
Regression with sklearn Machine Learning
<div id="author""> David Gerbing

The School of Business

Portland State University

gerbing@pdx.edu </div>

Table of Contents
1 Preliminaries

1.1 Misc

1.2 Import Standard Data Analysis Libraries

2 Data

3 Data Exploration

3.1 Distribution of the Target Variable

3.2 Feature Relevance

3.3 Feature Uniqueness

4 Create Feature and Target Data Structures

5 Model Validation with One Hold-Out Sample

5.1 Access Solution Algorithm

5.2 Split Data into Train and Test Sets

5.3 Estimate Model Parameters

5.4 Calculate y^

5.5 Assess Fit

5.5.1 Visual Assessment of Fit

5.5.2 Fit Metrics

6 Model Validation with Multiple Hold-Out Samples

6.1 Evaluate Fit on Testing Data

6.2 Assess Fit

7 Strategy to Obtain the Final Model

Preliminaries

Misc

Analysis on 2023-09-25 at 17:59

In [1]: from datetime import datetime as dt
now = dt.now()
print ("Analysis on", now.strftime("%Y-%m-%d"), "at", now.strftime("%H:%M"))

In [2]: import os

http://localhost:8888/nbconvert/html/Documents/000/575/0Templates/04RegML.ipynb?download=false#Calculate-y%5E

'/Users/davidgerbing/Documents/000/575/0Templates'

Import Standard Data Analysis Libraries

Data

Boston Housing Data Set

crim: per capita crime rate by town

zn: proportion of residential land zoned for lots over 25,000 sq.ft.

indus: proportion of non-retail business acres per town.

chas: Charles River dummy variable (1 if tract bounds river; 0 otherwise)

nox: nitric oxides concentration (parts per 10 million)

rm: average number of rooms per dwelling

age: proportion of owner-occupied units built prior to 1940

dis: weighted distances to five Boston employment centres

rad: index of accessibility to radial highways

tax: full-value property-tax rate per 10,000 USD

ptratio: pupil-teacher ratio by town

b: 1000(Bk*: 0.63)^2 where Bk is the proportion of blacks by town

lstat: % lower status of the population

medv: Median value of owner-occupied homes in 1000's USD

(506, 15)

Do not need the first column, so drop.

Unnamed:
0

crim zn indus chas nox rm age dis rad tax ptratio black

0 1 0.00632 18.0 2.31 0 0.538 6.575 65.2 4.0900 1 296 15.3 396.90

1 2 0.02731 0.0 7.07 0 0.469 6.421 78.9 4.9671 2 242 17.8 396.90

2 3 0.02729 0.0 7.07 0 0.469 7.185 61.1 4.9671 2 242 17.8 392.83

3 4 0.03237 0.0 2.18 0 0.458 6.998 45.8 6.0622 3 222 18.7 394.63

4 5 0.06905 0.0 2.18 0 0.458 7.147 54.2 6.0622 3 222 18.7 396.90

In [2]: import os
os.getcwd()

Out[2]:

In [3]: import pandas as pd
import numpy as np
import seaborn as sns

In [4]: d = pd.read_csv('data/Boston.csv')
#d = pd.read_csv('http://web.pdx.edu/~gerbing/data/Boston.csv')

In [5]: d.shape

Out[5]:

In [6]: d.head()

Out[6]:

Do not need the first column, so drop.

Check for missing data to determine if any action such as row or column deletion or any

data imputation is needed. The \n instructs to insert a new line in the output.

No missing data.

Data Exploration

Distribution of the Target Variable

Before constructing and analyzing a model that forecasts the target value from the

values of the predictor variables, the features, gain some understanding of the target

variable. The primary purpose is to view the distribution of the target variable, not

necessarily to show normality per se. Look for skewness, outliers, and data anomalies in

general.

Check out the distribution of the target with seaborn displot() , what seaborn calls

a figure-level function. Set parameter kde to True to show the smoothed summary of

the distribution's shape, called a density plot. Set the figure size with the height and

aspect parameters. The aspect is the ratio of the width to the height of the plot.

<seaborn.axisgrid.FacetGrid at 0x13eb83b10>

crim zn indus chas nox rm age dis rad tax ptratio black lstat medv

0 0.00632 18.0 2.31 0 0.538 6.575 65.2 4.0900 1 296 15.3 396.90 4.98 24.0

1 0.02731 0.0 7.07 0 0.469 6.421 78.9 4.9671 2 242 17.8 396.90 9.14 21.6

2 0.02729 0.0 7.07 0 0.469 7.185 61.1 4.9671 2 242 17.8 392.83 4.03 34.7

3 0.03237 0.0 2.18 0 0.458 6.998 45.8 6.0622 3 222 18.7 394.63 2.94 33.4

4 0.06905 0.0 2.18 0 0.458 7.147 54.2 6.0622 3 222 18.7 396.90 5.33 36.2

In [7]: d = d.drop(['Unnamed: 0'], axis="columns")
d.head()

Out[7]:

In []: print(d.isna().sum())
print('\nTotal Missing:', d.isna().sum().sum())

In [8]: sns.displot(d.medv, kde=True, color='steelblue', height=4, aspect=1.25)

Out[8]:

The distribution of the target variable medv is more or less normal, except some large

values beyond normality. It appears that all prices more than 50,000 USD are truncated

to 50,000 USD for some reason.

Feature Relevance

Examine the relevance of each feature according to its correlation with the target. Use

pandas function corr() to calculate just the correlations of the variables with

medv . Use pandas function sort_values() to sort from smallest to largest.

Correlations of large magnitude, regardless of sign, indicate relevance, a strong relation

between a feature (predictor) and the variable to be predicted, the target.

Feature chas appears the least relevant with a correlation of the target of only 0.18. Even

so, not 0, so with the small data set, will retain for the initial model analysis.

The analysis reveals that the most relevant features are lstat and rm.

lstat -0.74
ptratio -0.51
indus -0.48
tax -0.47
nox -0.43
crim -0.39
rad -0.38
age -0.38
chas 0.18

In [9]: (d
 .corr()['medv']
 .sort_values()
 .round(2)
)

Out[9]:

chas 0.18
dis 0.25
black 0.33
zn 0.36
rm 0.70
medv 1.00
Name: medv, dtype: float64

The data and the corresponding analysis upon which a model is trained must have no

influence on the model's performance regarding the training data.

Data leakage: Information regarding the data used to train the model

becomes available to the testing data used to assess the model's

predictive efficiency.

When applying the model to real world prediction, the extra information used to train the

model would no longer be available to the testing data.

Avoid data leakage. Leaking information across training and testing data sets artificially

increases model fit beyond what would be obtained in real world prediction. For

example, first standardizing all of the data and then selecting the training and testing

data sets follows from information gathered on all the data, so the testing data are not

completely isolated from the data on which the model was estimated. Always test the

final proposed forecasting model on data that has not in any way been used to estimate

the model.

In practice, however, you might need to reduce computation time if you have a huge data

set and a model with many predictors, particularly with a more complicated model and

solution algorithm than for linear regression. In that situation, without doing any model

estimation, perhaps eliminate some features that violate the two properties of relevance
and uniqueness before model estimation.

Feature Uniqueness

Features, predictor variables, are valuable for increasing prediction that are both relevant
and unique. To explore the relations among all the variables in the model so as to help

identify redundant features, obtain an illustrated correlation matrix that shows all pair-

wise correlations called a heat map. Obtain the heat map with the seaborn function

heatmap() . By default, the darker the blue shading, the stronger the positive

correlation. The darker the red shading, the stronger the negative correlation. To specify

the size of the displayed correlation coefficients, use the annot_kws() function, as

below, with heatmap() . The cmap parameter specifies the displayed palette to

diverge across two colors with the state intensities.

Note: Some seaborn functions specify the dimensions of a plot with parameters

height and aspect , as with the previous displot() function. Other plotting

functions require a separate line of code with the seaborn function set() and a

corresponding verbose expression for the rc parameter. This distinction involves what

are called axis-level functions versus the generally preferred figure-level functions, a

distinction that adds yet another level of complexity. Figure-level functions are generally

preferred but not always available, so seaborn users generally access both types. The

following heatmap() function is an axis-level function, the only available function for

this task. All of this is more confusing and awkward than it should be.

<Axes: >

In [10]: sns.set(rc={"figure.figsize":(8, 5)})
sns.heatmap(d.corr().round(2), linewidths=2.0,
 annot=True, annot_kws={"size": 8},
 cmap=sns.diverging_palette(5, 250, as_cmap=True))

Out[10]:

Many features are redundant with other features, so the final model would likely not

contain all the features in the initially specified model. For example, nox correlates 0.76

with indus. The information inherent in one variable pretty much overlaps with the

information in the other variable regarding the prediction of the target, medv.

Create Feature and Target Data Structures

Store the features, the predictor variables, in data structure X. Store the target variable

in data structure .

To run multiple regression with all possible predictor variables in this data set, define X

as the entire data frame with the target variable medv dropped:

 X = d.drop(['medv'], axis="columns")

Or, use the procedure below that manually defines a vector of the predictor variables

(features) names, and then define X as the subset of d that contains just these variables.

crim -0.2 0.41 -0.06 0.42 -0.22 0.35 -0.38 0.63 0.58 0.29 -0.39 0.46 -0.39

zn -0.2 -0.53 0.04 -0.52 0.31 -0.57 0.66 -0.31 -0.31 -0.39 0.18 -0.41. 0.36

indus 0.41 -0.53 0.06 0.76 -0.39 0.64 -0.71 0.6 0.72 0.38 -0.36 0.6 -0.48

chas -0.06 0.04 0.06 0.09 0.09 0.09 0.1 -0.01 -0.04 -0.12 0.05 -0.05 0.18

noX 0.42 -0.52 0.76 0.09 1 -0.3 0.73 0.77 0.61 0.67 0.19 -0.38 0.59 -0.43

rm -0.22 0.31 -0.39 0.09 -0.3 1 -0.24 0.21 -0.21 -0.29 -0.36 0.13 -0.61 0.7

age 0.35 -0.57 0.64 0.09 0.73 -0.24 -0.75 0.46 0.51 0.26 -0.27 0.6 -0.38

dis -0.38 0.66 -0.71 0.1 -0.77 0.21 1-0.75 1 -0.49 -0.53 -0.23 0.29 -0.5 0.25

rad 0.63 -0.31 0.6 0.01 0.61 -0.21 0.46 -0.49 0.91 0.46 -0.44 0.49 -0.38

tax 0.58 -0.31 0.72 0.04 0.67 -0.29 0.51 -0.53 0.91 1 0.46 -0.44 0.54 -0.47

ptratio 0,29 -0.39 0.38 -0.12 0.19 -0.36 0.26 -0.23 0.46 0.46 0.18 0.37 -0.51

black -0.39 0.18 -0.36 0.05 -0.38 0.13 -0.27 0.29 -0.44 -0.44 0.18 1 0.37 0.33

Istat 0.46 -0.41 0.6 0.05 0.59 -0.61 0.6 -0.5 0.49 0.54 0.37 -0.37 -0.74

medv 0.39 0.36 -0.48 0.18 0.43 0.7 -0.38 0.25 -0.38 -0.47 -0.51 0.33 -0.74

c
ri
m z
n

in
d
us

c
h
a
s

n
o
X

a
g
e

d
is

ra
d

ta
x

pt
ra
tio

b
la
ck

Is
ta
t

m
ed
v

-1.0

0.8
0.6
0.4

-0.2

-0.0
-0.2

-0.4
-0.6

y

In [11]: y = d['medv']

Useful to see how many features define the model with the Python len() function for

length. Also observe the data type of the X and y data structures with the Python

type() function. Because these functions are part of the original Python language, no

package prefix is needed, just the respective function name.

Number of predictor variables: 13

X: <class 'pandas.core.frame.DataFrame'>
y: <class 'pandas.core.series.Series'>

Model Validation with One Hold-Out Sample

Now for Python machine learning!

Access Solution Algorithm

The `sklearn` package abbreviates the full name scikit-learn , which, in turn,

abbreviates scientific toolkit for machine learning . sklearn provides

"Simple and efficient tools for predictive data analysis", a primary reason Python has

become the leading platform for machine learning.

The sklearn package provides many different solution algorithms to accommodate

many different types of machine learning models. Each solution type is presented in its

own module called a class. To the huge advantage of sklearn , all solution methods

follow the same programming form. Moving from one machine learning technique to

another is straightforward with relatively small changes in the code.

The sklearn class LinearRegression provides the functions for doing linear

regression. Access the computer code for an algorithm by creating a specific instance of

the algorithm, referred to by a specific name in the analysis. This process is called

instantiation.

Instantiate a module with any valid Python expression. In this example, instantiate

LinearRegression() with the name reg, accepting all default parameters, not

passing any parameter values between the parentheses. All subsequent references to

the linear regression algorithm below are then implemented via this assigned name reg.

-0.6In [11]: y = d['medv']
pred_vars = ['crim', 'zn', 'indus', 'chas', 'nox', 'rm', 'age', 'dis', 'rad',
 'tax', 'ptratio', 'black', 'lstat']
X = d[pred_vars]

In [12]: n_pred = len(pred_vars)
print("Number of predictor variables:", n_pred)

In [13]: print("X: ", type(X))
print("y: ", type(y))

In [14]: from sklearn.linear_model import LinearRegression
reg = LinearRegression()

https://scikit-learn.org/stable/index.html

Split Data into Train and Test Sets

Cross-validation tests a model on a new data set, testing data different from the data on

which the model was estimated, training data. Usually the data sets are random samples

obtained from splitting the original data table into training and testing data.

The concept of cross-validation has applied to regression analysis for many decades,

though, due to smaller historical data sets, perhaps often recommended more than

actually accomplished. The machine learning framework provides for easily accessible

cross-validation methods, considered a necessary component of the analysis.

Cross-validation can take place for one split of the data or over multiple, different splits.

If computational time is available, accomplish cross-validation with

multiple splits of the original data, usually three to five splits.

However, this discussion begins with a single split of the data.

The sklearn function train_test_split() , from the model_selection
module, randomly shuffles the original data into two sets, training data and testing data,

here called X_train and X_test for the features and y_train and y_test for the target.

Parameter test_size specifies the percentage of the original data set allocated

Parameter test_size specifies the percentage of the original data set allocated

to the test split.

Parameter random_state specifies the initial seed (or starting point) from which

the process of number generation begins so that the sequence can be repeated.

The input into the train_test_split() function are the X and data structures. The

function provides four outputs from a single function call: X training and testing data,

and training and testing data. Python has the convention of listing the names for

multiple outputs on the left side of the equals sign, separated by commas, in the correct

order in which the function lists the output.

The generated "random" numbers that result in each row of data either assigned to the

training data or the testing data are more properly called pseudo-random numbers .

Optional parameter random_state specifies the initial seed that initiates the

generation of each set of pseudo-random numbers. Specifying the same seed for each

time the function is run repeats the same pseudo-random process. That way, the same

analysis can be repeated at some future time with the same data split is obtained from

train_test_split() . If no seed is specified then each time the

train_test_split() function is run the data will be split differently.

In this example, random_state is set at 7. Each time the train_test_split()
function is run with the value of 7, the same sets of training and testing data will be

obtained.

The shape method displays the dimensions of each of the resulting two data sets,

X_train and X_test. The first number is the number of rows in the corresponding data

structure. Here with the size of the testing data set at 25% of all the data, there are 379

rows of data in the two training data structures and 127 rows of data in the two testing

data structures. The data structures have only one column. The structures are not

data frames, so their number of columns is not specified.

Size of X data structures: (379, 13) (127, 13)
Size of y data structures: (379,) (127,)

Estimate Model Parameters

The primary Python package for machine learning is sklearn (more formally, scikit-

learn). The sklearn machine learning function to estimate the values of the specified

model's parameters from the data is fit() .

What the machine learns is the numerical value of each weight that is

applied to each predictor variable or feature, plus the y-intercept.

The sklearn function for any machine learning algorithm is fit() . Apply the

y

y

In [15]: from sklearn.model_selection import train_test_split
X_train, X_test, y_train, y_test = train_test_split(X, y,
 test_size=.25, random_state=7)

y y

In [16]: print("Size of X data structures: ", X_train.shape, X_test.shape)
print("Size of y data structures: ", y_train.shape, y_test.shape)

fit() function for linear regression by applying the function to our reg instantiation of

LinearRegression .

The fit() function creates several different data structures as output, each structure

stored with a pre-defined name. The name of a data structure whose values that the

analysis procedure creates ends in an underline. The estimated model coefficients are

stored in the intercept_ and coef_ structures. To reference, precede each

structure name with the model's name and a period, such as reg.coef_ .

This machine learning implementation of regression is typically not primarily directed

towards understanding and interpreting the model coefficients. Instead, the focus is on

evaluating the extent of prediction error. The estimated coefficients are not even

displayed by default. The analysis does not provide the usual regression model output

with the coefficients listed along with their corresponding -tests of the null hypothesis

of 0, and the associated confidence interval, such as obtained from the OLS() function

in the statsmodels package. Still, the estimated weights that the machine learned are

in the corresponding coef_ output.

The corresponding fit() output structures are not pandas data frames, but rather

numpy arrays, which do not display as nicely. To make the output more readable,

convert the numpy array output format to a pandas data frame.

array([-1.29372986e-01, 2.95904870e-02, 2.22928425e-02, 2.83744579e+00,
 -1.53954203e+01, 5.27557273e+00, -1.05383841e-02, -1.30170765e+00,
 2.66392896e-01, -1.09686702e-02, -9.64830193e-01, 1.08603361e-02,
 -3.78363465e-01])

Index(['crim', 'zn', 'indus', 'chas', 'nox', 'rm', 'age', 'dis', 'rad', 'ta
x',
 'ptratio', 'black', 'lstat'],
 dtype='object')

The following listing of the estimated coefficients shows what the machine learned. In

the print() function, the %.3f is a format that indicates to display a floating-point

number, that is, one with decimal digits, and to display three decimal digits. The \n
specifies to skip an output line.

Intercept: 23.957

In [17]: reg.fit(X_train, y_train)

Out[17]:

t

In [18]: reg.coef_

Out[18]:

In [19]: X.columns

Out[19]:

In [20]: print(f'Intercept: {reg.intercept_:.3f}', '\n')

cdf = pd.DataFrame(reg.coef_, X.columns, columns=['Coefficients'])
print(cdf.round(3))

▾ LinearRegression

LinearRegression()

 Coefficients
crim -0.129
zn 0.030
indus 0.022
chas 2.837
nox -15.395
rm 5.276
age -0.011
dis -1.302
rad 0.266
tax -0.011
ptratio -0.965
black 0.011
lstat -0.378

Calculate y^

Given the estimated model, generate predictions from given values of the X variables,

the features. The standard sklearn function to calculate a fitted value from the

estimated model is predict() , again applicable to any machine learning method.

Compute two sets of values: y_fit when the model is applied (fitted) to the data on

which it trained, and, for model evaluation, y_pred when the model is applied to the test

data.

Evaluate the descriptive analysis of fit by comparing to for the training

data, y compared to y_fit.

Evaluate true predictive fit by comparing to for the testing data, y

compared to y_pred.

 is always the value of fitted by the model but this is a prediction only when the value

of is unknown by the model, which is only true for the testing data.

As always, the assessment of fit is not based on the training data in which the actual

value of y is already known, but on new data for which the model is not aware of the

actual value of y. Have the model generate its predicted value, , then evaluate how

close the values of y tend to be to corresponding values of , .

Assess Fit

Visual Assessment of Fit

If there is only one predictor variable, plot the scatter plot of X and y and the least-

squares regression line through the scatterplot. If this multiple regression, then this code

ŷ

In [21]: y_fit = reg.predict(X_train)
y_pred = reg.predict(X_test)

y ŷ

y ŷ

ŷ y

y

ŷ

ŷ yi − ŷ i

is not run.

The Python syntax for an if statement uses the double equal sign, ==, to evaluate the

equality, and a single equal sign, =, to create equality by assigning the value on the right

to the variable on the left. Indicate the end of the conditional statement, here n_pred==1,

with a colon, : . Indent two spaces for the statements that are run if the conditional

statement is true.

Assess the model by comparing the actual data values of in the testing data, y_test, to
the values of calculated from the estimated model, y_pred.

What to plot if there is more than a single feature, the usual case? Visualize the overall fit

by plotting the actual values of in the test data, y_test, with the corresponding values

of the forecasted 's, , or y_pred. If the forecasting is perfect, then , and all

points lie on the 45-degree line through the origin.

To obtain a scatter plot with the regression line and associated confidence interval, use

the seaborn function regplot() . The variables to be plotted are not in a data

frame, so there is no data parameter. To label the axes, use the set() function with

the name applied from the output of regplot() . In this example, the output of

regplot() was set ax for axis.

[Text(0.5, 0, 'y from testing data'), Text(0, 0.5, 'predicted y')]

In [22]: if n_pred == 1:
 sns.regplot(x=X_train, y=y_train, color='steelblue')

y

y

y

y ŷ y = ŷ

In [23]: sns.set(rc={"figure.figsize":(6, 4)})
ax = sns.regplot(x=y_test, y=y_pred)
ax.set(xlabel='y from testing data', ylabel='predicted y')

Out[23]:

We can see that the predicted values closely match with the actual data values from the

testing data.

Fit Metrics

A large drop of fit from training to testing model indicates overfitting the model to the

training data. To evaluate the fit of the model to the training data, compare the actual

data values, y_train, to the corresponding values computed by the model, y_fit.

The metrics module in the sklearn package provides the computations for the fit

indices. The module provides the mean squared error, MSE, and fit indices with the

functions mean_squared_error() and r2_score() . To get the standard deviation

of the residuals, manually take the square root of the variance MSE with the numpy
function sqrt() .

The %.3f formatting code instructs the Python print() function to print a floating-

point number (numeric with decimal digits) with three decimal digits.

MSE: 20.266
Stdev of residuals: 4.502
Approximate 95 per cent range of residuals: 18.007
R-squared: 0.767

For pedagogy, here compute the standard deviation of the residuals from the data.

Define the residuals as the variable e. Note that the mean squared residual, both here

and from the previous cell, is calculated with the full sample size, not the technically

correct degrees of freedom.

stdev of residuals: 4.502

Now perform the actual evaluation of model performance. Evaluate how well the actual

data values for , y_test, match the forecasted or predicted values of , . From this split

of data, the value of typically drops from that obtained from the training data.

R2

In [24]: from sklearn.metrics import mean_squared_error, r2_score
mse = mean_squared_error(y_train, y_fit)
rsq = r2_score(y_train, y_fit)
print("MSE: %.3f" % mse)
se = np.sqrt(mse)
range95 = 4 * se
print("Stdev of residuals: %.3f " % se)
print("Approximate 95 per cent range of residuals: %.3f " % range95)
print("R-squared: %.3f" % rsq)

In [25]: e = y_train - y_fit
print("stdev of residuals: %.3f " % np.sqrt(np.mean(e**2)))

y y ŷ

R2

of data, the value of typically drops from that obtained from the training data.

Sometimes, however, by chance, the testing data may outperform the training data,

again due to chance.

Forecasting Mean squared error: 29.515
Forecasting Standard deviation of residuals: 5.433
Forecasting R-squared: 0.617

We see that when applied to new data, the standard deviation of residuals, , increased

from 4.502 to 5.433, still a small number. decreased from 0.767 from the training

data to 0.617 applying the model to the testing data. Regardless, good fit is obtained

even with the forecasting model.

Model Validation with Multiple Hold-Out Samples

As a generalization to the one hold-out cross-validation described in the previous

section, pursue the usually more desirable procedure that assesses model fit with cross-

validation on multiple samples. The sklearn model_selection module provides

the functions for the cross-validation in which the model for each fold is estimated using

the remaining folds and then tested on that one remaining fold. The process

automatically repeats for each fold.

The Kfold() class is instantiated, just as is the LinearRegression() class. Also

needed is the cross-validate() function.

Evaluate Fit on Testing Data

Generate the folds with KFold() given the following parameters.

n_splits: Number of splits (folds) of the training data.

shuffle: Randomly shuffle the data before splitting into the folds.

random_state: Set the seed to recover the same "random" data set in a future

analysis.

The number of splits, folds, can vary from 2 to , where is the total number of

rows in the training data. Values of 3 and 5 are the most common number of folds.

Larger data sets support a larger number of splits. Usually, shuffle the data before

forming the folds to keep the entire process entirely random.

In this example, instantiate the KFold class with the chosen name kf, invoking the

desired parameter values. Choose whatever valid name you wish.

R

In [26]: mse_f = mean_squared_error(y_test, y_pred)
rsq_f = r2_score(y_test, y_pred)
print('Forecasting Mean squared error: %.3f' % mse_f)
print('Forecasting Standard deviation of residuals: %.3f' % np.sqrt(mse_f))
print('Forecasting R-squared: %.3f' % rsq_f)

se

R2

k − 1

In [27]: from sklearn.model_selection import KFold, cross_validate

n − 1 n

In [28]: from sklearn.model_selection import KFold, cross_validate

The cross_validate() function performs the cross-validation, randomly generating

the specified number of folds and providing multiple evaluation scores from each fold.

The function also provides computation times.

Estimate five different models from five different samples. We have already instantiated

the LinearRegression() estimator earlier as reg, also referenced for the cross-

validation. The scoring parameter specifies to obtain and MSE scores for each of the

true forecasts of applying the model, for each split, from the k-1 folds data to the hold-

out fold.

Assess model fit two ways.

1. Primary assessment of fit: Fit of the model estimated from training data to test data.

2. Overfitting: Comparison of the fit of the training model to the fit of the model on the

test data.

Training scores much larger than the related testing scores indicate overfitting, in which

the model does well for the data in which it trained but fails to generalize to new data.

Obtain the training fit information with the parameter return_train_score.

Here, name the output of cross_validate() as scores, a numpy array.

The smaller is MSE, the smaller the residuals, the better the fit. For example, a 0.5 MSE

indicates better fit than a 0.7 MSE. However, to maintain consistency with other fit

indices, the best fit score should be the largest across all scoring procedures and

estimation algorithms, which is the general rule recognized by the related sklearn
functions. Accordingly, although the MSE statistic is necessarily a positive value, it is

reported as a negative number. For example, -0.5 > -0.7, so the largest of the two

negative values is the most desirable value, here -0.5. Of course, as the mean squared

error, MSE must be a non-negative number, so the sign of the actual MSE is just flipped

to negative for the sklearn assessment of fit.

Assess Fit

In [28]: from sklearn.model_selection import KFold, cross_validate
kf = KFold(n_splits=5, shuffle=True, random_state=1)

R2

In [29]: scores = cross_validate(reg, X, y, cv=kf,
 scoring=('r2', 'neg_mean_squared_error'),
 return_train_score=True)

Our scores array contains much information regarding the fit of each model over the five

different analyses, but is not so directly readable. To make it more readable, convert

scores to a data frame, rename the long column names to more compact versions,

convert the MSE scores to positive numbers, and average the results. The display

includes the time to fit the training data for each fold and the time to calculate the

evaluation scores, which includes getting the predicted values.

Setting the parameter inplace to True changes the specified data frame and saves

the data frame with those changes. This parameter setting removes the need to copy to

a new data frame.

 fit_time score_time test_r2 train_r2 test_MSE train_MSE
0 0.0021 0.0012 0.7634 0.7294 23.3808 21.8628
1 0.0013 0.0007 0.6468 0.7582 28.6143 20.5029
2 0.0009 0.0005 0.7921 0.7262 15.1606 23.7937
3 0.0012 0.0005 0.6508 0.7580 27.2082 20.8185
4 0.0009 0.0005 0.7353 0.7409 23.3712 21.6071

A fit index averaged over all the folds is the best summary of how well the model fits,

either to the training data, or more interestingly, to the testing data.

Mean of test R-squared scores: 0.718

Mean of test MSE scores: 23.547
Mean standard deviation of test MSE scores: 4.853

The mean of the scores across the test samples (folds) is the summary indicator of

model fit. This 13-predictor model fits well, with an average across the five folds of

0.72. (Note that we never see the actual estimated model from each fold.) The average

MSE and is also low in terms of the more interpretable standard deviation of the

residuals. Once the model is validated, fit it to the entire, full data set.

Strategy to Obtain the Final Model

Begin data preparation by deleting any unnecessary features, removing any obvious

In [30]: ds = pd.DataFrame(scores)
ds.rename(columns = {'test_neg_mean_squared_error': 'test_MSE',
 'train_neg_mean_squared_error': 'train_MSE'},
 inplace=True)

ds['test_MSE'] = -ds['test_MSE']
ds['train_MSE'] = -ds['train_MSE']
print(ds.round(4))

In [31]: m_r2 = ds['test_r2'].mean()
print('Mean of test R-squared scores: ' + f'{m_r2:.3f}')

m_MSE = ds['test_MSE'].mean()
print('\nMean of test MSE scores: ' + f'{m_MSE:.3f}')

m_se = np.sqrt(ds['test_MSE'].mean())
print('Mean standard deviation of test MSE scores: ' + f'{m_se:.3f}')

R2

R2

se

univariate outliers, and converting any categorical variables to indicator/dummy variables

if included in the model as features. Also check for missing data as machine learning

solution algorithms do not run if missing data are present.

If CPU time is an issue, cross-validate with only one hold-out sample. Otherwise, cross-

validate with 3 or 5 or more hold-out samples, depending on CPU time and the size of

the original data set.

If computation time permits, evaluate the model with the mean chose fit

index over the the -fold cross-validations.

The only advantage of the one train-test split approach is that the model coefficients

can be obtained, but they are not of primary interest because the final model has not yet

been estimated on all of the data. Cross-validation with -fold does what the one train-

test split approach does, but now times. The train-test one split approach almost

becomes pedagogical as a way to learn how the -fold procedure works.

The initial model is usually pared down to a more parsimonious model, retaining a

smaller set of relevant features that each provide unique information. Obvious

candidates for features to delete can be deleted before model validation begins, that is,

those with low correlations with the target and/or high correlations with other features.

More sophisticated feature deletion can occur after the model if the model is validated.

Then use the statsmodels regression function OLS() for ordinary least squares to

estimate the model on all of the data to get the estimated model on the largest sample

possible. Do a more sophisticated feature selection procedure using your own

judgement, based on -values for individual features and VIF values to assess the

collinearity of individual features. Also, use Cook's distance to investigate and possibly

eliminate any rows of data that are outliers with respect to the regression model.

The coefficients of the final, validated model, estimated with all of the data, are needed

to apply the model to other situations. Once a final model is selected, re-run the cross-

validation on the smaller number of features to make sure the reduced model still

evaluates well. Ideally, this analysis would be done on a completely new data set, but

that may not be practical.

When completed, with the final statsmodels run you have the coefficients --

 etc. -- that define the model that you now, in another context, put into

production.

k

k

k

k

p

b

b0, b1, b2,

In []:

