Feature Selection

<div id="author""> David Gerbing
The School of Business

Portland State University
gerbing@pdx.edu </div>

Table of Contents

1 Preliminaries
2 Data
3 Feature Selection

= 3.1 Manual Selection

m 3.2 Automated Feature Selection
o 3.2.1 Automated Univariate Feature Selection
o 3.2.2 Automated Multivariate Feature Selection

4 Postscript

Feature selection is not always necessary for building machine learning models, but it is
typically a worthwhile process to pursue. The goal is parsimony, to reduce the number of
predictor variables (features) in the model, to keep predictive accuracy at or almost at
the same level, but with a much simpler model, with fewer predictor variables.

Two reasons to pursue feature selection:

1. Data costs money. The fewer the predictors, the less data needs to be collected.
2. Understanding the underlying relationships between predictors and target variable,
which indirectly often leads to the construction of better models.

Preliminaries

from datetime import datetime as dt
now = dt.now()
print ("Analysis on", now.strftime("%Y-%m-%d"), "at", now.strftime("%$H:%M"))

Analysis on 2023-07-17 at 16:37

import os
os.getcwd()

' /Users/davidgerbing/Documents/000/575/0Templates’

import pandas as pd
import numpy as np
import seaborn as sns

Data

#d = pd.read csv('data/Boston.csv')
d = pd.read csv('http://web.pdx.edu/~gerbing/data/Boston.csv')

d.shape
(506, 15)
d.head()

Unnamed(; crim zn indus chas nox rm age dis rad tax ptratio bl
0 1 0.00632 18.0 2.31 0 0.538 6.575 65.2 4.0900 1 296 15.3 39
1 2 0.02731 0.0 7.07 0 0.469 6.421 789 4.9671 2 242 17.8 39!
2 3 0.02729 0.0 7.07 0 0469 7185 611 4.9671 2 242 17.8 39:
3 4 0.03237 0.0 218 0 0.458 6.998 458 6.0622 3 222 18.7 39
4 5 0.06905 0.0 2.18 0 0.458 7.147 54.2 6.0622 3 222 18.7 39l

Do not need the first column, so drop.

d = d.drop(["Unnamed: 0"], axis="columns")
d.head()

crim zn indus chas nox rm age dis rad tax ptratio black Istat
0 0.00632 18.0 2.31 0.538 6.575 65.2 4.0900 1 296 15.3 396.90 4.98
1 0.02731 0.0 7.07 0.469 6.421 78.9 4.9671 2 242 17.8 396.90 9.14
0.02729 0.0 7.07 0.469 7185 611 4.9671 2 242 17.8 392.83 4.03

0.03237 0.0 218 0.458 6.998 458 6.0622 3 222 18.7 394.63 294

o O o o o

A W N

0.06905 0.0 2.8 0.458 7147 54.2 6.0622 3 222 18.7 396.90 5.33

Store the features, the predictor variables, in data structure X. Store the target variable
in data structure y. To run multiple regression with all possible predictor variables, one
possibility defines X as the entire data frame with medv dropped, as in

X = d.drop(['medv'], axis="columns")
Alternatively, use the procedure below that manually defines a vector of the predictor
variables (features) names, and then define X as the subset of d that contains just these
variables.

y = d['medv']
pred vars = ['crim', 'zn', 'indus', 'chas', 'nox', 'rm', ‘'age', 'dis', 'rad’
'tax'. 'btratio'. 'black'. 'lstat'l

X = d[pred vars]

Not necessary, but see how many features in the model, and observe the data type of
the X and y data structures. The function len() provides the length of a vector, that is,
the number of elements of a vector.

n pred = len(pred vars)
print("Number of predictor variables:", n_pred)

Number of predictor variables: 13

X and y are created as two different pandas data types: X is a data frame, y is a one-
dimensional array called a series . A data frame can have a single column, but,
somewhat confusingly (in my opinion), subsetting a data frame down to a single variable
is no longer is a data frame.

Feature Selection

Features, the predictor variables, should be ...

e relevant: Predictors each correlate with the target
e unique: Predictors do not correlate much with each other

The problem of collinearity is the problem of correlated predictor variables, the features.
Too much correlation and redundancy make estimating the slope coefficients difficult,
though it does not harm predictive accuracy per se. Generally, improve model fit by
adding new information in the form of a new predictor variable to the model to the extent
that the new predictor is relevant and unique.

Do, however, be aware of the problem of data leakage. When testing the model on data
previously unseen by the model, all aspects of that data must have been unseen, just as
in a real-world forecasting scenario. Otherwise, the data is said to leak from training to
testing data. Making decisions regarding the model based on all the data then by
definition includes both training and testing data. Best to make decisions regarding

model estimation only from the training data.

Manual Selection

Base selection of the predictor variables on satisfying the two criterion: relevance and
uniqueness. The goal here is to produce a single output, a table, that displays numerical
indices for both criterion.

Uniqueness. Besides the correlation coefficient of two predictor variables, a more
general indicator of collinearity is the variance inflation factor or VIF. The VIF assesses
the linear redundancy of one predictor variable not just with one other predictor variable,
but all the other predictor variables.

Relevance. Compute the correlation of each predictor with the target.

print ("X is a: ", type(X))
print("X.values is a: ", type(X.values))

X is a: <class 'pandas.core.frame.DataFrame'>
X.values is a: <class 'numpy.ndarray'>

Use the statsmodels function variance_inflation_factor() to compute the
variance inflation factor for each predictor. The VIF's are a property only of the X's, so
the target y is not part of this analysis. The variance_inflation_factor()
function does not compute all the VIF's, but only one at a time. Create a data frame
named vif, then fill each row of the data frame with the corresponding name of the
predictor variable and its corresponding variance inflation factor.

To systematically calculate and retrieve the VIF's, one for each feature, traverse through
the variables in X one at a time with a programming structure known asa for loop,
from the first X variable through the last X variable, where X.shape[1] is the number
of rows of the data frame.

Because the loop cannot traverse through the original data frame, transfer the X data
frame to a more primitive data structure, a numpy structure of a numeric matrix,
obtained with the values method.

1. To begin, create an empty data frame with any valid name. Here we use vif. Then
define a variable called Predictor in the data frame, filled with the names of the
columns of the X data structure using the columns method.

2. Then create a variable called VIF, the variance inflation factor for each predictor
variable. Loop throuah the data matrix (not data frame) with the values method

for each predictor variable.

3. Calculate the correlation of each predictor (feature) with the target and store in the
variable called Relevance. Store in the data series cr, then loop through cr for each
variable to copy the value to the new Relevance variable.

4. Finally, display the contents of the created vif data frame by listing its name as the
last line of code in the cell. (If we wish to display information before the last line,
then need the print() function.)

from statsmodels.stats.outliers_influence import variance_inflation factor
vif = pd.DataFrame/()
vif['Predictor'] = X.columns

vif['VIF'] = [variance_inflation factor(X.values, i)
for i in range(X.shape[l])]

cr = d.corr()['medv'].round(3)
vif['Relevance'] = [cr[i]
for i in range(X.shape[l])]
vif
Predictor VIF Relevance
0 crim 2.100373 -0.388
1 zn 2.844013 0.360
2 indus 14.485758 -0.484
3 chas 1.152952 0.175
4 nox 73.894947 -0.427
5 rm 77.948283 0.695
6 age 21.386850 -0.377
7 dis 14.699652 0.250
8 rad 15.167725 -0.382
9 tax 61.227274 -0.469
10 ptratio 85.029547 -0.508
1" black 20.104943 0.333
12 Istat 11.102025 -0.738

There is much collinearity in the data, consistent with the correlation matrix that shows
many feature correlations far from 0. Many features could be deleted to yield a more
parsimonious model that would be just as effective if not more so. Although rm has one
of the highest VIF's, it is also strongly related to the target as shown by the regression
coefficients' analysis and has one of the highest correlations with the target. A high VIF
does not mean a feature should be deleted because perhaps a relevant feature is
correlated with other, less relevant features that, when deleted, lower the VIF on the

[N T S T

more reievdlit ieduuie.

Automated Feature Selection

The pure machine learning approach seeks to automate everything. This approach
makes the most sense when there are many, tens if not hundreds, of features.
Otherwise, best to perform feature selection manually, analyzing correlations, variance
inflation factors, p-values from the regression analysis of all features, and all possible
subset regressions. And there is always understanding the meaning of the individual
features (predictor variables), favoring the most understandable and meaningful, and
perhaps easiest or cheapest for which to collect the data.

Let's proceed as if we have too many features to model effectively or we wish to rely
only on influential predictor variables. So we pare down our model here using automated
feature selection. We begin with all 13 features.

If you have the computation time, do this after the analysis with all the features. If
computation time is limited, do at least some feature selection before the model
evaluation.

Automated Univariate Feature Selection

There is one simple sklearn feature selection module called SelectKBest that
selects the specified number of features according to relevance, the correlation of each
feature with the target. It simply selects those features with the highest correlations with
the target. Specify the number of retained features with the k parameter.

Here the logical array we name selected indicates which of the k values in the X
feature data structure are to be retained.

from sklearn.feature_selection import SelectKBest, f_regression
selector = SelectKBest(f regression, k=5).fit(X,y)

selected = selector.get_support()

selected

array([False, False, True, False, False, True, False, False, False,
True, True, False, True])

[Y IORUOF I (RO [T R [N S R (SR R RS SR SR S SO [O [RN R

DEIECL LIIE SeleCLleu vdiidbies Dy SupseLLnly uie orgindl A udld suucuuie.

X2 = X.iloc[:, selected]
X2 .head()

indus rm tax ptratio Istat
0 2.31 6.575 296 15.3 4.98
1 7.07 6.421 242 17.8 9.4
7.07 7185 242 17.8 4.03

218 6.998 222 18.7 294

A W N

218 7147 222 18.7 5.33

Automated Multivariate Feature Selection

A more sophisticated, though more costly in CPU time procedure, is the sklearn
module RFE , for recursive feature elimination. First, specify the estimation procedure
by which to initially assign weights to the features, such as linear regression as in this
example. The RFE procedure then evaluates the features and identifies the single
weakest feature on the basis of model fit, which is then pruned from the model. This
assumes the parameter step is set at 1, which is the number of features pruned at each
step.

To apply the estimator, invoke the fit() function on the specified feature and target
data structures, X and y. The process is recursively repeated until the requested number
of features, n_features_to_select, is obtained. In this example, retain the top 5 features.

This method generally produces a better model than SelectKBest , but the issue is
computation time. If the CPU time is available, RFE is preferred.

from sklearn.linear model import LinearRegression

estimator = LinearRegression()

from sklearn.feature_selection import RFE

selector = RFE(estimator, n features to select=5, step=1).fit(X,y)

The features are selected, but now pare down the X data frame of feature data to just
include the selected features. Rely upon two variables that RFE() created. The output
vector support_indicates by True or False the selected variables. The output
ranking_ vector ranks the features, with all the selected variables ranked at 1.

print(selector.support)
print(selector.ranking)

[False False False True True True False True False False True False

-False]
[46 5111913718 2]

Use the support_ output structure from RFE() . Subset the data with iloc() to
redefine the feature data frame.

X2 = X.iloc[:, selector.support]
X2 .head()

chas nox rm dis ptratio
0.538 6.575 4.0900 15.3

0.469 6.421 4.9671 17.8

0
0

2 0 0.469 7185 4.9671 17.8
0 0.458 6.998 6.0622 18.7
0

0.458 7.147 6.0622 18.7

We see that the five feature variables selected by the more sophisticated RFE() differ
from the five chosen features by SelectKBest() .

To view the rankings of all the features, to show the order of the variables that did not
make the final 5, access the output ranking_ variable. Note that one of the two features
most highly correlated with the target, /stat, did not make the cut.

The crucial information not shown here is how much higher is R2, or how much lower is
MSE, for a five-feature model. No answer from this analysis. To test, the model would
need to be re-run.

rnk = pd.DataFrame()

rnk['Feature'] = X.columns

rnk['Rank']= selector.ranking
rnk.sort_values('Rank').transpose()

3 4 5 7 10 12 8 0 2 1 9 1 6
Feature chas nox rm dis ptratio Istat rad crim indus zn tax black age

Rank 1 1 1 1 1 2 g 4 5 6 7 8 9

Postscript

The model should also be analyzed with standardized variables to put everything on a
common scale. Further, at least one outlier should be removed. Given the high degree of
collinearity, the model can likely be reduced to about 3 or 4 features with little if any lose
in predictive power.

Also, the model should be developed on one set of data, the training data, and then
evaluated on testing data, apart from the training data. If no new data is available, then
split the original data up into 75%/25% samples and then estimate (learn) on the 75%
sample and test on the 25% sample.

The most useful statistical information, from my experience, for feature selection is what
is called all subset regression, which evaluates R? for all (or many) possible subsets of
feature combinations (actually, the adjusted version). Then it becomes straightforward
to see which core set of predictors are best combined to achieve one of the best models
among the available alternatives.

On a bit of a tangent here, but in terms of the most general advice, my R

Regression() function provides this subset regression analysis automatically. | prefer
that program in my lessR R package to anything | have seen in Python when doing
regression analysis. Very straightforward to use and does cross-validation as well with
the parameter kfold setto some value larger than 1 to specify the number of folds.
Read the data and run the function. Not part of this course per se, but helpful to apply in
real-world contexts. Here is the R code that gives all of the above, plus all subsets
regressions.

library(lessR)
d = Read("http://web.pdx.edu/~gerbing/data/Boston.csv")

Regression(medv ~ crim + zn + indus + chas + nox + rm + age + dis +
rad + tax + ptratio + black + lstat)

As a bonus, add the parameter Rmd="house" (or named whatever), and you will
generate a complete written report.

