Geometric Multilevel Methods Jay Gopalakrishnan

Diary of results proved and discussed in MTH 610 Fall 2014

Definition 1 (Conventions and notations in this course). The “base” inner product in a
Hilbert space V' (over C or R) under consideration is denoted by (-, )y, or simply (+,-) when
no confusion can arise. The corresponding norm is ||z| = (z,2)Y/2. If V .= CN or RV, then
the base inner product is (z,y) = y*x. The set of continuous linear operators from V' to
another Hilbert space W is denoted by L(V,W). When V = W we abbreviate it to L(V),
and denote its subset of bijective operators by B(V'). An operator A € L(V) is self adjoint
if (Az,y) = (x, Ay) for all x,y € V, and is positive definite if in addition (Az,x) >0 for
all 0 # z € V. A self adjoint and positive definite operator M in B(V') defines another
inner product (z,y)y = (Mxz,y) on V and a corresponding norm |z = (x,x)zl\f. (Do
not confuse the different meanings of (-,-)s when S is a space and when S is an operator.)

Theorem 2. If A e B(RY) is self adjoint and positive definite and e, is the error in the
n-th iterate of the steepest descent algorithm for solving Ax = b, then
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where k(A) =maxo(A)/mino(A).

Theorem 3. If A€ B(RY) is self adjoint and positive definite and e,, is the error in the
n-th iterate of the conjugate gradient algorithm for solving Ax = b, then
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Proposition 4. Suppose A € L(V) is bounded and self adjoint in (-,-). Then its spectrum
o(A) <R and both inf o (A) and supo(A) are in o(A). Moreover, for any Cy,Cy >0, the
following are equivalent statements:
(1) Co(z,x) < (Ax,x) < Ci(z,x), for all z e V.
(2) Co<info(A) and supo(A) < Ch.

Proposition 5. Suppose A, B € B(V') are self adjoint and positive definite in (-,-) and
Co,C1 > 0. Then the following are equivalent statements:
(1) ForallveV
Co(B'v,v) < (Av,v) < C1(B v, v).
(2) ForallveV,
Co(A™,v) < (Bv,v) < Ci (A, v).
(3) The spectrum of the product BA is real and satisfies
Co<info(BA) and supo(BA)<Ch.

Ezercise 6. Suppose A € L(V) is self adjoint and positive definite. Then A € B(V) if and
only if there exists a Cjy > 0 such that Cy(x,x) < (Az,z) for all z e V.
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Ezercise 7. Suppose A € L(V) is self adjoint in (-,-). Define
(Ax, Ax)'2 (A, )
A) = sup [N, Al = sup ——, r(A) = sup ——=.
p( ) ,\EU(IZ)| | ” ” 0#9:?\/ $,$)1/2 ( ) oqmepv (JE,Z')
Prove that p(A) = |A| = r(A).

Definition 8. Given x(,b € V', suppose a sequence x, € V' is constructed by the one-step
iteration

Tp+1 = J(xn: b) (1)
using a continuous map J:V xV - V.

(1) If J is a linear map on the product space V x V| i.e.,
J(ax + py,ab+ Bd) = aJ(z,b) + BJ(y,d)

then (1] is said to be a linear iteration.
(2) Tteration (1)) is said to be consistent with the system Ax = b for some A € L(V)
if z is a fixed point in the sense

x=J(x,b).
(3) Iteration ({1)) is convergent if z, >z in V as n - oo.

Proposition 9. Suppose Ae B(V), beV, and x = A~'b. For any linear iteration the
following are equivalent statements:

(1) The iteration is consistent with Ax =b.
(2) There is a linear operator E € L(V') such that the error e, = x — x,, satisfies

ens1 = Fey, Vn=0,1,....

(The operator E is called the reducer of the algorithm and Ez = J(z,0).)
(3) There is a linear operator B € L(V') such that

Tpy1 = Ty + B(b— Axy,), Vn=0,1,.... (2)
(The operator B is called the iterator and Bb= (I - E)A~1b=J(0,b).)

Proposition 10 (Iterator as a preconditioner). Consider the iteration (2|), suppose A
and B are self adjoint in (-,-). If Ae B(V) is positive definite and

n=|1-BAJa<1,

then
(1) B is positive definite,
2) the iteration 1S convergent,
)
)

(
(3) the condition number k(BA) = supo(BA) L+
(

————= sati BA) <

info(BA) satisfies r(BA) 1-n

4) the asymptotic convergence rate of the conjugate gradient method for Ax =b pre-
conditioned by B is faster than the rate of convergence of .

I
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Definition 11. Suppose A is self adjoint in (-,-). If B is also self adjoint in the same inner
product, then the iteration
Ups1 = Up + B(b = Auy,), Vn=0,1,.... (3)
is called a symmetric iteration. When B # B!, we often symmetrize the algorithm by
revising it to compute u,,; from u, in these two steps:
Ups1j2 = Un + B(b - Auy,) (4a)
Uns1 = Upa1j2 + BH(b— Atparpo). (4b)
These two steps define the symmetrization of .
Proposition 12. Suppose A € L(V') is self adjoint. Then iteration defines a consistent

and symmetric linear iteration. Its self adjoint iterator is given by
B=B'+B-B'AB.
If in addition A € B(V') is also positive definite, then the reducer satisfies these:
(1) |[I-BA|a<1 < B isin B(V) and is self adjoint and positive definite.
(2) p(I -BA)?<p(I-BA)=|I-BA|a=|I-BA|%=1-info(BA).

Definition 13. Recall that the Hilbert adjoint of A € L(V, W) is the operator A* € L(W, V")
satisfying (Av,w)w = (v, Atw)y for all v e V and w e W. (This is related but not equal
to the operator dual on Banach spaces.)

Ezercise 14. Suppose X and Y are Hilbert and A € £(X,Y). Prove that the following
are equivalent statements:

(1) A is surjective.

(2) At is injective and ran A? is closed.

(3) There exists an a > 0 such that |A'y|x > a|y|y for all y e Y.

Assumption 15. Suppose V and V are Hilbert spaces with inner products (,)vand (-,-)yp,
resp. Assume that A € B(V) is self adjoint and positive definite in (-,-)y and R e L(V,V)
is surjective.

Definition 16. In the setting of Assumption [I5] the operator
By = RA'R! (5)
is called a two-level or auxiliary space preconditioner.

Assumption 17. Suppose A and R are as in Assumption [15[ and assume additionally that
there is an A € B(V'), self adjoint and positive definite in (-,-)y, and satisfying

(AR, Rd)y < Cp(A0, ),  VYoeV.

Assumption 18. Suppose A and R are as in Assumption [15| and assume additionally that
we have an operator S € L(V, V') such that RS = (where I is the identity on V') and

Cs(ASv, Sv)y < (Av,v)y, YoeV
for some A € B(V) that is self adjoint and positive definite in (-, )y .
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Lemma 19. Suppose Assumption holds. Then the two-level operator By in 1S @
bijection in B(V') and the operator T = A'R!B;' : V -V is a continuous right inverse
of R (i.e., RT =1).

Lemma 20. Suppose Assumption |15 holds. Then, for all v eV,

(By'v,v)y = ﬁdi{glf{v}(/lf), 0)yr

where the set R{v} = {0 €V : Ri = v}.

Lemma 21. Assumptions and imply that the By in (5] satisfies
(Av,v)y < Or(By'v,v)y, VoeV.

Lemma 22. Assumptions|15 and|18 imply that the By in satisfies
Cs(B3'v,v)y < (Av,v)y VoeV.

Theorem 23 (Fictitious space lemma of Nepomnyaschikh). Suppose Assumptions[15,
and[18 hold. Then B, = RA-\R! satisfies

CS(B2_1U7 U)V < (A’U,’U)V < CR(BQ_LUv,U)Vu Vo e ‘/7
and consequently k(ByA) < Cr/Cs.
Example 24. Use an enclosing fictitious domain to precondition the Neumann problem.

Corollary 25. Suppose Assumptions and hold with V ¢ V and with R:V -V
equal to a projection onto V. Then

o(BsA) € [1,Cr].

Assumption 26 (Subspace correction setting). Let A € B(V') be self adjoint and positive
definite. Suppose V;, i =1,...,J, are closed subspaces of the Hilbert space {V, (-,-)} and
suppose 4; € B(V;).

Definition 27. In setting of Assumption 26 let @; : V' — V; denote the (-,-)-orthogonal
projection onto V;. The operator

J
Ba = Z A;lQl (6)
i=1
is called the additive preconditioner based on subspaces V; and operators A; € B(V;).

Algorithm 28 (Additive Schwarz Method/Parallel Subspace Correction). Given an ap-
proximation u, € V to u= A"l f, compute u,,; as follows:

(1) Project the residual onto V; and compute r; = Q,r = Q;(f — Auy,).

(2) Find ¢; € V; by solving A;e; =7;.
J

(3) Correct u,, on each subspace by .1 = u, +w Z&?j,
i=1

4

where w > 0 is a “relaxation” parameter.
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Proposition 29. Suppose A; are self adjoint. Then Algorithm (28 is a linear symmetric
consistent iteration that can be rewritten as

Uns1 = Up + wWB(f — Auy,) (7)

whose iterator and reducer are given, respectively, by

J J
wBCL:wZA;IQi, E=I—wBaA:I—w(ZTj), whereTj=/1j_-1QjA.
i=1 J=1
Algorithm 30 (Multiplicative Schwarz Method/Successive Subspace Correction). Given
an approximation u, € V to u = A~1f, compute u,,; as follows:
(1) Set u£°> = Uy,.
(2) For j=1,...,J do:
(a) Solve for ¢; € V; satistying Aje; = Q;(f - Augf_l)).
(b) Compute u = U0 4 £
(3) Set upy1 = ulh.
Proposition 31. Algorithm[3(] is a linear consistent iteration that can be rewritten as
Up+l = Up + Bm(f - Aun)7
whose iterator and reducer are given by
B, =(I-E)A™, E=I-T;)I-Tj)(I-T1). (8)
Definition 32. B,, is called the multiplicative preconditioner based on subspaces V;
and operators A; € B(V;). Also define
BmZBfn-f-Bm—BinABm, Al‘jZQZ‘AIj, Mj :A§'+Aj_Ajj7
where [; : V; -V denotes the natural embedding.

Assumption 33. In the subspace correction setting of Assumption 26, assume further that
V = Vi x Vi x - x V; with inner product (0,0)¢ = Z;}:l([ﬁ]j, [W];)v and set R: V -V by
Ry = ijl[f)] ;- Write elements of V as column vectors of its Vj-components and write an
operator on V' as a matrix of operators on the component spaces, e.g.,

[0]1 ) o
D |=0eV, R=[L, I, -~ I;], R'=|:|.
[0]s Qs
Continuing in such notations of matrices of operators, set
A A e Ay 0 O o 0 A1 0 0
A A.Zl Ago . A?J L= A.21 0 . 0 . D= 0 Ag 0
Apn - Ay Agg Ap - Ayga 0 0 0 - Ay
:diag(/ll,...,/l]), Ba: _1, Bmz( +L)_1,

B,, = B! + B - B'AB, M= f+ -D, U=( +L).
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Lemma 34 (B,, and B, take the form of Bs). Suppose Assumptions and hold.
Then A= R'AR is self adjoint in (-,-)y and the following identities hold:

B,=RB,R'
B,, = RB,,R'
B,, = RB,,R".

Ezxample 35. The classical Jacobi and Gauss-Seidel iteration for a symmetric positive
definite matrix fits Algorithm [28 with V' =RY and V; = Span(e;).

Lemma 36. Suppose Z‘j]:l V; is dense in V' and A; are self adjoint and positive definite.
Then the following are equivalent:

(1) The sum of the subspaces is closed, i.e.,

J
V=3V (9)
=1
(2) B, is a bijection on V.

Theorem 37. Suppose A; are self adjoint and positive definite, Assumption and @D

hold. Then
J

Jinf Z(Aﬂ)i,vi),

=1 Vi=U} =1

where the infimum s taken over all decompositions of form v = vy +vy+---+v; with v; € V;.

(B;'v,v) =

Assumption 38. Suppose Assumption [26] holds and
H[—A;lA“ Aii<17 VZzl,,J

Lemma 39. Suppose Assumptions and @D hold. Then B,, and M are bijections
on V' and the following identities hold:

Theorem 40. Suppose Assumptions and @ hold. Then B,, is a self adjoint and
positive definite operator in B(V'), and for allveV,

2 J 2
-l nt S

-1 i1 Vi=U} =1
M; g

J
(Blv,v)= inf )

(L vi=v} i3

J
A + Q; A Z v;

J=1+1

J

QZA (Z Uj) - AZ”Ui
j=i

where the infimum is taken over all decompositions of form v = vy +vy+---+v; with v; € V;.

Corollary 41 (XZ identity). Suppose Assumptz’ons and @D hold. Then
1
1+ Co

-1
M;

(I =-T))(I-T)I-T)|4=1-

where

J 2

Co = sup inf Z
lvla=1 {ZLivi=v} i

QZA (ZJ: Uj) - Aﬂ)i
j=t

-1
Mi



Definition 42. Let P;:V — V; be the A-orthogonal projector defined by
(Pv,w;i)a = (v,w;)a, Vw; € V;
for any self adjoint and positive definite A. Note that A;;P; = Q;A.

Corollary 43 (XZ identity for A-orthogonal projectors of a subspace decomposition).
Suppose Vi, i =1,...,.J, are closed subspaces of the Hilbert space V' satisfying @ and A
is a self adjoint and positive definite operator in B(V'). Then

1
(2= Py (1= P)(T = P = 1- —— (10)
+C1
where
J J 2
€1 = sup inf Pi( v)
Jvfa=1 {ZL vi=v} ; j:tz;rl ! A

Definition 44. In the setting of Assumption [26] define
J
j:[ZPZ’]Ala g:[[—(I_PJ)"'(I—P2)(I—P1)]A1'
i=1

Note that J and G coincides with B, and B,,, respectively, if we set A; = A;; for all 7.

Condition 45 (Strengthened Cauchy Schwarz inequality). § > 0 is a number such
that for all v; and w; in V;,

J J 1/2 J 1/2
Zl\<wi,vj>A\sﬁm(;nwina) (zluviua) |

=17

J

Lemma 46. In the subspace correction setting of Assumption
2

J J J
Condition[{j = )’ B(Zvj) <BY |uilA, VeV,
-1 =1 )la =
- (g__lv,v) < B(j‘lv,v), VveV,

which also implies (J Av,v)a < B(GAv,v) 4 for allveV. Here G = Gt +G - Gt AG.
Condition 47 (Stable Decomposition). 3 a >0 such that Vv € V, a decomposition

J
V=Y v, with v; € V;,
i=1

exists and satisfies y
Y lvillE < afoli.
i=1

Theorem 48. In the subspace correction setting of Assumption if Conditions [{3
and [{7 are verified, then
aH(v,v) 4 < (T Av,v) 4 < Y%(0,v) 4,

or equivalently
B712(Av,v) < T, v) < a(Av,v),
for allveV.
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Ezercise 49 (Case of A; # A;;). Suppose 51 > 0 is a number such that for all v; and w;

in V;,
J J [ 12/ 5 1/2
1
53 [anal 8 (Slals) (S1als) - (1)
i=1j=1 i1 =1
J
and suppose 3 a; > 0 such that Vv € V, a decomposition v = Zvi with v; € V; exists and
i=1
satisfies
J
> lvil%, < anfol (12)
i=1
Then show that
Bl_l/Q(AU, v) < (B;'v,v) < ai(Av,v), VoeV. (13)

Theorem 50. In the subspace correction setting of Assumption if Conditions [{5

and [{7 are verified, then
1

1+afB’

and moreover, for the Jacobi case, setting relazation parameter w such that 0 <w < 2/[42,
o(I-wJA) € [0,4] € (-1,1)
where -0 =1-wB2 <y=1-(w/a).

II-GA|% <1~

Assumption 51 (A setting using Lagrange finite elements). Set V' = Lagrange finite element
subspace of H} (), of order p > 1, on a simplicial quasiuniform mesh 7, (of mesh size h)
subdividing a domain Q ¢ R?, and

(u,v)vzfuv, (Au,v)=fgradu~gradv (14)
Q Q

for all u,v e V. Let {Q;:i=1,...,J} be a finite cover of Q such that each €); is a union
of elements of T,. Assume that there is a W1 partition of unity {6;} subordinate to the
covering and suppose © > 0 is a number satisfying | grad 6;]| =) <© foralli=1,2,...,J.
Assume that the cover has the limited overlap property: there is an integer r such
that each point of €2 is contained in no more than r of the sets 2;. Set

Vi={v eV :supp(v) €}, 1=1,2,...,J. (15)

Theorem 52. Assumption[5] —

(1) Condition |45 holds with B =12,
(2) Condition also holds: 3C' > 0 independent of h such that Yv € V, there is a
decomposition v = 2;7:1 v; with v; € V; and

J
> lwill% < Cr (©%[v]* + [v]%).
i=1

Exercise 53. For the A and V set in Assumption[51] prove that there is a mesh-independent
constant C' > 0 such that p(A) < Ch=2.
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Example 54. Block Gauss-Seidel and Jacobi iterations with the overlapping blocks ob-
tained when (); is set to vertex patches.

Definition 55 (Real method of interpolation). If X, and X; are normed linear space are
subspaces of a larger linear space, then X = [Xj, X;] is called a compatible pair of
spaces. If Y = [Yy,Y1] is also a compatible pair, then two bounded linear operators
L;e £(X;,Y;), 1=0,1, are called a pair of compatible operators whenever

L0u=L1u VUEX()HXI.

The K-functional (of Peetre) for the compatible pair X is defined by

)1/2

K(t,u):uogf:u(”uong(o+t2||u1||§(1 : Vue Xo+ X, Vt>0.

Define, for 0 < s < 1,

[l

0 dt\'?
- (25(1—s)f t‘2sK(t,u)27)
0

and define the interpolation space X = [ Xy, Xi]s={ue Xo+ X1 : |ulx, <oo}.
Theorem 56. If [ X, X1] is a compatible pair, then for all0 < s< 1,

XonX; o X, o Xo+ Xy,
and moreover:

lullx, < Julx lulk, < lulxonx, Yu e Xon X,
K(t,u) < t*]ul x, Vue X.,
Xs vU/E)(s-

[ull xorx, < [l

Theorem 57 (Interpolation of operators). Suppose [ Xo, X1], [Yo,Y1] and L; € L(X;,Y5),
i=0,1, are compatible. Then, for all0 < s <1, 3! linear operator Lg € L(X,,Ys) satisfying

Lsu=Lou=1ILu Yue Xgn X;.
Moreover, if C; >0 are such that
| Liully, < Cifulx,, i=0,1,
then

| Lsu

v, < Co 7 Clu|

Xos Vue X.

Fact 58. On any nonempty open Q€ R?, d > 1, for all sg,s; €R,
[H(Q), H ()], = HO (%)

where 0< s< 1 and o = (1-5)sg + ss7.

Example 59. The error in L2(2) projection of functions in H*(2) into the Lagrange finite
element space.
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Lemma 60. Let Ky (t,u) denote the K -functional for the compatible pair [ L?(R?), H?(R)].
Then, Yn >0, n+1, 3C >0 such that

> Koo (' u)? < C’Hu“?{l(Rd), Vue HY(RY).

l=—00

The same result holds if R¢ is replaced by a bounded open Q c¢ R* with Lipschitz boundary.

Lemma 61 (Stability of the L? projection in H'). Suppose V' is the Lagrange finite
element subspace of H} (), of order p > 1 on a quasiuniform mesh T, (of mesh size h)
subdividing a domain Q@ c R%. Let Q, : L2(Q2) —» V denote the L?(Q2) orthogonal projector
into V. Then there is a C'> 0 independent of h such that

HU - QhU”LQ(Q) + h”Qh’U”Hl(Q) < ChHUHHl(Q)a Yov e Hl(Q)

Lemma 62 (Elliptic projection under full regularity). Suppose, in addition to the as-
sumptions of Lemma that Q is convex. Let Py, : H'Y(Q2) - V denote the orthogonal
projector in the (A-,-) inner product set in . Then there is a C' > 0 independent of h
such that

v = Ppv| r2eq) + h| Pav| o) < Chlv|mia), Vo e HY(Q).

Assumption 63 (A setting for Overlapping Schwarz Methods). Suppose €2 is subdivided
by a simplicial quasiuniform “coarse” mesh 7y (of mesh size H) with J elements K, as
well as by a simplicial quasiuniform “fine” mesh 7}, that is a refinement of Ty (so h < H).
For each coarse element K, set (2; to be the domain formed by K and all its neighboring
elements, i.e., Q; = U{K € Ty : K n K; is nonempty}. Set V = Lagrange finite element
space of order p on Ty, set (-,-), (A-,-) by and set V; by foralli=1,...,J. In
addition, we now also set a coarse space V;,; to be the Lagrange finite element space
of order p on the coarse mesh Ty.

Definition 64. For the subspace decomposition including the coarse space,
V=Vi+ Vot +Vy+ Vi,

define the additive and multiplicative overlapping Schwarz preconditioners by
J+1

B = [ Z Pi]Al, B = lj_ (I =Pra)(I = Py)-—(I - P)(I - P)|A™

Theorem 65 (Uniform preconditioning & convergence of Overlapping Schwarz method).
Assumption [65 == 3C1,Cy > 0 independent of H and h such that
/{(BC?SA) < Cl,
1

I-BSA%<1-—.
I1-BrAlh<1- 5

Assumption 66 (General geometric multilevel setting). Suppose A € B(V') be self adjoint
and positive definite and suppose we have a nested sequence of closed subspaces

VieVoc-cVp=V.
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Furthermore, suppose each V}, has closed subspaces Vj,; such that

Ji
Vie=> Vi (16)
i=1
Definition 67. The decomposition of V} is often called a micro decomposition of
a multilevel space, while the sum

V=Vi+Va+-+V, (17)

is called a macro decomposition. Let @, and Q) ; be the (-,-)-projections into Vj, and
Vi.i, respectively. Let Py and Py, be (-,-)a-projection into Vj, and Vi, respectively. Let
Ay € B(Vy) be defined by (Axv,w) = (v,w)4 for all w eV, and similarly let Ay ; € B(Vj,)
be defined by (Agv,w) = (v,w)4 for all w € V;,;. The BPX preconditioner (also
known as the additive multigrid preconditioner) based on the full multilevel subspace
decomposition

L Ji
V=33 Vi, (18)
k=1i=1
is defined by
L Jk L Jk
Bgpx = [ Z Z Pk,i]A_l = Z ZAI;lek,z
k=1 =1 k=1i=1

It is the same as the additive preconditioner B, (see @ and Algorithm obtained by
setting the subspaces {V;} to {Vj;} and operators {/A;} to { Ay}

Algorithm 68 (The \cycle: u,,1 = Slashy (uy,, f)). We define the map Slashy, : Vi, xVj, = V,,
for all 1 <k < L, inductively, namely w = Slash (v, g) is set as follows:

(1) If k=1, set w=A7'g.
(2) If k> 1, set w = Slashy (v, g) recursively using Slashy_;(-,-), as follows:
(a) Set v(0) = .
(b) Fori=1,...,J, do:
(j) p(@®) = pG-1) 4 Ag}iQk,i(g _ AU(H))
(c) Set output w = vk) + Slashy_; (0, Qr_1(g — Av{r))).

Exercise 69. Show that u,; = Slashy (u,, f) can be written as w,,1 = Uy + B\yae (f — Auy,)
where By, is the same as the multiplicative preconditioner B,, (see Algorithm[30]and (8)))
obtained by setting the subspaces {V;} to {V},;} and operators {A;} to {Ax;}.

Assumption 70 (Multilevel Lagrange finite element setting). Suppose a bounded € c R4
is subdivided by a simplicial quasiuniform mesh 7; (of meshsize h;). Suppose that Ty
(of meshsize hy) for 1 < k < L, is obtained by a uniform refinement of 7;_;. Set Vj to
the linear (p = 1) Lagrange finite element subspace of Hj(€2) on Tx. Let Q; denote
the vertex patch composed of all elements of 7, connected to ith vertex of 7, and set

Vii ={v e Vj :supp(v) € Q;}. Finally, set (-,-), (A4-,-) by .
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Definition 71. Let H € B(V') be defined by

L
(H v, v) = Linf Z hi2(vg, vy),

k=1 V=V k=1
i.e., H is the same as the additive operator B, (see Theorem obtained using the macro
decomposition and setting Ayv = h%v for all v € V.

Lemma 72. Assumption[70== There are L-independent constants Cy,Cy > 0 such that
Cr(H ™ v,v) < (Bghv,v) < Oy (H v, v) VoeV.

Lemma 73. Assumption[70l== 3 C; >0, and 0 < § < 1, both independent of {hy,}, such
that whenever k <1,

(wk, UZ)A < Clyik”wk”A (h;lnw ”) , Vwk € ‘/k, V’Ul € VE
Hence, the condition holds with Ay, = h;2I and an {hy}-independent j;.

Lemma 74. Suppose Assumption |70 holds and 0S) is Lipschitz. If there is a Cz >0 and
linear operators Il : L?(2) - Vi such that for all k,

| 1Iulr2(0) < Crrlluf r2(0) Vu e L*(Q), (19a)
[(1 = )] 2y < Crhilvlaz) Vv e H*(Q), (19b)
then there is a C' >0, depending only on Cp, 2, and hy, such that

L
S (M= ool < Cllolpey  Yoe HY(Q).
k=2

In particular, since Qy, satisfies , taking L — oo,
2 0@k = Qi) v] 2y < Cloltngy Yo e HY(Q).
k=2

Hence the condition holds with Ay, = hi2I and an {hy}-independent constant .

Theorem 75 (Uniformity of BPX preconditioner). In the setting of Assumption
additionally assume that 0 is Lipschitz. Then (applying Ezxercise @), there are L-
independent positive constants oy and 31 such that

ﬁl_l/g(Av,v) < (H ', v) < ai(Av,v), YveV. (20)
Hence 3C > 0 independent of L such
H'(BBPXA) < Cl.

Remark 76. Chain of arguments in regularity-free multigrid theory:

Strengthened Cauchy-Schwarz ([11))
for macrodecomposition

Lot —
Uniformity of #~! | Lemma

Assumption

Uniformity of Bepx

(see (20)) (Theorem ﬁb

L
e\mllla%\’ Stable decomposition (12))
for with Ay = h;zl
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Lemma 77. Assumption[70] = 3C >0, depending only on the Cy and ¢ in Lemma[73,
such that

L L
kZ |(Pe - Qr)vl < Ckz h21(Qk = Qr1)vl?
=1 =1

Theorem 78 (Uniform convergence of \cycle). In the setting of Assumption addi-
tionally assume that 0S) is Lipschitz. Then the ci in the XZ identity for the subspace
decomposition is bounded independent of L and hence

1
1= B A% < 1-
\cycle A = .
1+ Cq
Remark 79. Ingredients in the proof of Theorem [78}
] Lemma [T7] XZ identity for the full Corollary [41] Uniform convergence of \cycle
Assumptlon — X .
Lemma multilevel decomposition (18) (Theorem|7_8|)

Algorithm 80 (The Veycle: wu,.1 = Veycle (uy, f)). Given “smoothers” Sy € £(V}), for
all 1 <k < L, we define the map Vcycle, : Vi x Vi, — V4 inductively. Set w = Veycle, (v, g)
as follows:
(1) If k=1, set w=A7'g.
(2) If k> 1, set w = Veycle, (v, g) recursively:
(a) Pre-smoothing step: v’ = v + Si(g — Axv).
(b) Coarse correction: v” =o'+ Veycle,_1(0,Qr_1(g — Av')).
(c) Post-smoothing step: w =v" + Si(g — Apv").

Ezercise 81. Show that the symmetrization (see Definition of w41 = Slashy, (uy, f) is
the Vcycle algorithm with Sy set to G at each V.

Proposition 82. Algorithm 80 is a consistent linear iteration whose reducer E = Ey, is
given recursively by Fy =0 and

Ey=K;(I - Py + Ep1 Pooy) Ky, VEk>1,
where Ky, = I = Sp Ay, and K} is the (-,-) a-adjoint of K.

Condition 83 (Regularity & Approximation Property). Jag > 0 such that for all k£ > 1 and
for all u eV,
|(Z = Peo) Kl < o (Jul% = [ Kwul)

Remark 84. Condition quantifies the following folkloric prerequisite for V-cycle to
work: Errors undamped by smoothing at any refinement level must be well representable
at the next coarser level. Interpret

| (T-Pe)Kee |5 < ao( fefd-[Keels )

[ — [ ——
Vi-component of error quantifies damping of

after smoothing by K} error e by K

Clearly, if |[e|a » | Kre| (i.e., if e is left undamped), then the above implies that Kje must
almost be in Vj_;. Condition [83|is usually verified using regularity estimates.
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Theorem 85. In the geometric multilevel setting of Assumption[66, Condition |83 implies

0< (Eyv,v)a <6(v,0)a4, Ve Vg,

with 6 = o

1+ Qg ’
Lemma 86. Suppose Vj. is finite dimensional and suppose there are constants 0 <6 < 1
and Cy >0 such that Sy satisfies these properties for all k:

Sy is self adjoint in (-,-), (21a)
O'(I - SkAk) c [—0, 1), (21b)
(Silte,e) <Ci(Aeye), Vee (I - Py 1)Vi. (21c)

Then, Condition |83 holds with oy = Cymax(1,6%/(1-0)). (Note that (21al) and (21b))
imply that Sy is a bijection, so S;* makes sense in (21d).)

Lemma 87. Suppose there is a Cy >0 such that Sy satisfies these properties for all k:
|1 - SkAkla<1, (22a)
(S;le,e) < Ci(Ae,e), Vee (I - Py 1)Vi, (22b)

where Sy = S + St — St ALSk (which is a bijection by Proposition . Then Condition
holds with aq = C1.

Definition 88. In the setting of Assumption [70] define the Gauss-Seidel smoother
O = |:I ~ (I = Prg) (I = Pra)( - Pk,l)]Akl

and the Jacobi smoother J
k
i=1
Theorem 89 (Braess-Hackbusch). Suppose Assumption |70 holds and suppose 2 c R? is
convex. Set Sy in the Veycle (Algom'thm to be either the Gauss-Seidel smoother G,
or the damped Jacobi smoother wJy, with 0 < w < 2/(d+1). Then there is a 0 < 6 < 1
independent of L such that

0< (Eyv,v)a <6(v,0)a4, Vo e Vg,
so the Veycle converges at a rate independent of number of refinements.

Remark 90. Chain of arguments in regularity-based multigrid theory:

Smoothing properties:
Theorem

Assumption L |21a —(21b) for Sk = wTk,
22al) for Sk = gk

Le
Mma gg Regularity & Approx- |Theorem Uniform Vcycle conv-
imation, Condition K&l ergence (Theorem m

*7
ety
Smoothing properties:

Q is convex |—— = | (21d) for S = wTk
Lemma2 | G3F) for S = Gy




