discussion as follows.

The system (4.5) is an equivalent short fiber model of (2.9) in the sense that the power
Pl contained in the lth mode is approximately preserved from the original fiber model (2.9)
through a change of variable, under the above assumptions.

5. Computational verification of equivalent fiber concept

In this section, we perform extensive numerical experiments to verify the practical utility of
the equivalent fiber concept introduced in Section 4. We shall compare the relative differences
in the powers obtained from the original fiber and its equivalent short fiber for various settings
to gauge the practical effectiveness of the approximation (4.12). In Subsections 5.1 and 5.2,
we show a way to understand the equivalent short fiber as a fiber with artificial parameters
(with values not physically realizable) for the Tm and Yb cases, respectively.
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5.1. Realizing the equivalent short fiber for the Tm-doped case. The equations of
the equivalent short fiber, namely (4.5), can be realized for a dopant medium if we can find
a set of “artificial” parameters that would scale the original gp and the original K by L/L̃.

In view of (2.10), this effect is achieved by scaling the original g` by L/L̃ for ` ∈ {s, p}. Now
consider the expressions for g` for Tm-doped fiber, given in (3.4) and (3.5). Clearly, in view
of these expressions, g` will be scaled by L/L̃ if all the ion populations Ni are so scaled.

This observation, in turn, leads us to consider the expressions for Ni we derived in (3.3).
Let

Ñtotal =
L

L̃
Ntotal, κ̃R =

L̃

L
κR.

The value of the expression for N0 in (3.3a) will be scaled by L/L̃ if we replace κR by κ̃R
and Ntotal by Ñtotal, i.e., (3.3a) implies

L

L̃
N0 =

γ0κ̃RÑtotal − γ1(1 + γ2 + γ3)− 1

2κ̃R(γ0 + γ1γ4)
(5.1)

+

√
(1− γ0κ̃RÑtotal + γ1(1 + γ2 + γ3))2 + 4(γ0 + γ1γ4)κ̃RÑtotal

2κ̃R(γ0 + γ1γ4)
.

Let Ñ0 = LN0/Ñ0, the left hand side above. Proceeding to analyze the expressions in (3.3b),
we find that the same change in κR and Ntotal, and the consequent change in N0 to Ñ0

per (5.1), also scales all other Ni by L/L̃, i.e.,

L

L̃
N1 =

(γ3 + γ4κ̃RÑ0)γ1Ñ0

1 + γ0κ̃RÑ0

,
L

L̃
N2 =

γ2γ1Ñ0

1 + γ0κ̃RÑ0

,
L

L̃
N3 =

γ1Ñ0

1 + γ0κ̃RÑ0

.

Therefore, all the ion populations Ni are scaled by L/L̃, and so are gs and gp. We have thus
arrived at our main observation of this subsection:

A short fiber of length L̃ is equivalent to a Tm-doped fiber of length L if the fiber’s original
parameters Ntotal and κR are changed to Ñtotal = LNtotal/L̃ and κ̃R = L̃κR/L, respectively,
i.e., this change realizes (4.5).

To see how this idea works in practice, we consider two scenarios, both with an equivalent
short fiber of L̃ = 0.1 m representing the 10 m long Tm fiber we simulated in Figure 3. (All
parameters are as in Table 2 except for Ntotal and κR, which were modified for the equivalent
fiber as stated above.) In the first scenario, 100% of the input signal power is carried in the
LP01 mode at the inlet (the same setting as in the computation reported in Figure 3). In
the left panel of Figure 4, we find that the plots of the computed powers for the equivalent
short fiber and the real fiber are virtually identical. Even though the difference between
them appear to be zero visually, we have quantified this difference in the bottom left plot of
Figure 4: since the domains of the two power functions to be compared are different, we pull
back the original powers to the shorter domain and plot Pl ◦ ζ− P̃l (for the two modes, LP01
and LP11) on the shorter domain. Clearly, from the scale of the plot, the absolute values
of these differences are found to be of the order of 10−9, so indeed the differences between
the two sets of power curves are negligible. The practical value of the equivalent short fiber
calculation lies in the fact it gave essentially the same power curves about 100 times faster
than the real-length fiber calculation of Figure 3.
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Figure 4. A comparison between a Tm-doped fiber and its equivalent
short counterpart. The left panel shows the case where the input signal power
was wholly contained in the LP01 mode, while the right panel shows the case
where it was equally distributed between the two modes.
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In the second scenario, the total input power of 30 W is distributed equally between
the LP01 and LP11 modes. From the top right panel of Figure 4, we find that LP01
mode amplifies more than the LP11 mode. Moreover, as in the left panel, the results from
the real and equivalent short fiber are visually indistinguishable. However, a more careful
examination of the difference Pl◦ζ−P̃l in the bottom right plot shows that maximal absolute
power differences are about 0.3 near the inlet of the fiber. Although this is many fold larger
than the first scenario, the relative power error of 3×10−4 is still quite small enough to make
the equivalent short fiber a useful practical tool. Note that the difference Pl ◦ ζ − P̃l is now
highly oscillatory, due to the interactions between the two modes.

5.2. Realizing the equivalent short fiber for the Yb-doped case. The equivalent short
fiber in the Yb-doped case is more easily realizable than the Tm-case as the Yb population
dynamics is simpler. The following conclusion can be arrived at easily proceeding similarly
as in Subsection 5.1.

A short fiber of length L̃ is equivalent to a Yb-doped fiber of length L if the fiber’s original
parameter Ntotal is changed to Ñtotal = LNtotal/L̃, i.e., this change realizes (4.5).

Figure 5 gives some indication of the practical performance of this equivalent short fiber.
As in the experiments for the Tm-fiber reported in Figure 4, here we consider two scenarios,
the first where all input signal power is given to the LP01 mode, and the second where
the input power is distributed to the four LP modes equally (25% each). The left panel in
Figure 5 shows the former, while the right panel shows the latter. The equivalent fiber is
less faithful in the latter case, but the scale of the errors observed in the bottom plots in
both cases are well within the acceptable error ranges in engineering practice. (Laboratory
power measurement uncertainties tend to be about ±5%.)

5.3. Increase of error with respect to some parameters. We want to understand how
relative power differences between the equivalent and real fiber vary with respect to two
important input parameters P 0

p and the short fiber length L̃. We consider both the Tm and
Yb fibers, holding the original fiber length L fixed to 10 m.

The solutions of the original and equivalent fiber models vary as initial conditions are
changed. Therefore to compare one with the other in the worst case scenario, we take the
maximum of the power error measures over the set

A =

{
α ∈ CM :

∫
Ωz

Is(x, y, 0, α) dxdy = P 0
s

}
,

i.e., the set A is the set of all input distributions yielding the same initial signal power P 0
s ,

which is set for Tm and Yb fiber per Tables 2 and 1, respectively. The initial pump power
P 0
p is varied in the range 1000–5000 W (thus providing a corresponding range of initial values

for the Ip-component in the model). We solve the full CMT model and the equivalent short
fiber model, not only for this range of P 0

p , but also for decreasing values of the short fiber

length L̃. The following quantity is then computed across all such solutions:

ε(P 0
p , L̃) = max

A0∈A

max
l=0,1,...,M

max
0≤z≤L

∣∣(Pl − P̃l ◦ ζ−1)(z)
∣∣

max
l=0,1,...,M

max
0≤z≤L

∣∣Pl(z)
∣∣ . (5.2)
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Figure 5. A comparison between a Yb-doped fiber and its equivalent short
counterpart. The left panel shows the case where the input signal power was
wholly contained in the LP01 mode, while the right panel shows the case where
it was equally distributed between all four modes.
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Figure 6. Maximal relative power differences between a 10 m long real fiber
and equivalent short fibers of various lengths L̃, for various initial pump powers
P 0
p . The Tm case is shown on the left and Yb case on the right.

Thus ε represents the maximal possible power deviations between the equivalent and original
models over all input signal distributions and over all mode components, as a function of
initial pump power P 0

p and the fictitious length L̃. Values of ε will thus inform us of the

ranges of P 0
p and L̃ where the equivalent short fiber is more useful.

To practically compute ε, we replace the maximum over the infinite set A by a computable
maximum over a finite set obtained by assigning each mode component all possible values
from 0 to 100% in 10% increments (while constraining the total signal power to P 0

s ). In
the case of the 2-mode thulium fiber, this resulted in 11 input power distributions, while for
the ytterbium-doped fiber having 4 modes, 286 distributions were required. The maximum
over z in (5.2) is replaced by the maximum over the points where ODE solver traversed. We
used polynomial degree p = 5 for the finite element approximation of modes and the 7-stage
Dormand-Prince Runge Kutta method for solving the ODE system. Collecting data from
hundreds of simulations, we then plot ε in a two-dimensional grid of P 0

p and L̃ values.
The resulting contour plots of the function ε are given in Figure 6 for Yb and Tm fibers,

for a range of P 0
p and L̃ values. We find that relative error ε varies mildly with respect to P 0

p

for any fixed L̃, indicating that the absolute error in the powers increases more or less linearly
as P 0

p is increased. Looking vertically at the plots of Figure 6, we find that holding P 0
p fixed,

there are significant variations in ε with respect to L̃. The errors definitively increase as L̃
decrease. Figure 6 clearly indicates that excessively short equivalent fiber lengths are not
recommendable.
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[7] J. Gopalakrishnan, L. Grubǐsić, J. Ovall, and B. Parker, Analysis of feast spectral approx-
imations using the dpg discretization, Computational Methods in Applied Mathematics, 19 (2019),
pp. 251–266.

[8] S. D. Jackson, Cross relaxation and energy transfer upconversion processes relevant to the functioning
of 2µm Tm3+-doped silica fibre lasers, Optics Communications, 230 (2004), pp. 197–203.

[9] S. D. Jackson and T. A. King, Theoretical modeling of tm-doped silica fiber lasers, J. Lightwave
Technol., 17 (1999), p. 948.
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