Regression with sklearn Machine Learning

<div id="author""> David Gerbing
The School of Business

Portland State University
gerbing@pdx.edu </div>

Table of Contents

e 1 Preliminaries

= 1.1 Misc

m 1.2 Import Standard Data Analysis Libraries
2 Data
3 Data Exploration

m 3.1 Distribution of the Target Variable

m 3.2 Feature Relevance

m 3.3 Feature Uniqueness

4 Create Feature and Target Data Structures
5 Model Validation with One Hold-Out Sample
m 5.1 Access Solution Algorithm
m 5.2 Split Data into Train and Test Sets
= 5.3 Estimate Model Parameters
s 54 Calculate y*
m 55 Assess Fit
o 5.5.1 Visual Assessment of Fit
o 5.5.2 Fit Metrics
e 6 Model Validation with Multiple Hold-Out Samples
= 6.1 Evaluate Fit on Testing Data
m 6.2 Assess Fit
e 7 Strategy to Obtain the Final Model

Preliminaries

Misc

from datetime import datetime as dt
now = dt.now()
print ("Analysis on", now.strftime("%$Y-%m-%d"),

Analysis on 2023-09-25 at 17:59

imnar+ na

"at", now.strftime("%H:%M"))

http://localhost:8888/nbconvert/html/Documents/000/575/0Templates/04RegML.ipynb?download=false#Calculate-y%5E

——f - -~

os.getcwd()

' /Users/davidgerbing/Documents/000/575/0Templates’

Import Standard Data Analysis Libraries

import pandas as pd
import numpy as np
import seaborn as sns

Data

Boston Housing Data Set

e crim: per capita crime rate by town

e zn: proportion of residential land zoned for lots over 25,000 sq.ft.
e jndus: proportion of non-retail business acres per town.

e chas: Charles River dummy variable (1 if tract bounds river; O otherwise)
e nox: nitric oxides concentration (parts per 10 million)

e rm: average number of rooms per dwelling

e age: proportion of owner-occupied units built prior to 1940

e dis: weighted distances to five Boston employment centres

e rad: index of accessibility to radial highways

e tax: full-value property-tax rate per 10,000 USD

e ptratio: pupil-teacher ratio by town

e bH:1000(Bk*: 0.63)"2 where Bk is the proportion of blacks by town
o /stat: % lower status of the population

e medv: Median value of owner-occupied homes in 1000's USD

d = pd.read_csv('data/Boston.csv')
#d = pd.read csv('http://web.pdx.edu/~gerbing/data/Boston.csv')

d.shape
(506, 15)
d.head()

Unnamed(; crim zn indus chas nox rm age dis rad tax ptratio b
0] 1 0.00632 18.0 2.31 0 0538 6.575 65.2 4.0900 1 296 15.3 39I
1 2 0.02731 0.0 707 0 0.469 6.421 789 4.9671 2 242 17.8 39!
2 3 0.02729 0.0 7.07 0 0.469 7185 611 4.9671 2 242 17.8 39:
3 4 0.03237 0.0 218 0 0.458 6.998 458 6.0622 3 222 18.7 39
4 5 0.06905 0.0 2.18 0 0.458 7.147 54.2 6.0622 3 222 18.7 39l

NaAa nAat mand tlhA Flvnt AAlhiiimain Aa AvAaw

LU L liccu uie st CUIULLITNT, DU UlUp.

d = d.drop(['Unnamed: 0'], axis="columns")
d.head()

crim zn indus chas nox rm age dis rad tax ptratio black Istat
0 0.00632 180 2.31 0 0538 6.575 65.2 4.0900 1 296 15.3 396.90 4.98
1 0.02731 0.0 707 0 0.469 6.421 78.9 4.9671 2 242 17.8 396.90 9.14
2 0.02729 0.0 7.07 0 0.469 7185 611 4.9671 2 242 17.8 392.83 4.03
3 0.03237 0.0 218 0 0.458 6.998 45.8 6.0622 3 222 18.7 394.63 294
4 0.06905 0.0 218 0 0.458 7147 54.2 6.0622 3 222 18.7 396.90 5.33

Check for missing data to determine if any action such as row or column deletion or any
data imputation is needed. The \n instructs to insert a new line in the output.

print(d.isna().sum())
print('\nTotal Missing:', d.isna().sum().sum())

No missing data.

Data Exploration

Distribution of the Target Variable

Before constructing and analyzing a model that forecasts the target value from the
values of the predictor variables, the features, gain some understanding of the target
variable. The primary purpose is to view the distribution of the target variable, not
necessarily to show normality per se. Look for skewness, outliers, and data anomalies in
general.

Check out the distribution of the target with seaborn displot() , what seaborn calls
a figure-level function. Set parameter kde to True to show the smoothed summary of
the distribution's shape, called a density plot. Set the figure size with the height and
aspect parameters. The aspect is the ratio of the width to the height of the plot.

sns.displot(d.medv, kde=True, color='steelblue', height=4, aspect=1.25)

<seaborn.axisgrid.FacetGrid at 0x13eb83b1l0>

=

70 A

60 -
50 -
40 - i~
30 | /_

20 -

Count

10 - N

0 1 Ll Ll ll I
10 20 30 40 50

medv

The distribution of the target variable medyv is more or less normal, except some large
values beyond normality. It appears that all prices more than 50,000 USD are truncated
to 50,000 USD for some reason.

Feature Relevance

Examine the relevance of each feature according to its correlation with the target. Use
pandas function corr() to calculate just the correlations of the variables with
medv . Use pandas function sort_values() to sortfrom smallest to largest.

Correlations of large magnitude, regardless of sign, indicate relevance, a strong relation

between a feature (predictor) and the variable to be predicted, the target.

Feature chas appears the least relevant with a correlation of the target of only 0.18. Even
so, not 0, so with the small data set, will retain for the initial model analysis.

The analysis reveals that the most relevant features are Istat and rm.

(d
.corr()['medv']
.sort_values()
.round(2)
)
lstat -0.74
ptratio -0.51
indus -0.48
tax -0.47
nox -0.43
crim -0.39
rad -0.38

age -0.38

chas 0.18
dis 0.25
black 0.33
zn 0.36
rm 0.70
medv 1.00

Name: medv, dtype: float64

The data and the corresponding analysis upon which a model is trained must have no
influence on the model's performance regarding the training data.

Data leakage: Information regarding the data used to train the model
becomes available to the testing data used to assess the model's
predictive efficiency.

When applying the model to real world prediction, the extra information used to train the
model would no longer be available to the testing data.

Avoid data leakage. Leaking information across training and testing data sets artificially
increases model fit beyond what would be obtained in real world prediction. For
example, first standardizing all of the data and then selecting the training and testing
data sets follows from information gathered on all the data, so the testing data are not
completely isolated from the data on which the model was estimated. Always test the
final proposed forecasting model on data that has not in any way been used to estimate
the model.

In practice, however, you might need to reduce computation time if you have a huge data
set and a model with many predictors, particularly with a more complicated model and
solution algorithm than for linear regression. In that situation, without doing any model
estimation, perhaps eliminate some features that violate the two properties of relevance
and uniqueness before model estimation.

Feature Uniqueness

Features, predictor variables, are valuable for increasing prediction that are both relevant
and unique. To explore the relations among all the variables in the model so as to help
identify redundant features, obtain an illustrated correlation matrix that shows all pair-
wise correlations called a heat map. Obtain the heat map with the seaborn function
heatmap() . By default, the darker the blue shading, the stronger the positive
correlation. The darker the red shading, the stronger the negative correlation. To specify
the size of the displayed correlation coefficients, use the annot_kws() function, as
below, with heatmap() . The cmap parameter specifies the displayed palette to
diverge across two colors with the state intensities.

Note: Some seaborn functions specify the dimensions of a plot with parameters
height and aspect , as with the previous displot() function. Other plotting
functions require a separate line of code with the seaborn function set() anda
corresponding verbose expression for the rc parameter. This distinction involves what
are called axis-level functions versus the generally preferred figure-level functions, a
distinction that adds yet another level of complexity. Figure-level functions are generally
preferred but not always available, so seaborn users generally access both types. The
following heatmap() function is an axis-level function, the only available function for
this task. All of this is more confusing and awkward than it should be.

sns.set(rc={"figure.figsize":(8, 5)})
sns.heatmap(d.corr().round(2), linewidths=2.0,
annot=True, annot_ kws={"size": 8},
cmap=sns.diverging palette(5, 250, as_cmap=True))

<Axes: >

oo I o) 0 o 3

chas 006 004 006 009 009 009 01 001 004 012 005 005 018

o o 2+ N5 1 < 3

=02
=00
rad
tax
ptratio

ook] ov [oo] o 82 oz 0 X 0 IR] o
st se 7] 1 o 6] 010 o o4 o 1 I
v 5 v R = [A =

E R E
5

4

nox

E 9 3 B 8

indus
chas

ptratio
black
Istat
medv

Many features are redundant with other features, so the final model would likely not
contain all the features in the initially specified model. For example, nox correlates 0.76
with indus. The information inherent in one variable pretty much overlaps with the
information in the other variable regarding the prediction of the target, medv.

Create Feature and Target Data Structures

Store the features, the predictor variables, in data structure X. Store the target variable
in data structure y.

To run multiple regression with all possible predictor variables in this data set, define X
as the entire data frame with the target variable medv dropped:

X = d.drop(['medv'], axis="columns")
Or, use the procedure below that manually defines a vector of the predictor variables
(features) names, and then define X as the subset of d that contains just these variables.

y = d[‘'medv’]
pred vars = ['crim', 'zn', 'indus', 'chas', 'nox', 'rm', 'age', 'dis', 'rad'
! 'ptratio', 'black', 'lstat']

[

tax’',
X = d[pred vars]

Useful to see how many features define the model with the Python len() function for
length. Also observe the data type of the X and y data structures with the Python
type() function. Because these functions are part of the original Python language, no
package prefix is needed, just the respective function name.

n _pred = len(pred_vars)
print ("Number of predictor variables:", n pred)

Number of predictor variables: 13

print("X: ", type(X))

print("y: ", type(y))

X: <class 'pandas.core.frame.DataFrame'>
y: <class 'pandas.core.series.Series'>

Model Validation with One Hold-Out Sample

Now for Python machine learning!

Access Solution Algorithm

The “sklearn’ package abbreviates the full name scikit-1learn , which, in turn,
abbreviates scientific toolkit for machine learning . sklearn provides
"Simple and efficient tools for predictive data analysis", a primary reason Python has
become the leading platform for machine learning.

The sklearn package provides many different solution algorithms to accommodate
many different types of machine learning models. Each solution type is presented in its
own module called a class. To the huge advantage of sklearn , all solution methods
follow the same programming form. Moving from one machine learning technique to
another is straightforward with relatively small changes in the code.

The sklearn class LinearRegression provides the functions for doing linear
regression. Access the computer code for an algorithm by creating a specific instance of
the algorithm, referred to by a specific name in the analysis. This process is called
instantiation.

Instantiate a module with any valid Python expression. In this example, instantiate
LinearRegression() with the name reg, accepting all default parameters, not
passing any parameter values between the parentheses. All subsequent references to

the linear regression algorithm below are then implemented via this assigned name reg.

from sklearn.linear model import LinearRegression
reg = LinearRegression()

https://scikit-learn.org/stable/index.html

Split Data into Train and Test Sets

Cross-validation tests a model on a new data set, testing data different from the data on
which the model was estimated, training data. Usually the data sets are random samples
obtained from splitting the original data table into training and testing data.

The concept of cross-validation has applied to regression analysis for many decades,
though, due to smaller historical data sets, perhaps often recommended more than
actually accomplished. The machine learning framework provides for easily accessible
cross-validation methods, considered a necessary component of the analysis.

Cross-validation can take place for one split of the data or over multiple, different splits.

If computational time is available, accomplish cross-validation with
multiple splits of the original data, usually three to five splits.

However, this discussion begins with a single split of the data.

The sklearn function train_test_split() , fromthe model_selection
module, randomly shuffles the original data into two sets, training data and testing data,
here called X_train and X_test for the features and y _train and y_test for the target.

e Parameter test gize snecifies the nercentaade of the ariainal data et allncated

[— e m e = e e rrim— miim e ms o m =i — m st e m s e e o e = m— -

to the test split.
e Parameter random_state specifies the initial seed (or starting point) from which
the process of number generation begins so that the sequence can be repeated.

The input into the train_test_split() function are the X and y data structures. The
function provides four outputs from a single function call: X training and testing data,
and y training and testing data. Python has the convention of listing the names for
multiple outputs on the left side of the equals sign, separated by commas, in the correct
order in which the function lists the output.

The generated "random" numbers that result in each row of data either assigned to the
training data or the testing data are more properly called pseudo—random numbers .
Optional parameter random_state specifies the initial seed that initiates the
generation of each set of pseudo-random numbers. Specifying the same seed for each
time the function is run repeats the same pseudo-random process. That way, the same
analysis can be repeated at some future time with the same data split is obtained from
train_test_split() .If no seed is specified then each time the
train_test_split() function is run the data will be split differently.

In this example, random_state is setat 7. Eachtime the train_test_split()
function is run with the value of 7, the same sets of training and testing data will be
obtained.

from sklearn.model selection import train_ test split
X train, X test, y train, y test = train test split(X, y,
test_size=.25, random st

The shape method displays the dimensions of each of the resulting two data sets,
X_train and X_test. The first number is the number of rows in the corresponding data
structure. Here with the size of the testing data set at 25% of all the data, there are 379
rows of data in the two training data structures and 127 rows of data in the two testing
data structures. The y data structures have only one column. The y structures are not
data frames, so their number of columns is not specified.

print("Size of X data structures: ", X train.shape, X_test.shape)
print("Size of y data structures: ", y train.shape, y test.shape)

Size of X data structures: (379, 13) (127, 13)
Size of y data structures: (379,) (127,)

Estimate Model Parameters

The primary Python package for machine learning is sklearn (more formally, scikit-
learn). The sklearn machine learning function to estimate the values of the specified
model's parameters from the datais fit() .

What the machine learns is the numerical value of each weight that is
applied to each predictor variable or feature, plus the y-intercept.

The sklearn function for any machine learning algorithmis fit() . Apply the

fit() function for linear regression by applying the function to our reg instantiation of
LinearRegression .

reg.fit(X_train, y_train)

' v LinearRegression |

éLinea rRegression()

The fit() function creates several different data structures as output, each structure
stored with a pre-defined name. The name of a data structure whose values that the
analysis procedure creates ends in an underline. The estimated model coefficients are
stored inthe intercept_ and coef_ structures. To reference, precede each
structure name with the model's name and a period, such as reg.coef_ .

This machine learning implementation of regression is typically not primarily directed
towards understanding and interpreting the model coefficients. Instead, the focus is on
evaluating the extent of prediction error. The estimated coefficients are not even
displayed by default. The analysis does not provide the usual regression model output
with the coefficients listed along with their corresponding ¢-tests of the null hypothesis
of 0, and the associated confidence interval, such as obtained from the OLS() function
inthe statsmodels package. Still, the estimated weights that the machine learned are
in the corresponding coef_ output.

The corresponding fit() output structures are not pandas data frames, but rather
numpy arrays, which do not display as nicely. To make the output more readable,
convert the numpy array output format to a pandas data frame.

reg.coef

array([-1.29372986e-01, 2.95904870e-02, 2.22928425e-02, 2.83744579e+00,

-1.53954203e+01, 5.27557273e+00, -1.05383841e-02, -1.30170765e+00,

2.66392896e-01, -1.09686702e-02, -9.64830193e-01, 1.0860336le-02,
-3.78363465e-011])

X.columns
Index(['crim', 'zn', 'indus', 'chas', 'nox', 'rm', 'age', 'dis', 'rad', 'ta
x',
'ptratio', 'black', 'lstat'],

dtype='object"')
The following listing of the estimated coefficients shows what the machine learned. In
the print() function, the %.3f is a format that indicates to display a floating-point
number, that is, one with decimal digits, and to display three decimal digits. The \n
specifies to skip an output line.

print(f'Intercept: {reg.intercept :.3f}', '\n')

cdf = pd.DataFrame(reg.coef , X.columns, columns=['Coefficients'])
print(cdf.round(3))

Intercept: 23.957

Coefficients

crim -0.129
zn 0.030
indus 0.022
chas 2.837
nox -15.395
rm 5.276
age -0.011
dis -1.302
rad 0.266
tax -0.011
ptratio -0.965
black 0.011
lstat -0.378
Calculate y*

Given the estimated model, generate predictions from given values of the X variables,
the features. The standard sklearn function to calculate a fitted value from the
estimated model is predict() , again applicable to any machine learning method.

Compute two sets of g values: y fit when the model is applied (fitted) to the data on
which it trained, and, for model evaluation, y_pred when the model is applied to the test
data.

y _fit = reg.predict(X train)
y_pred = reg.predict(X test)

Evaluate the descriptive analysis of fit by comparing y to ¢ for the training
data, y compared to y_fit.

Evaluate true predictive fit by comparing y to g for the testing data, y
compared to y_pred.

y is always the value of y fitted by the model but this is a prediction only when the value
of y is unknown by the model, which is only true for the testing data.

As always, the assessment of fit is not based on the training data in which the actual
value of y is already known, but on hew data for which the model is not aware of the
actual value of y. Have the model generate its predicted value, g, then evaluate how
close the values of y tend to be to corresponding values of g, y; — gji.

Assess Fit

Visual Assessment of Fit

If there is only one predictor variable, plot the scatter plot of X and y and the least-
squares regression line through the scatterplot. If this multiple regression, then this code

is not run.

The Python syntax for an if statement uses the double equal sign, ==, to evaluate the
equality, and a single equal sign, =, to create equality by assigning the value on the right
to the variable on the left. Indicate the end of the conditional statement, here n_pred==1,
with a colon, : . Indent two spaces for the statements that are run if the conditional
statement is true.

if n pred ==
sns.regplot(x=X_train, y=y train, color='steelblue')

Assess the model by comparing the actual data values of y in the testing data, y_test, to
the values of y calculated from the estimated model, y_pred.

What to plot if there is more than a single feature, the usual case? Visualize the overall fit
by plotting the actual values of y in the test data, y_test, with the corresponding values
of the forecasted y's, g, or y_pred. If the forecasting is perfect, then y = g, and all
points lie on the 45-degree line through the origin.

To obtain a scatter plot with the regression line and associated confidence interval, use

the seaborn function regplot() . The variables to be plotted are not in a data

frame, so there is no data parameter. To label the axes, use the set() function with

the name applied from the output of regplot() . In this example, the output of
regplot() was set ax for axis.

sns.set(rc={"figure.figsize":(6, 4)})
ax = sns.regplot(x=y test, y=y pred)
ax.set(xlabel='y from testing data', ylabel='predicted y')

[Text (0.5, 0, 'y from testing data'), Text(0, 0.5, 'predicted y')]

predicted y
&8

S

10 20 30 40 50
y from testing data

We can see that the predicted values closely match with the actual data values from the
testing data.

Fit Metrics

A large drop of fit from training to testing model indicates overfitting the model to the
training data. To evaluate the fit of the model to the training data, compare the actual
data values, y _train, to the corresponding values computed by the model, y fit.

The metrics module in the sklearn package provides the computations for the fit
indices. The module provides the mean squared error, MSE, and R? fit indices with the
functions mean_squared_error() and r2_score() . To get the standard deviation
of the residuals, manually take the square root of the variance MSE with the numpy
function sqrt() .

The %.3f formatting code instructs the Python print() function to print a floating-
point number (numeric with decimal digits) with three decimal digits.

from sklearn.metrics import mean squared error, r2 score

mse = mean_squared _error(y_train, y_ fit)

rsq = r2_score(y_train, y fit)

print("MSE: %.3f" % mse)

se = np.sgrt(mse)

range95 = 4 * se

print("Stdev of residuals: %.3f " % se)

print ("Approximate 95 per cent range of residuals: %.3f " % range95)
print("R-squared: %.3f" % rsq)

MSE: 20.266

Stdev of residuals: 4.502

Approximate 95 per cent range of residuals: 18.007

R-squared: 0.767

For pedagogy, here compute the standard deviation of the residuals from the data.
Define the residuals as the variable e. Note that the mean squared residual, both here
and from the previous cell, is calculated with the full sample size, not the technically

correct degrees of freedom.
e = y train - y fit
print("stdev of residuals: %.3f " % np.sqgrt(np.mean(e**2)))

stdev of residuals: 4.502

Now perform the actual evaluation of model performance. Evaluate how well the actual
data values for y, y_test, match the forecasted or predicted values of y, §. From this split

of data the valiie of R? tunicallv drans from that abtained from the trainina data

- ey mrim s mim— = m v =y e J et m e ot met mramie e i s s me e ms ommas ey s

Sometimes, however, by chance, the testing data may outperform the training data,
again due to chance.

mse f = mean squared error(y test, y pred)

rsq f = r2 score(y _test, y pred)

print('Forecasting Mean squared error: %.3f' % mse f)

print('Forecasting Standard deviation of residuals: %.3f' % np.sqrt(mse_f))
print('Forecasting R-squared: %.3f' % rsq f)

Forecasting Mean squared error: 29.515
Forecasting Standard deviation of residuals: 5.433
Forecasting R-squared: 0.617

We see that when applied to new data, the standard deviation of residuals, s, increased
from 4.502 to 5.433, still a small number. R? decreased from 0.767 from the training
data to 0.617 applying the model to the testing data. Regardless, good fit is obtained
even with the forecasting model.

Model Validation with Multiple Hold-Out Samples

As a generalization to the one hold-out cross-validation described in the previous
section, pursue the usually more desirable procedure that assesses model fit with cross-
validation on multiple samples. The sklearn model_selection module provides
the functions for the cross-validation in which the model for each fold is estimated using
the remaining k — 1 folds and then tested on that one remaining fold. The process
automatically repeats for each fold.

The Kfold() class is instantiated, just as is the LinearRegression() class. Also
needed is the cross-validate() function.

from sklearn.model selection import KFold, cross_ validate

Evaluate Fit on Testing Data
Generate the folds with KFold() given the following parameters.

e n_splits: Number of splits (folds) of the training data.

e shuffle: Randomly shuffle the data before splitting into the folds.

e random_state: Set the seed to recover the same "random" data set in a future
analysis.

The number of splits, folds, can vary from 2 to n — 1, where n is the total number of
rows in the training data. Values of 3 and 5 are the most common number of folds.
Larger data sets support a larger number of splits. Usually, shuffle the data before
forming the folds to keep the entire process entirely random.

In this example, instantiate the KFold class with the chosen name kf, invoking the
desired parameter values. Choose whatever valid name you wish.

from sklearn.model selection import KFold, cross_validate
kf = KFold(n_splits=5, shuffle=True, random state=1)

The cross_validate() function performs the cross-validation, randomly generating
the specified number of folds and providing multiple evaluation scores from each fold.
The function also provides computation times.

Estimate five different models from five different samples. We have already instantiated
the LinearRegression() estimator earlier as reg, also referenced for the cross-
validation. The scoring parameter specifies to obtain R? and MSE scores for each of the
true forecasts of applying the model, for each split, from the k-1 folds data to the hold-
out fold.

Assess model fit two ways.

1. Primary assessment of fit: Fit of the model estimated from training data to test data.
2. Overfitting: Comparison of the fit of the training model to the fit of the model on the
test data.

Training scores much larger than the related testing scores indicate overfitting, in which
the model does well for the data in which it trained but fails to generalize to new data.
Obtain the training fit information with the parameter return_train_score.

Here, name the output of cross_validate() asscores, a numpy array.

scores = cross_validate(reg, X, y, cv=kf,
scoring=('r2', 'neg mean_ squared error'),
return train_ score=True)

The smaller is MSE, the smaller the residuals, the better the fit. For example, a 0.5 MSE
indicates better fit than a 0.7 MSE. However, to maintain consistency with other fit
indices, the best fit score should be the largest across all scoring procedures and
estimation algorithms, which is the general rule recognized by the related sklearn
functions. Accordingly, although the MSE statistic is necessarily a positive value, it is
reported as a negative number. For example, -0.5 > -0.7, so the largest of the two
negative values is the most desirable value, here -0.5. Of course, as the mean squared
error, MSE must be a non-negative number, so the sign of the actual MSE is just flipped
to negative for the sklearn assessment of fit.

Assess Fit

Our scores array contains much information regarding the fit of each model over the five
different analyses, but is not so directly readable. To make it more readable, convert
scores to a data frame, rename the long column names to more compact versions,
convert the MSE scores to positive numbers, and average the results. The display
includes the time to fit the training data for each fold and the time to calculate the
evaluation scores, which includes getting the predicted values.

Setting the parameter inplace to True changes the specified data frame and saves
the data frame with those changes. This parameter setting removes the need to copy to
a new data frame.

ds = pd.DataFrame(scores)
ds.rename(columns = {'test neg mean squared error': 'test MSE',
'train_neg mean_squared error': 'train MSE'},
inplace=True)

ds['test MSE'] = -ds['test MSE']
ds['train MSE'] = -ds['train MSE']
print(ds.round(4))

fit _time score_time test_r2 +train r2 test MSE train MSE

0 0.0021 0.0012 0.7634 0.7294 23.3808 21.8628
1 0.0013 0.0007 0.6468 0.7582 28.6143 20.5029
2 0.0009 0.0005 0.7921 0.7262 15.1606 23.7937
3 0.0012 0.0005 0.6508 0.7580 27.2082 20.8185
4 0.0009 0.0005 0.7353 0.7409 23.3712 21.6071

A fit index averaged over all the folds is the best summary of how well the model fits,
either to the training data, or more interestingly, to the testing data.

m r2 = ds['test _r2'].mean()
print('Mean of test R-squared scores: ' + f'{m r2:.3f}")

m MSE = ds['test MSE'].mean()
print('\nMean of test MSE scores: ' + f'{m MSE:.3f}")

m_se = np.sqgrt(ds['test MSE'].mean())
print('Mean standard deviation of test MSE scores: ' + f'{m se:.3f}")

Mean of test R-squared scores: 0.718

Mean of test MSE scores: 23.547

Mean standard deviation of test MSE scores: 4.853

The mean of the R? scores across the test samples (folds) is the summary indicator of
model fit. This 13-predictor model fits well, with an average R? across the five folds of
0.72. (Note that we never see the actual estimated model from each fold.) The average
MSE and s, is also low in terms of the more interpretable standard deviation of the
residuals. Once the model is validated, fit it to the entire, full data set.

Strategy to Obtain the Final Model

Begin data preparation by deleting any unnecessary features, removing any obvious

univariate outliers, and converting any categorical variables to indicator/dummy variables
if included in the model as features. Also check for missing data as machine learning
solution algorithms do not run if missing data are present.

If CPU time is an issue, cross-validate with only one hold-out sample. Otherwise, cross-
validate with 3 or 5 or more hold-out samples, depending on CPU time and the size of
the original data set.

If computation time permits, evaluate the model with the mean chose fit
index over the the k-fold cross-validations.

The only advantage of the one train-test split approach is that the model coefficients
can be obtained, but they are not of primary interest because the final model has not yet
been estimated on all of the data. Cross-validation with k-fold does what the one train-
test split approach does, but now k times. The train-test one split approach almost
becomes pedagogical as a way to learn how the k-fold procedure works.

The initial model is usually pared down to a more parsimonious model, retaining a
smaller set of relevant features that each provide unique information. Obvious
candidates for features to delete can be deleted before model validation begins, that is,
those with low correlations with the target and/or high correlations with other features.

More sophisticated feature deletion can occur after the model if the model is validated.
Then use the statsmodels regression function OLS() for ordinary least squares to
estimate the model on all of the data to get the estimated model on the largest sample
possible. Do a more sophisticated feature selection procedure using your own
judgement, based on p-values for individual features and VIF values to assess the
collinearity of individual features. Also, use Cook's distance to investigate and possibly
eliminate any rows of data that are outliers with respect to the regression model.

The coefficients of the final, validated model, estimated with all of the data, are needed
to apply the model to other situations. Once a final model is selected, re-run the cross-
validation on the smaller number of features to make sure the reduced model still
evaluates well. Ideally, this analysis would be done on a completely new data set, but
that may not be practical.

When completed, with the final statsmodels run you have the b coefficients --
bo, b1, by, etc. -- that define the model that you now, in another context, put into
production.

