Derivatives Defined

•A financial instrument whose return is derived from the return on another instrument

•Derivatives provide a means of managing financial risk

•By using derivatives, one party can transfer, for a price, (like an *insurance premium*), any undesired risk to other parties

Derivative Markets and Instruments

- Futures contract
 - Definition: a contract between two parties for one party to buy something from the other at a later date at a price agreed upon today; subject to a daily settlement of gains and losses and guaranteed against the risk that either party might default
 - Exclusively traded on a futures exchange

Option Terminology

- Price/premium
 - The price of an option contract which the buyer of the option pays to the option writer for the rights conveyed by the option contract
- Call
 - Option contract that gives the holder the right to *buy* the underlying security at a specified price for a certain fixed period of time

Option Terminology

- Put
 - An option contract that gives the holder the right to sell the underlying security at a specified price for a certain fixed period of time
- Exercise price/strike price/striking price
 - The stated price per share for which the underlying security may be purchased (in the case of a call) or sold (in the case of a put) by the option holder upon the exercise of the option contract

Call options

- Objective of a call- the buyer profits from the underlying asset's appreciation
 - In-the-money
 - A term describing an option that has intrinsic value.
 A *call* option is in-the-money if the underlying security is *higher* than the striking price of the call
 - Out-of-the-money
 - A *call* option is out-of-the-money if the strike price is *greater than* the market price of the underlying security

Option Terminology

- Expiration date
 - The day on which an option contract becomes void. Holders of options should indicate their desire to exercise, if they wish to do so, by this date.

Option Terminology

- At-the-money
 - An option is at-the-money if the strike price of the option is equal to the market price of the underlying security
 - Risk neutral investor or investment only concerned with an <u>investment's</u> expected return.

Put options

- Objective of a put- the buyer locks in stock price
 - In-the-money
 - A term describing an option that has intrinsic value.
 A *put* option is in-the-money if the underlying security is *below* the striking price of the call
 - Out-of-the-money
 - A *put* option is out-of-the-money if the strike price is *less* than the market price of the underlying security

Conventional pricing assumptions

- Returns follow a normal (Gaussian) distribution
- Market completeness perfect information
- Arbitrage-free trades no arbitrage transactions can occur
- Investors are risk neutral

1.8 Copula methods in finance: a primer

Three main frontier problems in derivative pricing:

- Departure from normality
- Emerging from the smile effect
- Market incompleteness, corresponding to hedging error, and credit risk, linked to the bivariate relationship in OTC transactions

Departure from normality

Smile effect

Anyway, Stochastic volatility can explain the smile effect:

How can we explain the smile effect?

- The main contradiction in the conventional Black and Scholes model is:
- that volatility is not constant.
- We then have to shift to stochastic volatility.
- The need for stochastic volatility has been recognized by several authors.

Market completeness

- Conventional models have depended on full information for all participants
 - However, this has proven not to be the case because no *perfect hedge exists*
 - Therefore, new strategies are developed based on market incompleteness

Market incompleteness

 Because no perfect hedge exists, financial products exist to earn money from their misalignment

-Thus, the core of the derivatives market has shifted away from the underlying asset toward contingent claims on illiquid assets

1.8.1 Joint probabilities, marginal probabilities and copula functions

 For the pricing problem, a joint probability distribution can be expressed as a function of the marginal ones. So, the bivariate product is priced consistently with information from the univariate ones. Or, conversely, any copula function taking univariate distributions as arguments yields a joint distribution The price of this digital *put* option in a complete market setting is:

- DP =exp[-r(T-t)] Q($K_{NKY} K_{sp}$)
 - Where $Q(K_{NKY}K_{sp})$ is the joint risk-neutral probability that both the Japanese and US market indexes are below the corresponding strike prices
 - In order to compare the price of our bivariate product with that of the univariate ones, we could write the price as:
- DP =exp[-r(T-t)] C(Q_{NKY} Q_{sp}) with C(x,y) a bivariate function

1.8.2 Copula functions duality

The price of this digital *call* option in a complete market setting is:

- DC =exp[-r(T-t)] $\underline{\mathbf{Q}}(K_{NKY} K_{sp})$
 - Where $\underline{\mathbf{Q}}(K_{NKY}K_{sp})$ is the joint risk-neutral probability that both the Japanese and US market indexes are above the corresponding strike prices
 - Then, we can recover a copula function
- DP =exp[-r(T-t)] <u>C(Q(K_{NKY}),Q(Ksp)]</u> with C(x,y) a bivariate function known as survival copula

The survival copula is shown below

 $\underline{\mathbf{C}[\mathbf{Q}(\mathsf{K}_{\mathsf{NKY}}), \underline{\mathbf{Q}}(\mathsf{K}_{\mathsf{sp}})] =$

1- Q(K_{NKY}) - Q(Ksp) + C[Q(K_{NKY}),Q(K_{sp})]

1.8.3 Examples of copula functions

 the main advantage from the use of copula functions is the ability to preserve the dependence structure typical of a multivariate normal distribution by modifying only the marginal distributions, which may be allowed to display skewness and fat-tails consistently with data observed from the market

Frechet bounds

- The joint probability is constrained within the bounds:
- $\begin{array}{l} Max(Q_{NKY}\text{+} Qsp \text{-}1, 0) \leq Q(K_{NKY} \text{,} K_{sp} \text{)} \leq \\ min(Q_{NKY} \text{,} Q_{sp} \text{)} \end{array}$
- The upper bound corresponds to the case of perfect positive dependence between the two markets and the lower bound represents perfect negative dependence

Copula functions

- Min (x,y) = C(x,y) = maximum copula = perfect positive dependence
- Max (x+y-1,0) = minimum copula = Frechet lower bound C(x,y) = perfect negative dependence
- Imperfect dependence = possible strategy
 -use linear combination of above cases

1.8.4 Copula functions and market comovements

- Non-linear relationships can be measured by the non-parametric measures spearman's rho and Kendall's tau. These non-parametric measures do not depend on the shape of the marginal probability distributions
- The relationship between the non-parametric dependence measures and copula functions can be applied to recover a first calibration technique of the Frechet copula function itself: Spearman's rho = alpha -beta

 $\iint_{f(x)=\int \left[\frac{d}{dx}f(x)\right]} dx = \frac{d}{dx} \left[\int f(x) dx\right]$

Non-parametric features

- Both Spearman's rho and Kendall's tau do not require the specific shape of the marginal distributions
 - -taking the double integral C(u,v) dC(u,v) does not require the variances and covariances of the marginal distributions which linear correlations require

1.8.5 Tail dependence

- Non-normality at the univariate level is associated with skewness and leptokurtosis, or the fat-tail problem
- In the multivariate setting, the fat-tail problem can be referred both to the marginal univariate distributions or to the joint probability of large market movements. This concept is called tail dependence.
- Copula functions enables us to model fat-tails and tail dependence separately

Tail dependence

 For example, the likelihood that one event with probability lower than v occurs in the first variable, given that an event with probability lower than v occurs in the second one

Lamda = C(v,v)/v

For very small values of v, the lower tail index is

 $lamda_{L} = lim v \rightarrow 0 + C (v,v)/v$