| Chapter 2<br>Location, Variability and Process                                                                                                              |
|-------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Section 2.1<br>Numerical Summaries Based on Deviations                                                                                                      |
| David W. Gerbing                                                                                                                                            |
| The School of Business<br>Portland State University                                                                                                         |
|                                                                                                                                                             |
|                                                                                                                                                             |
| <ul> <li>Numerical Summaries Based on Deviations</li> <li>Summary Statistics</li> <li>The Center as the Mean</li> <li>Variability About the Mean</li> </ul> |
| 2.1a<br>Summary Statistics                                                                                                                                  |
|                                                                                                                                                             |
| David W. Gerbing Distribution Summaries: Summary Statistics 1                                                                                               |

# Summaries of a Distribution

Numerical summaries of all of the values aid understanding

- The midterm for 58 students has been administered and scored, so how well did the students perform?
- To understand a data set of interest clearly does not involve memorizing all the data values
- Instead, a distribution of the data values of a variable, such as midterm scores, is largely understood through graphs and numerical summary indices, including
  - Location: Position of a value relative to the remaining values of the distribution, such as the center, or a value that cuts off a specified percentage of values, such as the lowest 25%
  - Variability: How spread out, how different the values in the distribution are from each other

David W. Gerbing Distribution Summaries: Summary S

# General Summary Statistics

Efficient summary of one or all variables in the data table

- Basic summary statistics are provided in addition to the graphical output for functions that display the shape of the distribution, such as the Histogram() function from Chapter 1
- There is also a dedicated lessR function that provides just the numerical summaries of a distribution, SummaryStats(), or ss()
- The brief version of SummaryStats, referenced with the option brief=TRUE, or as ss\_brief(), provides the following basic summary statistics, explained in this chapter
- n: number of data values, miss: number of missing data values mean: arithmetic average (m), sd: standard deviation (s)
- min: minimum value, median: median, max: maximum value

David W. Gerbing

Distribution Summaries: Summary Statistics 3

# General Summary Statistics II Efficient summary of one or all variables in the data table > d <-Read("http://lessRstats.com/data/outlier.csv") > ss\_brief(Income) n miss mean sd min mdn max 10 0 101076.0 77362.6 29750.0 69660.0 273800.0 ► The long form of SummaryStats() provides more summary statistics, discussed later in this chapter The SummaryStats() function can also summarize all the variables in a data frame, defaulting to d > SummaryStats() or ss() David W. Gerbing





# Summation Notation

To obtain data summaries need to count and sum

- Sample: The set of data values for one or more variables to be analyzed, such as for generic variable Y
- A common operation in statistical analysis is to sum a list of numbers, such as the data values of a variable
- Summation symbol is the upper-case Greek letter sigma,  $\sum$
- For variable Y, where Y<sub>i</sub> indicates the i<sup>th</sup> data value, refer to the sum of these data values with ∑ Y<sub>i</sub>
- ► **Sample Size**: *n*, number of data values for the variable in the sample
- Ex: Three test scores: Y<sub>1</sub> = 87, Y<sub>2</sub> = 79, Y<sub>3</sub> = 97
   Number of observations: n = 3
  - Sum:  $\sum Y_i = Y_1 + Y_2 + Y_3 = 87 + 79 + 97 = 263$
- These two data summaries are sample size, n, and the sum,  $\Sigma$

# The Arithmetic Mean

Most common indicator of the center of a distribution

Sample Mean: m, sum of the numerical data values for a variable divided by the number of values<sup>1</sup>

• 
$$m = \frac{\sum Y_i}{n} = \frac{87 + 79 + 97}{3} = \frac{263}{3} = 87.67$$

- ➤ To explicitly indicate the variable to which the sample mean refers, subscript the *m* with the variable name, such as *m<sub>Y</sub>*
- More formally, the mean defined here is the arithmetic mean, as there are other types of means such as the harmonic mean encountered in Chapter 6

<sup>1</sup>An older, less elegant symbol for the sample mean, developed before computers were invented, is the name of the variable with a bar on top, such as  $\bar{Y}$ . This symbol is more difficult to produce in a word processor, is inconsistent with other statistical symbols, and is incompatible with both the input and output of computer software for data analysis. David W. Gerbing Distribution Summaries: The Center as the Mean 8



# Weighted Mean

Generalization of the usual arithmetic mean

Weighted mean of Y: Sum of each value Y<sub>i</sub> multiplied by its associated weight, w<sub>i</sub>, divided by sum of the weights

$$m.wt = \frac{\sum w_i Y_i}{\sum w_i}$$

 Ex: Joe received an 87 and 79 on two midterms and a 97 on the Final, weighted twice as much as either midterm

$$m.wt = \frac{(1)87 + (1)79 + (2)97}{1 + 1 + 2} = \frac{360}{4} = 90$$

- R, for this example > weighted.mean(Y, c(1,1,2))
- Arithmetic mean is a weighted mean with weights of 1
  - Denominator: Sum of weights is just sample size n
  - Numerator: Each  $\sum w_i Y_i$  term is just  $\sum (1) Y_i = \sum Y_i$

# Meaning of the Mean

## Deviation from the mean

- What is the meaning, the motivation, of summing a list of data values and then dividing by the number values?
- The answer follows from a foundational concept of statistics, the mean deviation
- Mean deviation of i<sup>th</sup> data value for a variable: Distance of the i<sup>th</sup> data value from the mean,

# deviation<sub>i</sub> = $Y_i - m$

- Key Concept: Statistics is the study of variability, which, for numeric variables, is expressed in terms of deviation scores
- The concept of deviation from the mean is the basis of the assessment of variability for numeric variables, those of ratio or interval quality

David W. Gerbing

### Distribution Summaries: The Center as the Mean 11

# Meaning of the Mean

Mean as balance point

- ► To reveal an important property of the mean, sum the mean deviations for all the data values
- Consider two different distributions of assembly times for a sample of 5 assemblies, for each of two employees

| Ji                | m        |      | Bob  |        |         |
|-------------------|----------|------|------|--------|---------|
| Y                 | mean     | dev  | Y    | mean   | dev     |
| 1 5.              | 6 6.0    | -0.4 | 4.0  | 6.0    | -2.0    |
| 2 5.              | 9 6.0    | -0.1 | 4.0  | 6.0    | -2.0    |
| 3 6.              | 0 6.0    | 0.0  | 5.0  | 6.0    | -1.0    |
| 4 6.              | 2 6.0    | 0.2  | 7.0  | 6.0    | 1.0     |
| 5 6.              | 3 6.0    | 0.3  | 10.0 | 6.0    | 4.0     |
| Sum               |          | 0.0  |      |        | 0.0     |
| Each distribution | a haa th |      | maan | hut di | fforont |

Each distribution has the same mean, but amerent variable

Regardless, the mean deviations always sum to zero

David W. Gerbing

Distribution Summaries: The Center as the Mean 12

<section-header><section-header><section-header><text><text><figure><figure><equation-block>



# Introducing the Standard Deviation

The primary index of variability for numerical data

- Statistics is the tool to formally analyze the naturally occurring variation in the world around us
- To analyze variability we need a statistic that assesses the variability of the values of a variable
- Key Concept: The standard deviation is the primary statistic to assess the variability of the values of a continuous variable
- The larger the standard deviation of the values of a variable, the larger their variability
  - o 5.6 5.9 6.0 6.2 6.3 : less variability
  - o 4.0 4.0 5.0 7.0 10.0 : more variability
  - $\,\circ\,$  The second distribution has the larger standard deviation
- The standard deviation of a variable is based on the mean deviations for all of its data values

David W. Gerbing

David W. Gerbing

Distribution Summaries: Variability About the Mean 15

Distribution Summaries: Variability About the Mean 16

### The Conceptual Basis of the Standard Deviation Squared Deviation Scores Sum of mean deviations cannot summarize variability because the sum is always zero ► To remove the negative signs, square each deviation because the squared deviation is part of equation for the normal curve Jim Bob mean dev dev Y mean dev dev 4.0 6.0 -2.0 4.00 6.0 -0.4 .16 1 5.6 6.0 -2.0 4.00 2 5.9 6.0 -0.1 .01 4.0 3 6.0 6.0 0.0 .00 5.0 6.0 -1.0 1.00 4 6.0 0.2.04 7.0 6.0 1.0 1.00 6.2 5 6.0 0.3.09 10.0 6.0 4.0 16.00 6.3 Sum 0.00.30 0.0 26.00 or "sum of squares" of Y SSY: Sum of squared deviations of Y

# From the Sum to the Mean of the Squared Deviations

Remove the confound of sample size

- The sum of squared deviations, SSY, confounds variability with sample size
- That is, typically, the larger the sample the larger is SSY because there are more squared deviations to sum
- A better index of variability than the sum of squared deviations is the corresponding *mean* of the squared deviations
- The statistic of interest here, the standard deviation, is ultimately based directly on this mean of the squared deviations
- However, there is one issue that must be addressed before calculating this mean, the concept of data dependency

David W. Gerbing

Distribution Summaries: Variability About the Mean 1

# Data Dependency

Need sample mean before sample standard deviation

- To calculate the standard deviation requires calculating the deviation scores
  - First calculate the value of one statistical estimate from the data, the sample mean, *m*
  - Next, from the same data, calculate the deviations,  $Y_i m$ , with the same *m* obtained from the first pass of the data
- The second pass through the same data introduces a data dependency that uses a value calculated from the first pass
- Data Dependency: A data value constrained to be dependent on the remaining data values and any statistical estimates previously computed
- ► The calculation of the sample standard deviation depends on the prior calculation of the sample mean, *m*

David W. Gerbing

Distribution Summaries: Variability About the Mean 18

# Illustration of a Data Dependency

Re-cycling through the same data

- Refer back to the previous sum of the three test scores:
  - Sum:  $\sum Y_i = Y_1 + Y_2 + Y_3 = 87 + 79 + 97 = 263$
- ► After the first pass through the data to calculate the deviation scores, the sum (or the mean) is already known
- If any two data values and the sum are known, the third or remaining data value is fixed, no longer free to vary in the 2<sup>nd</sup> pass through the same data to calculate the deviations
- ► In this example, the first two values and the sum are known, so the third value Y<sub>3</sub> is fixed

87 + 79 + ?? = 263

Because of this data dependency, the value of the fixed data value is determined and is no longer free to vary

$$Y_3 = \sum Y_i - (Y_1 + Y_2) = 263 - (87 + 79) = 97$$

# Degrees of Freedom

Correct the sample standard deviation for bias

- Degrees of freedom (df) of a statistic: Number of data values not constrained by other statistical estimates previously calculated from the same data
- ► *df* for the standard deviation: To account for the data dependency of using the mean from the same data to calculate the mean deviations, df = n 1
- The df can be considered to be the effective sample size after resolving the data dependency
- ► Now base the mean of the squared deviations, and ultimately the sample standard deviation, on this *df*
- ► Variance: Mean of the squared deviations based on the degrees of freedom, SSY/df
- This sample variance is denoted s<sup>2</sup>, or, to explicitly indicate the variable of interest, such as Y, s<sup>2</sup><sub>Y</sub>

Distribution Summaries: Variability About the Mean 20

# Example of Variance

David W. Gerbing

Variance is an average

• To calculate the variance: Square all the mean deviations, sum the squared mean deviations to get SSY, and then divide by the degrees of freedom, n-1

|            |        | Jim      |      |      |                  | Bob        |             |               |                  |
|------------|--------|----------|------|------|------------------|------------|-------------|---------------|------------------|
|            |        | Y        | mean | dev  | dev <sup>2</sup> | Y          | mean        | dev           | dev <sup>2</sup> |
|            | 1      | 5.6      | 6.0  | -0.4 | .16              | 4.0        | 6.0         | -2.0          | 4.00             |
|            | 2      | 5.9      | 6.0  | -0.1 | .01              | 4.0        | 6.0         | -2.0          | 4.00             |
|            | 3      | 6.0      | 6.0  | 0.0  | .00              | 5.0        | 6.0         | -1.0          | 1.00             |
|            | 4      | 6.2      | 6.0  | 0.2  | .04              | 7.0        | 6.0         | 1.0           | 1.00             |
|            | 5      | 6.3      | 6.0  | 0.3  | .09              | 10.0       | 6.0         | 4.01          | L6.00            |
|            | Sum    |          |      | 0.0( | 0.30             |            |             | 0.02          | 26.00            |
|            | df     |          |      |      | 4                |            |             |               | 4                |
|            | Mean   |          |      | 0.   | 075              |            |             | 6             | 5.500            |
|            |        | Variance |      |      |                  |            |             |               |                  |
| David W. G | erbing |          |      |      | Distr            | ibution Su | ımmaries: V | /ariability / | About the N      |

# Notation and Formulas

Variance and standard deviation

- Sample Variance:  $s^2 = \frac{SSY}{df} = \frac{\sum(Y_i m)^2}{n-1}$
- By definition, the variance is expressed in squared units of the original variable Y, so if Y is measured in inches, then s<sup>2</sup> is in squared inches
- To derive an index of variability that remains in the original units of the measured variable, move to the square root
- Standard deviation of Y: Square root of the variance
- Denote the standard deviation by s when computed from data, or, to explicitly indicate the variable, sy for variable Y
- Ex: The mean squared deviations, the variance or s<sup>2</sup>, for Jim and Bob are 0.075 and 6.500, respectively
  - Jim's standard deviation:  $\sqrt{s^2} = \sqrt{0.075} = 0.274$
  - Bob's standard deviation:  $\sqrt{s^2} = \sqrt{6.500} = 2.550$

David W. Gerbing Distribution Summaries: Variability About the Mean 22



David W. Gerbing

David W. Gerbing

Distribution Summaries: Variability About the Mean 2

Distribution Summaries: Variability About the Mean 26

# Illustration: Standard Deviation and Mean Deviations Example of two different standard deviations Consider two different distributions of test score percentages that share the same mean of 86.1%, 10 scores per distribution For Distribution #1, the scores only vary from 84% to 89% Scores: 84 85 85 85 86 86 86 87 88 89 Deviations: -2.1 -1.1 -1.1 -1.1 -0.1 -0.1 0.9 1.9 2.9 Standard Deviation: s = 1.52 for m = 86.1 For Distribution #2, the scores vary more, from 77% to 96% Scores: 77 81 81 82 86 87 90 91 92 94 Deviations: -9.1 -5.1 -5.1 -4.1 -0.1 0.9 3.9 4.9 5.9 7.9 Standard Deviation: s = 5.67 for m = 86.1 The standard deviation, here s<sub>Test1</sub> = 1.52 vs s<sub>Test2</sub> = 5.67, summarizes the extent of the variability, as indicated by the size of the corresponding deviation scores

# Meaning of the Standard Deviation: Part II

Relation to the normal curve

- As shown, the standard deviation indicates the size of the "typical" deviation from the mean
- The standard deviation provides additional information for the analysis of normally distributed data, the bell-shaped distribution that describes many, many distributions of data across a wide range of topics and applications
- The standard deviation is intimately linked to the normal distribution probabilities
  - For example, approximately 95% of normally distributed data values are within two standard deviations of the mean
- Key Concept: The normal distribution/curve and its relation to the standard deviation are fundamental concepts across much of statistical analysis
- ▶ These topics are discussed further in the next chapter

David W. Gerbing Distribution Summaries: Variability About the Mean 27

# Index Subtract 2 from each listed value to get the Slide #

data dependency, 20 degrees of freedom, 22 location, 4 mean: deviation, 13 mean: sample, 10 mean: weighted, 12 missing value, 7 normal curve, 28 R function: ss(), 5 R function: weighted.mean(), 12 sample, 9 sample: size, 9 standard deviation, 24 sum of squares, 18 variability, 4 variance, 22 variance: sample, 24

# ► The End