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14.6 Problems

to the original whole plots used for factor A. Figure 14.11 illustrates a situation in which both
factors A and B have three levels. Note that the levels of factor A are confounded with the
whole plots, and the levels of factor B are confounded with the strips (which can be thought
of as a second set of whole plots).

A model for the strip-split plot design in Figure 14.11, assuming r replicates, a levels
of factor A, and b levels of factor B, is

s &

2, ..., T
L 2,...,a
2,0,

I
—_——

i =
Vg = p + o1+ B_/ + (7.3)13/ + v+ (Y + (B?’)jk + € J
k

b

s &

where (78);; and (1), are whole-plot errors for factors A and B, respectively, and € is a “sub-
plot” error used to test the AB interaction. Table 14.26 shows an abbreviated analysis of
variance assuming A and B are fixed factors and replicates are random. The replicates are

sometimes considered as blocks.

14.6 Problems

14.1.. A rocket propellant manufacturer is. studying the Machine 1 Machine 2 Machine 3
burning rate of propellant from three production processes. -
Four batches of propellant are randomly selected from the Spindle 1 2 1 2 1 2
output of each process, and three determinations of burning
12 8 14 12 14 16
rate are made on each batch. The results follow. Analyze the
. 9 9 15 10 10 15
data and draw conclusions.
11 10 13 11 12 15
Process 1 Process 2 Process 3 12 8 14 13 11 14
Batech 1 2 3 4 1 2 3 4 1 2 3 4
14.4. To simplify production scheduling, an industrial
25 19 15 15 19 23 18 35 14 35 38 25

30 28 17
26 20 14

16 17 24 21 27 15 21 54 29
13 14 21 17 25 20 24 50 33

14.2. The surface finish of metal parts made on four
machines is being studied. An experiment is conducted in
which each machine is run by three different operators and
two specimens from each operator are collected and tested.
Because of the location of the machines, different operators
are used on each machine, and the operators are chosen at ran-
dom. The data are shown in the following table. Analyze the
data and draw conclusions.

engineer is studying the possibility of assigning one time
standard to a particular class of jobs, believing that differ-
ences between jobs are negligible. To see if this simplifica-
tion is possible, six jobs are randomly selected. Each job is
given to a different group of three operators. Each operator
completes the job twice at different times during the week,
and the following results are obtained. What are your con-
clusions about the use of a common time standard for all
jobs in this class? What value would you use for the
standard?

Job  Operator 1 Operator 2 Operator 3
Machine 1  Machine 2 Machine 3  Machine 4 ; 1548"3 159’4 159.2 159.6 158.9 157.8
Operator 1 2 3 1 2 3 1 2 3 1 2 3 54.6 549 1577 156.8 154.8 1563
3 162.5 162.6  161.0 158.9 160.5 159.5
79 94 46 92 85 76 88 53 46 36 40 62 4 160.0 158.7 1575 158.9 161.1 158.5
62 74 57 99 79 68 75 56 57 53 56 47 5 156.3 158.1 158.3 156.9 157.7 156.9
6 163.7 161.0 1623 160.3 162.6  161.8
14.3. A manufacturing engineer is studying the dimension-
al variability of a particular component that is produced on 14.5. Consider the three-stage nested design shown in

three machines. Each machine has two spindles, and four
components are randomly selected from each spindle. The
results follow. Analyze the data, assuming that machines and
spindles are fixed factors.

Figure 14.5 to investigate alloy hardness. Using the data that
follow, analyze the design, assuming that alloy chemistry and
heats are fixed factors and ingots are random. Use the restrict-
ed form of the mixed model.
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Alloy Chemistry 1

Heats 1 2 3
Ingots 1 2 1 2 1 2

40 27 95 69 65 78
63 30 67 47 54 45

Alloy Chemistry 2

Heats 1 2 3
Ingots 1 2 1 2 1 2

22 23 83 75 61 35
10 39 62 64 77 42

14.6. Reanalyze the experiment in Problem 14.5 using the
unrestricted form of the mixed model. Comment on any dif-
ferences you observe between the restricted and the unre-
stricted model results. You may use a computer software
package.

14.7. Derive the expected mean squares for a balanced
three-stage nested design, assuming that A is fixed and that B
and C are random. Obtain formulas for estimating the
variance components. Assume the restricted form of the
mixed model.

14.8. Repeat Problem 14.7 assuming the unrestricted
form of the mixed model. You may use a computer software
package to do this. Comment on any differences between
the restricted and unrestricted model analysis and conclu-
sions.
14.9. Derive the expected mean squares for a balanced
three-stage nested design if all three factors are random.
Obtain formulas for estimating the variance components.
14.10. Verify the expected mean squares given in Table 14.1.
14.11. Unbalanced nested designs. Consider an unbalanced
two-stage nested design with b; levels of B under the ith level
of A and n;; replicates in the Zjth cell.
(a) Write down the least squares normal equations for this
situation. Solve the normal equations.
(b) Construct the analysis of variance table for the
unbalanced two-stage nested design.
(c) Analyze the following data, using the results in part (b).

Factor A 1 2
Factor B 1 2 1 2 3
6 -3 5 2 1
4 1 7 4 0
8 9 3 -3
6

14.12. Variance components in the unbalanced two-stage
nested design. Consider the model

,2,...,a
,2,....b;
2

N7}

—

i=
Yp = H T T+ Byt &y ()=
k , i

where A and B are random factors. Show that

EMS,) = o* + cla'fg + 02

E(MSp4) = o’ + coa'é

EMSy) = o2

where

i=1\j=

b;
N — E( ln;-j/n,-.)

Cy =

b—a
a b; a b
E (2 n?/n,;) - E n,-zj/N
=\ j=l i=1j=1
a= a—1
S
i=1
N
© a—1

14.13. A process engineer is testing the yield of a product man- [[]

ufactured on three machines. Each machine can be operated at
two power settings. Furthermore, a machine has three stations on
which the product is formed. An experiment is conducted in
which each machine is tested at both power settings, and three
observations on yield are taken from each station. The runs are
made in random order, and the results are shown in Table P14.1.
Analyze this experiment, assuming that all three factors are fixed.

mn TABLE P14.1
Yield Experiment in Problem 14.13

Machine 1 Machine 2
Station 1 2 3 1 2 3
Power 34.1 33.7 36.2 31.1 33.1 32.8

setting 1 303 349 3638 335 347 351
316 350 37.1 340 339 343
Power 243 28.1 257 241 241 260
setting 2 263 293  26.1 250 251 271
27.1 28,6 249 263 279 239

Machine 3

Station 1 2 3
Power 32.9 33.8 33.6
setting 1 33.0 334 32.8

33.1 32.8 31.7
Power 24.2 232 24.7
setting 2 26.1 27.4 22.0

25.3  28.0 24.8






