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Abstract

We point out an application of a recent unified analysis of several discontinuous Galerkin methods to accelerating the
methods by a multigrid preconditioner.
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1. Background

A unified analysis of several discontinuous Galerkin
(DG) methods appeared recently [2]. In this short note we
show that this analysis permits analysis of multigrid pre-
conditioners for several DG methods for elliptic problems.
The multigrid analysis is a simple extension of the one in
[7] for the interior penalty (IP) method [1]. We also provide
results of some numerical studies.

We want to precondition DG methods on a mesh ob-
tained by successive refinements. Let � be a convex poly-
gon with a “coarse” quasiuniform triangulation T1. We
obtain refinement Tj from Tj−1 by connecting the mid-
points of all edges of Tj−1, for integers 2 ≤ j ≤ L . Let �k

denote the union of boundaries of all triangles τ ∈ Tk . Let
Vk = {v : v|τ is a polynomial of degree ≤ d for all τ ∈ Tk ,
v = 0 on ∂�}, and V k = (Vk)2.

Primal forms of various DG methods have been derived
in [2]. Thus, efficient solution by these methods is possible
by preconditioning the primal bilinear forms. We consider
only those DG methods tabulated in Table 1. To describe
the notation used therein, consider an edge e shared by
triangles τ1 and τ2. For functions f defined on τ̄1 ∪ τ̄2, let ni

denote the outward unit normal of τi and fi = f |∂τi . Define
a jump vector on e: [[ f ]] = f1n1 + f2n2. For vector functions
f , define { f } = 1

2 ( f 1 + f 2) on e. Let (·, ·)Z denote the
L2(Z)- (or L2(Z)2-) innerproduct, and 〈u,v〉k = ∫

�k
uvds.

Following [2], define lifting operators r : (L2(�k))2 
→ V k

and re : (L2(e))2 
→ V k by (r(φ),q)� = −〈φ, {q}〉k , and
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(re(φ),q)� = −(φ, {q})e, for all q ∈ V k ,e ∈ Ek . Define forms

Dk(u,v) =
∑
τ∈Tk

∫
τ

∇u ·∇vdx ,

αr
k(u,v) =

∑
e∈Ek

∫
�

ηe re([[u]]) · re([[v]])dx ,

α
j
k(u,v) =

∫
�k

ηe

he
[[u]] · [[v]]ds,

Ck(u,v) = 〈{∇k u}, [[v]]〉k +〈[[v]], {∇kv}〉k ,

where ηe is some positive number for each e ∈ Ek , and
he denotes the length of edge e. This defines all notation
used in Table 1. Note that we have restricted ourselves to
bilinear forms for solving the Poisson equation. Also, for
simplicity, we have not considered the most general form
of LDG.

All the methods in Table 1 are symmetric, and consistent
[2]. We assume that ηe is chosen so that we always are in
the regime of stability of these methods. Many estimates
we need have already been proven in [2]. Let ‖ · ‖Z denote

Table 1
DG methods

Method Definition of primal bilinear form ak (u,v)

IP [1] Dk (u,v)−Ck (u,v)+α j (u,v)
LDG [6] Dk (u,v)−Ck (u,v)+ (r([[u]]),r([[v]]))� +α j (u,v)
BRMPS [3] Dk (u,v)−Ck (u,v)+αr (u,v)
BMMPR [5] Dk (u,v)−Ck (u,v)+ (

r([[u]]),r([[v]])
)
�

+αr (u,v)
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the L2(Z)-norm. Define

‖|v‖|k =
(

Dk(v,v)+
∑
e∈Ek

1

he
‖[[v]]‖2

e

)1/2

.

For two real numbers A and B, we write A � B to indicate
that an inequality A ≤ cB holds with some constant c > 0
independent of refinement level k and mesh sizes {hk}. It
follows from arguments in [2] that

ak (u,v) � ‖|u‖|k‖|v‖|k , and ‖|u‖|2k � ak(u,u), (1)

for all u,v ∈ Vk . Moreover, the function Uk ∈ Vk that sat-
isfies ak (Uk ,v) = ( f ,v)�, for all v ∈ Vk , approximates the
solution of −�U = f on �, with U = 0 on ∂�, in the
following sense [2]:

‖|U −Uk‖|k � hk‖ f ‖�, for all f ∈ L2(�). (2)

2. Multigrid results

Here we present uniform multigrid preconditioners for
each ak (·, ·) of Table 1. Smoothing iterations of the form

u(i+1) = u(i) + Rk (g − Ak u(i)), i = 0,1, . . . (3)

are important ingredients of a multigrid algorithm. Here
u(0) ∈ Vk is an initial guess, g ∈ Vk , Rk is a “smoother”,
and Ak : Vk 
→ Vk is defined by (Aku,v)� = ak(u,v), for all
u,v ∈ Vk . Thanks to the now well known theory of subspace
correction methods, smoothers based on ak(·, ·) are easy to
construct. E.g., decompose Vk by Vk = Vk,1 ⊕ Vk,2 ⊕ ·· ·⊕
Vk,N where Vk, j is the space of restrictions of functions of
Vk to j th triangle of Tk . A scaled Jacobi smoothing iteration
(with scaling factor γ ) corresponding to this subspace
decomposition is an iteration of the form (3), usually
implemented as follows: Given u(i) , set δ = g − Aku(i) .
Solve for wj ∈ Vk, j satisfying

ak (wj ,v) = (δ,v), for all v ∈ Vk, j ,

by inverting small matrices. Then u(i+1) of (3) is given by
u(i+1) = u(i) +γ

∑
j wj . If one multiplicatively combines the

local solves above, one gets a Gauss–Seidel smoother in a
standard fashion. Note that we can compute smoothers so
easily because ak (·, ·) uses only local lifting operators. E.g.,
r([[u]]) for u ∈ Vk, j is supported only on the j th triangle of
Tk and the (at most three) triangles of Tk that share an edge
with it.

Remark 2.1. Smoothers can be implemented without using
the lifting operators. E.g., when LDG is implemented as
a saddle point system, if all degrees of freedom involve
values interior to elements, it is natural to group unknowns
within elements into blocks. With this block partitioning,
the standard block Jacobi method applied to the LDG Schur
complement matrix is identical to the smoothing iteration
given previously.

Algorithm 2.1. Let R(l)
k = Rk if l is odd, and R(l)

k = Rt
k

if l is even (Rt
k is the L2-adjoint of Rk ). Let Qk denote

the L2-orthogonal projection into V k . Also set x0 = 0 and
B1 = A−1

1 . For k ≥ 2 and any function dk ∈ Vk , Bkdk can be
computed by the following four steps, assuming that Bk−1

is already defined.
(1) Compute xl for l = 1, . . . ,m(k):

xl = xl−1 + R(l+m(k))
k (dk − Ak xl−1).

(2) Set ym(k) = xm(k) + Bk−1 Qk−1(dk − Ak xm(k)).
(3) Compute yl for l = m(k)+1, . . . ,2m(k):

yl = yl−1 + R(l+m(k))
k (dk − Ak yl−1).

(4) Set Bkdk = y2m(k).
We assume that the number of smoothings m(k) in-

creases as k decreases in such a way that β0m(k) ≤
m(k − 1) ≤ β1m(k), with 1 < β0 ≤ β1. A typical choice
is m(k) = 2L−k . The following theorem shows that BL is a
good preconditioner for AL . The spectral condition number
of BL AL is bounded independently of mesh-sizes.

Theorem 2.1. For all u ∈ V k, ak (u,u) � ak (Bk Aku,u) �
ak(u,u).

Proof. The proof proceeds by verifying the conditions
of the abstract multigrid theory of [4]. The locality of
the lifting operators easily proves the “smoothing con-
dition” for smoothers based on the above mentioned
decomposition. It suffices to verify the “regularity and
approximation condition”. Define Pk−1 : Vk 
→ Vk−1 by
ak−1(Pk−1u,vk−1) = ak (u,vk−1), for all u ∈ Vk ,vk−1 ∈ Vk−1.
The condition requires that there is an 0 < α ≤ 1 such that
|ak (u − Pk−1u,u)| � h2α

k ‖Aku‖2α
� ak (u,u)1−α for all u ∈ Vk ,

and for all k = 2, . . . , J . By (1), this condition follows with
α = 1/2 if we prove

‖|u − Pk−1u‖|k � hk‖Aku‖�, for all u ∈ Vk . (4)

Proof of (4) proceeds exactly as the proof of Lemma 3.1 of
[7], but using the more general error estimate (2) in place
of IP error estimates. �
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