Let Θ_i be any value of $\theta + \theta_o$ $\Lambda = \frac{L(\theta_o)}{L(\theta_i)} = \frac{\left(\frac{1}{\sqrt{2\pi}}\right)^n e^{-\frac{1}{2}\sum[\chi_i - \theta_i]^2}}{\left(\frac{1}{\sqrt{2\pi}}\right)^n e^{-\frac{1}{2}\sum[\chi_i - \theta_i]^2}} \stackrel{\text{set}}{= c}$ $= \frac{1}{2}\left(\sum_{i=1}^{N} 2\theta_i \sum_{i=1}^{N} 2\theta_i \sum_{i=1}^{N} 2\theta_i^2 - \left(\sum_{i=1}^{N} 2\theta_i \sum_{i=1}^{N} 2\theta_i^2\right)\right) \stackrel{\text{set}}{= c}$

-20,
$$\xi_{x_i} + n\theta_0^2 + 2\theta_i \xi_{x_i} - n\theta_i^2 = c'$$

 $2\overline{x}(\theta_i - \theta_j) + \theta_0^2 - \theta_i^2 = c''$
 $\overline{x}(\theta_i - \theta_i) = c'''$
Our reject region $\overline{x} \quad \overline{x} = k$ if $\theta_i > \theta_0$
or $\overline{x} \in k$ if $\theta_i < \theta_0$
i. There is no single regettion region that
gives a most proceeded test $\forall \theta_i$.
That is, there is no UMP test.

B
Case(: g(4) f
Then A is I ant
So A
$$\leq c \Leftrightarrow g(4) \leq c$$

 $\Leftrightarrow g(4) \geq c''$
 $\Leftrightarrow t \geq c'''$
Case 2: g(4) J
Then A is f in t
 $A \leq c \Leftrightarrow g(4) \leq c$
 $g(4) \geq c''$
 $t \leq c'''$
This is the Karlin-Rubin Theorem,
which is a corollary to the Meyman-Pearson
Theorem.
Summery: If LIO) has MLR in T (Suddicioned),
when the MP test of $W: O=0$,
 $H: O= d$.
Will be if the form $T\leq c$ or $T\geq c$
 $(g(4) \neq 1)$

Bayesian Hypotheses Tests

We now assume that Q is a random Janiololo whose distribution is known, and Q is independent of X1, -, X4.

Example (normal-normal) $X_{1,...,}X_{N} \sim iid N(\theta, \sigma^{2})$ $\theta \sim N(\mu, \tau^{2})$ With known

Prior distribution $h(\theta) = \frac{1}{2\sqrt{2\pi}}e^{-\frac{1}{2}\left(\frac{\theta-\mu}{2}\right)^2}$

(6)

$$L(\theta) = f(x_1, ..., x_n | \theta)$$

= $\left(\frac{1}{\sigma \sqrt{2\pi}}\right)^n e^{-\frac{1}{2}\sum_{i=1}^{n} \left(\frac{x_i - \theta}{\sigma}\right)^2}$

the joint distr. if (X1,..., Xn, 0) is L(0)h(0) Recall that the posterior distribution of 0/x is prepartional to L(0)h(0)

$$L(\theta)h(\theta) = \left(\frac{1}{\sqrt{\lambda_{x}}}\right) \frac{1}{\sqrt{\lambda_{y}}} e^{-\frac{1}{2\sqrt{2}}\left(2/\chi_{i}-\theta\right)^{2} - \frac{1}{2\sqrt{2}}\left(\theta-\chi\right)^{2}} e^{-\frac{1}{2\sqrt{2}}\left(\theta-\chi\right)^{2}}$$

This is proportional to a normal durity with man $\frac{n2^2z+\sigma^2}{n2^2+\sigma^2}$ and

Vaniance
$$\frac{\sqrt{2}}{\sqrt{2^2+3^2}}$$

Decision rule: Rizeet to A P(OE_DS | X) = P(OE_Do | X)

Fulp: reject the if $P(\theta > \theta_0 | \overline{X}) > .5$

$$P\left(\frac{\theta - \frac{n\tau^{2}\vec{x} + \vec{v}^{2}}{n\tau^{2} + \vec{v}^{2}}}{\sqrt{\frac{q^{2}\tau^{2}}{n\tau^{2} + \vec{v}^{2}}}} - \frac{\theta_{0} - \dots}{\pi}\right) \vec{x}\right)$$

$$P\left(\vec{z} - \frac{\theta_{0} - \dots}{\pi}\right) \vec{z}.5$$

Ø

$$= \frac{Q_{0} - \frac{n2^{2}z + \sigma^{2}\mu}{n2^{2} + \sigma^{2}}}{\sqrt{\frac{\sigma^{2}}{n2^{2}} + \sigma^{2}}} \leq 0$$

$$\Rightarrow \overline{X} \ge \Theta_{3} + \frac{\sigma^{2}(\Theta_{3} - \mu)}{n \gamma^{2}}$$

Compare this to the LRT, where we would have rejected to if $\overline{X} = C$ Under Ho: $\frac{\overline{X} - Q_0}{\sqrt{Nn}} \sim N(0,1)$

文この+ ひち

 (\mathbb{N})

8.28 Let $f(x|\theta)$ be the logistic location pdf

$$f(x| heta) = rac{e^{(x- heta)}}{\left(1+e^{(x- heta)}
ight)^2}, \quad -\infty < x < \infty, \quad -\infty < heta < \infty.$$

- (a) Show that this family has an MLR.
- (b) Based on one observation, X, find the most powerful size α test of $H_0: \theta = 0$ versus $H_1: \theta = 1$. For $\alpha = .2$, find the size of the Type II Error.
- (c) Show that the test in part (b) is UMP size α for testing $H_0: \theta \leq 0$ versus $H_1: \theta > 0$. What can be said about UMP tests in general for the logistic location family?
- **8.33** Let X_1, \ldots, X_n be a random sample from the uniform $(\theta, \theta + 1)$ distribution. To test $H_0: \theta = 0$ versus $H_1: \theta > 0$, use the test

reject
$$H_0$$
 if $Y_n \ge 1$ or $Y_1 \ge k$,

where k is a constant, $Y_1 = \min\{X_1, ..., X_n\}, Y_n = \max\{X_1, ..., X_n\}.$

- (a) Determine k so that the test will have size α .
- (b) Find an expression for the power function of the test in part (a).
- (c) Prove that the test is UMP size α .
- (d) Find values of n and k so that the UMP .10 level test will have power at least .8 if $\theta > 1$.