
Feature Selection
<div id="author""> David Gerbing

The School of Business

Portland State University

gerbing@pdx.edu </div>

Table of Contents
1 Preliminaries

2 Data

3 Feature Selection

3.1 Manual Selection

3.2 Automated Feature Selection

3.2.1 Automated Univariate Feature Selection

3.2.2 Automated Multivariate Feature Selection

4 Postscript

Feature selection is not always necessary for building machine learning models, but it is

typically a worthwhile process to pursue. The goal is parsimony, to reduce the number of

predictor variables (features) in the model, to keep predictive accuracy at or almost at

the same level, but with a much simpler model, with fewer predictor variables.

Two reasons to pursue feature selection:

1. Data costs money. The fewer the predictors, the less data needs to be collected.

2. Understanding the underlying relationships between predictors and target variable,

which indirectly often leads to the construction of better models.

Preliminaries

Analysis on 2023-07-17 at 16:37

'/Users/davidgerbing/Documents/000/575/0Templates'

In [1]: from datetime import datetime as dt
now = dt.now()
print ("Analysis on", now.strftime("%Y-%m-%d"), "at", now.strftime("%H:%M"))

In [2]: import os
os.getcwd()

Out[2]:

In [3]: import pandas as pd
import numpy as np
import seaborn as sns

Data

(506, 15)

Do not need the first column, so drop.

Store the features, the predictor variables, in data structure X. Store the target variable

in data structure . To run multiple regression with all possible predictor variables, one

possibility defines X as the entire data frame with medv dropped, as in

 X = d.drop(['medv'], axis="columns")

Alternatively, use the procedure below that manually defines a vector of the predictor

variables (features) names, and then define X as the subset of d that contains just these

variables.

Unnamed:
0

crim zn indus chas nox rm age dis rad tax ptratio black

0 1 0.00632 18.0 2.31 0 0.538 6.575 65.2 4.0900 1 296 15.3 396.90

1 2 0.02731 0.0 7.07 0 0.469 6.421 78.9 4.9671 2 242 17.8 396.90

2 3 0.02729 0.0 7.07 0 0.469 7.185 61.1 4.9671 2 242 17.8 392.83

3 4 0.03237 0.0 2.18 0 0.458 6.998 45.8 6.0622 3 222 18.7 394.63

4 5 0.06905 0.0 2.18 0 0.458 7.147 54.2 6.0622 3 222 18.7 396.90

crim zn indus chas nox rm age dis rad tax ptratio black lstat medv

0 0.00632 18.0 2.31 0 0.538 6.575 65.2 4.0900 1 296 15.3 396.90 4.98 24.0

1 0.02731 0.0 7.07 0 0.469 6.421 78.9 4.9671 2 242 17.8 396.90 9.14 21.6

2 0.02729 0.0 7.07 0 0.469 7.185 61.1 4.9671 2 242 17.8 392.83 4.03 34.7

3 0.03237 0.0 2.18 0 0.458 6.998 45.8 6.0622 3 222 18.7 394.63 2.94 33.4

4 0.06905 0.0 2.18 0 0.458 7.147 54.2 6.0622 3 222 18.7 396.90 5.33 36.2

In [4]: #d = pd.read_csv('data/Boston.csv')
d = pd.read_csv('http://web.pdx.edu/~gerbing/data/Boston.csv')

In [5]: d.shape

Out[5]:

In [6]: d.head()

Out[6]:

In [7]: d = d.drop(["Unnamed: 0"], axis="columns")
d.head()

Out[7]:

y

In [8]: y = d['medv']
pred_vars = ['crim', 'zn', 'indus', 'chas', 'nox', 'rm', 'age', 'dis', 'rad',
 'tax', 'ptratio', 'black', 'lstat']

Not necessary, but see how many features in the model, and observe the data type of

the X and y data structures. The function len() provides the length of a vector, that is,

the number of elements of a vector.

Number of predictor variables: 13

X and y are created as two different pandas data types: X is a data frame, y is a one-

dimensional array called a series . A data frame can have a single column, but,

somewhat confusingly (in my opinion), subsetting a data frame down to a single variable

is no longer is a data frame.

Feature Selection

Features, the predictor variables, should be ...

relevant: Predictors each correlate with the target

unique: Predictors do not correlate much with each other

The problem of collinearity is the problem of correlated predictor variables, the features.

Too much correlation and redundancy make estimating the slope coefficients difficult,

though it does not harm predictive accuracy per se. Generally, improve model fit by

adding new information in the form of a new predictor variable to the model to the extent

that the new predictor is relevant and unique.

Do, however, be aware of the problem of data leakage. When testing the model on data

previously unseen by the model, all aspects of that data must have been unseen, just as

in a real-world forecasting scenario. Otherwise, the data is said to leak from training to

testing data. Making decisions regarding the model based on all the data then by

definition includes both training and testing data. Best to make decisions regarding

model estimation only from the training data.

 'tax', 'ptratio', 'black', 'lstat']
X = d[pred_vars]

In [9]: n_pred = len(pred_vars)
print("Number of predictor variables:", n_pred)

model estimation only from the training data.

Manual Selection

Base selection of the predictor variables on satisfying the two criterion: relevance and

uniqueness. The goal here is to produce a single output, a table, that displays numerical

indices for both criterion.

Uniqueness. Besides the correlation coefficient of two predictor variables, a more

general indicator of collinearity is the variance inflation factor or VIF. The VIF assesses

the linear redundancy of one predictor variable not just with one other predictor variable,

but all the other predictor variables.

Relevance. Compute the correlation of each predictor with the target.

X is a: <class 'pandas.core.frame.DataFrame'>
X.values is a: <class 'numpy.ndarray'>

Use the statsmodels function variance_inflation_factor() to compute the

variance inflation factor for each predictor. The VIF's are a property only of the X's, so

the target is not part of this analysis. The variance_inflation_factor()
function does not compute all the VIF's, but only one at a time. Create a data frame

named vif, then fill each row of the data frame with the corresponding name of the

predictor variable and its corresponding variance inflation factor.

To systematically calculate and retrieve the VIF's, one for each feature, traverse through

the variables in X one at a time with a programming structure known as a for loop,

from the first X variable through the last X variable, where X.shape[1] is the number

of rows of the data frame.

Because the loop cannot traverse through the original data frame, transfer the X data

frame to a more primitive data structure, a numpy structure of a numeric matrix,

obtained with the values method.

1. To begin, create an empty data frame with any valid name. Here we use vif. Then

define a variable called Predictor in the data frame, filled with the names of the

columns of the X data structure using the columns method.

2. Then create a variable called VIF, the variance inflation factor for each predictor

variable. Loop through the data matrix (not data frame) with the values method

In [10]: print("X is a: ", type(X))
print("X.values is a: ", type(X.values))

y

variable. Loop through the data matrix (not data frame) with the values method

for each predictor variable.

3. Calculate the correlation of each predictor (feature) with the target and store in the

variable called Relevance. Store in the data series cr, then loop through cr for each

variable to copy the value to the new Relevance variable.

4. Finally, display the contents of the created vif data frame by listing its name as the

last line of code in the cell. (If we wish to display information before the last line,

then need the print() function.)

Predictor VIF Relevance

0 crim 2.100373 -0.388

1 zn 2.844013 0.360

2 indus 14.485758 -0.484

3 chas 1.152952 0.175

4 nox 73.894947 -0.427

5 rm 77.948283 0.695

6 age 21.386850 -0.377

7 dis 14.699652 0.250

8 rad 15.167725 -0.382

9 tax 61.227274 -0.469

10 ptratio 85.029547 -0.508

11 black 20.104943 0.333

12 lstat 11.102025 -0.738

There is much collinearity in the data, consistent with the correlation matrix that shows

many feature correlations far from 0. Many features could be deleted to yield a more

parsimonious model that would be just as effective if not more so. Although rm has one

of the highest VIF's, it is also strongly related to the target as shown by the regression

coefficients' analysis and has one of the highest correlations with the target. A high VIF

does not mean a feature should be deleted because perhaps a relevant feature is

correlated with other, less relevant features that, when deleted, lower the VIF on the

more relevant feature.

In [11]: from statsmodels.stats.outliers_influence import variance_inflation_factor
vif = pd.DataFrame()
vif['Predictor'] = X.columns

vif['VIF'] = [variance_inflation_factor(X.values, i)
 for i in range(X.shape[1])]

cr = d.corr()['medv'].round(3)
vif['Relevance'] = [cr[i]
 for i in range(X.shape[1])]
vif

Out[11]:

more relevant feature.

Automated Feature Selection

The pure machine learning approach seeks to automate everything. This approach

makes the most sense when there are many, tens if not hundreds, of features.

Otherwise, best to perform feature selection manually, analyzing correlations, variance

inflation factors, p-values from the regression analysis of all features, and all possible

subset regressions. And there is always understanding the meaning of the individual

features (predictor variables), favoring the most understandable and meaningful, and

perhaps easiest or cheapest for which to collect the data.

Let's proceed as if we have too many features to model effectively or we wish to rely

only on influential predictor variables. So we pare down our model here using automated

feature selection. We begin with all 13 features.

If you have the computation time, do this after the analysis with all the features. If

computation time is limited, do at least some feature selection before the model

evaluation.

Automated Univariate Feature Selection

There is one simple sklearn feature selection module called SelectKBest that

selects the specified number of features according to relevance, the correlation of each

feature with the target. It simply selects those features with the highest correlations with

the target. Specify the number of retained features with the k parameter.

Here the logical array we name selected indicates which of the k values in the X

feature data structure are to be retained.

array([False, False, True, False, False, True, False, False, False,
 True, True, False, True])

Select the selected variables by subsetting the original X data structure.

In [12]: from sklearn.feature_selection import SelectKBest, f_regression
selector = SelectKBest(f_regression, k=5).fit(X,y)
selected = selector.get_support()
selected

Out[12]:

Select the selected variables by subsetting the original X data structure.

indus rm tax ptratio lstat

0 2.31 6.575 296 15.3 4.98

1 7.07 6.421 242 17.8 9.14

2 7.07 7.185 242 17.8 4.03

3 2.18 6.998 222 18.7 2.94

4 2.18 7.147 222 18.7 5.33

Automated Multivariate Feature Selection

A more sophisticated, though more costly in CPU time procedure, is the sklearn
module RFE , for recursive feature elimination. First, specify the estimation procedure

by which to initially assign weights to the features, such as linear regression as in this

example. The RFE procedure then evaluates the features and identifies the single

weakest feature on the basis of model fit, which is then pruned from the model. This

assumes the parameter step is set at 1, which is the number of features pruned at each

step.

To apply the estimator, invoke the fit() function on the specified feature and target

data structures, X and . The process is recursively repeated until the requested number

of features, n_features_to_select, is obtained. In this example, retain the top 5 features.

This method generally produces a better model than SelectKBest , but the issue is

computation time. If the CPU time is available, RFE is preferred.

The features are selected, but now pare down the X data frame of feature data to just

include the selected features. Rely upon two variables that RFE() created. The output

vector support_ indicates by True or False the selected variables. The output

ranking_ vector ranks the features, with all the selected variables ranked at 1.

[False False False True True True False True False False True False

In [13]: X2 = X.iloc[:, selected]
X2.head()

Out[13]:

y

In [14]: from sklearn.linear_model import LinearRegression
estimator = LinearRegression()
from sklearn.feature_selection import RFE
selector = RFE(estimator, n_features_to_select=5, step=1).fit(X,y)

In [15]: print(selector.support_)
print(selector.ranking_)

[False False False True True True False True False False True False
 False]
[4 6 5 1 1 1 9 1 3 7 1 8 2]

Use the support_ output structure from RFE() . Subset the data with iloc() to

redefine the feature data frame.

chas nox rm dis ptratio

0 0 0.538 6.575 4.0900 15.3

1 0 0.469 6.421 4.9671 17.8

2 0 0.469 7.185 4.9671 17.8

3 0 0.458 6.998 6.0622 18.7

4 0 0.458 7.147 6.0622 18.7

We see that the five feature variables selected by the more sophisticated RFE() differ

from the five chosen features by SelectKBest() .

To view the rankings of all the features, to show the order of the variables that did not

make the final 5, access the output ranking_ variable. Note that one of the two features

most highly correlated with the target, lstat, did not make the cut.

The crucial information not shown here is how much higher is , or how much lower is

MSE, for a five-feature model. No answer from this analysis. To test, the model would

need to be re-run.

3 4 5 7 10 12 8 0 2 1 9 11 6

Feature chas nox rm dis ptratio lstat rad crim indus zn tax black age

Rank 1 1 1 1 1 2 3 4 5 6 7 8 9

Postscript

The model should also be analyzed with standardized variables to put everything on a

common scale. Further, at least one outlier should be removed. Given the high degree of

collinearity, the model can likely be reduced to about 3 or 4 features with little if any lose

in predictive power.

Also, the model should be developed on one set of data, the training data, and then

evaluated on testing data, apart from the training data. If no new data is available, then

split the original data up into 75%/25% samples and then estimate (learn) on the 75%

sample and test on the 25% sample.

In [16]: X2 = X.iloc[:, selector.support_]
X2.head()

Out[16]:

R2

In [17]: rnk = pd.DataFrame()
rnk['Feature'] = X.columns
rnk['Rank']= selector.ranking_
rnk.sort_values('Rank').transpose()

Out[17]:

The most useful statistical information, from my experience, for feature selection is what

is called all subset regression, which evaluates for all (or many) possible subsets of

feature combinations (actually, the adjusted version). Then it becomes straightforward

to see which core set of predictors are best combined to achieve one of the best models

among the available alternatives.

On a bit of a tangent here, but in terms of the most general advice, my R

Regression() function provides this subset regression analysis automatically. I prefer

that program in my lessR R package to anything I have seen in Python when doing

regression analysis. Very straightforward to use and does cross-validation as well with

the parameter kfold set to some value larger than 1 to specify the number of folds.

Read the data and run the function. Not part of this course per se, but helpful to apply in

real-world contexts. Here is the R code that gives all of the above, plus all subsets

regressions.

library(lessR)

d = Read("http://web.pdx.edu/~gerbing/data/Boston.csv")

Regression(medv ~ crim + zn + indus + chas + nox + rm + age + dis +
rad + tax + ptratio + black + lstat)

As a bonus, add the parameter Rmd="house" (or named whatever), and you will

generate a complete written report.

R2

