there will be 2 competing hypotheses, Ho & H., that make contradictory claims about a parameter.

Simple exemple: 4:0=2

H : 0 = 3

Ho is the null hypothesis
H, is the alternative hypothesis

There will be a test statistic Λ and a decision rule based on Λ

That is, R will be partitioned and 2 sets R, and R_2 , so that if $\Lambda \in R$, Λ

Ho H.

Ho H.

Type I

Type I

Type II

Let
$$\alpha = P(\text{rejecting 16} \mid \text{Ho was ochwarly true})$$

= $P(\text{Type I error})$

Select It, => "Reject Its"

Select Its => "Fail to reject Its"

Likelihood Ratio Test (LRT)

Ho: $\Theta \in \Omega_0$ where $\Omega_0 \in \Omega$ (permeter space) $H_1: \Theta \notin \Omega_0$

Let
$$\Lambda = \frac{\sup_{h} L(\theta)}{\sup_{h} L(\theta)}$$

Decision rule: Rijert Ho when $\Lambda \leq c$,
Where c is selected so that $P(\Lambda \in c) = \alpha$.

Example: X,,-,, Xm ~ cirl Exp(x) If = he-he woo

 $H': \lambda = \gamma^{\circ}$ $V = \{y\}$ $V = \{y\}$

(6)

$$L(\lambda) = \int_{i=1}^{n} \lambda e^{-\lambda x_i} = \lambda'' e^{-\lambda \xi x_i}$$

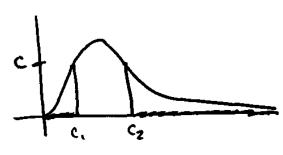
Donominator of
$$\Lambda$$
: $\lambda_{mis} = \frac{1}{x}$

$$L(\hat{\lambda}_{mis}) = \frac{1}{\bar{x}^n} e^{-\frac{1}{\bar{x}} \bar{x} \bar{x}} = \frac{e^{-n}}{\bar{x}^n}$$

Numerator of
$$\Lambda: L(\lambda_0) = \lambda_0^2 e^{-\lambda_0 \xi x_0}$$

Decision rule: reject to when $\Lambda \leq c$.

what does glt) = thent look like?



So 1 4 c 15 equivalent to $\lambda \bar{x} \geq C_z$

Under Ho, $X_1, ..., Y_n \sim \text{Exp}(X_n)$ So $\Sigma X_i \sim \text{Gramma}(A=1, \beta=\frac{1}{X_n})$ Thus $2\lambda_0 \Sigma X_i \sim \text{Gramma}(A=1, \beta=2)$ $\sim \chi^2_{2n}$ Choose $c_1, c_2 \lesssim \text{Hab the order} = \infty$

Usually, we split the area into 2 equal parts

Final decision rule:

Reject to it 2 b Zxi Z Cz or

2 h Zxi & Ci, where

Cz cuts off the upper « le area

and ci " " lower of a area in

the XZ distr. with 2n df.

Wording of your anchester:

Regart 16: found sufficient widenes favoring H.

Tail to Philes to And sufficient widenes towaring H.

Example: X1,.., Xn - cid N(µ, or)
Know

H: W>No

 $L(\mu) = \int_{-\infty}^{\infty} \frac{1}{\sigma \sqrt{2\pi}} e^{-\frac{1}{2}(x-\mu)^2}$ $= \sigma^{-n}(2\pi)^{\frac{n}{2}} e^{-\frac{1}{2}\lambda^2} \mathcal{E}(x-\mu)^2$

Know $\mu_{Me6} = \bar{x}$ $L(\mu_{Me6}) = \sigma^{-n}(2\pi)^{\frac{n}{2}} e^{-\frac{1}{2}z} \sum_{k=1}^{\infty} (x_k - \bar{x})^2$

 $= Q_{1} \left(5^{2} \right)_{1}^{2} 6 \frac{5^{2}}{10^{2}}$

For the numerator, we need to maximize $L(\mu)$, subject to $\mu \in \mu$

| (m) = In L/u) = -n lno - = ln(2x) - = = = = (x;-u)

 $24i^2 - 2\mu \Sigma x + 4\mu^2$ $0\left(\frac{1}{n}\Sigma x^2 - 2\mu \overline{x} + \mu^2\right)$ Subject to the flux 13 maximized act $\mu = 146$

Now
$$\Lambda = \frac{\sigma^{-1}(2\pi)^{\frac{1}{2}}}{\sigma^{-1}(2\pi)^{\frac{1}{2}}} = \frac{1}{2^{12}} \frac{Z(x_{1}-\mu_{0})^{2}}{e^{-\frac{1}{2}\pi^{2}(n-1)x^{2}}}$$

$$= e^{-\frac{1}{2}\pi^{2}} \left(\frac{Z(x_{1}^{2}-Z\mu_{0})E(x_{1}+n\mu_{0}^{2}-(E(x_{1}^{2}-2x_{1}^{2}E(x_{1}+n\bar{x}^{2}))}{e^{-\frac{1}{2}\pi^{2}}(-Z\mu_{0}\bar{x}+\mu_{0}^{2}+2\bar{x}^{2}-\bar{x}^{2})}$$

$$= e^{-\frac{1}{2}\pi^{2}} \left(-\frac{Z}{2}\mu_{0}\bar{x}+\mu_{0}^{2}+2\bar{x}^{2}-\bar{x}^{2} \right)$$

$$= e^{-\frac{1}{2}\pi^{2}} \left(\bar{x}-\mu_{0}^{2} \right)^{2}$$

Pule: Rejort 16 when
$$\Lambda \leq C$$
, then $\frac{(x-w)^2}{\sigma \sqrt{n}} \geq C'$

This is equivalent to rejecting it when

$$\frac{\overline{x}-\mu_0}{e} \geq \overline{x}$$
, or $\frac{\overline{x}-\mu_0}{e} \leq \overline{x}$.

Not fasible

8.5 A random sample, X_1, \ldots, X_n , is drawn from a Pareto population with pdf

$$f(x|\theta,\nu) = \frac{\theta \nu^{\theta}}{x^{\theta+1}} I_{[\nu,\infty)}(x), \quad \theta > 0, \quad \nu > 0.$$

- (a) Find the MLEs of θ and ν .
- (b) Show that the LRT of

$$H_0: \theta = 1, \nu \text{ unknown}, \quad \text{versus} \quad H_1: \theta \neq 1, \nu \text{ unknown},$$

has critical region of the form $\{x: T(x) \le c_1 \text{ or } T(x) \ge c_2\}$, where $0 < c_1 < c_2$ and

$$T = \log \left[\frac{\prod_{i=1}^{n} X_i}{(\min_{i} X_i)^n} \right].$$

- (c) Show that, under H_0 , 2T has a chi squared distribution, and find the number of degrees of freedom. (*Hint*: Obtain the joint distribution of the n-1 nontrivial terms $X_i/(\min_i X_i)$ conditional on $\min_i X_i$. Put these n-1 terms together, and notice that the distribution of T given $\min_i X_i$ does not depend on $\min_i X_i$, so it is the unconditional distribution of T.)
- **8.17** Suppose that X_1, \ldots, X_n are iid with a beta $(\mu, 1)$ pdf and Y_1, \ldots, Y_m are iid with a beta $(\theta, 1)$ pdf. Also assume that the X_s are independent of the Y_s .
 - (a) Find an LRT of $H_0: \theta = \mu$ versus $H_1: \theta \neq \mu$.
 - (b) Show that the test in part (a) can be based on the statistic

$$T = \frac{\sum \log X_i}{\sum \log X_i + \sum \log Y_i}.$$

- (c) Find the distribution of T when H_0 is true, and then show how to get a test of size $\alpha = .10$.
- **8.19** The random variable X has pdf $f(x) = e^{-x}, x > 0$. One observation is obtained on the random variable $Y = X^{\theta}$, and a test of $H_0: \theta = 1$ versus $H_1: \theta = 2$ needs to be constructed. Find the UMP level $\alpha = .10$ test and compute the Type II Error probability.