Hypothesis Testing
There will be 2 competing hypotheses, $H_{0}: H_{1}$, that make contradictory claims about a parameters:
Simple example:

$$
\begin{aligned}
& H_{0}: \theta=2 \\
& H_{1}: \theta=3
\end{aligned}
$$

Hs is the null hypothesis
H. is the alterative hypthesis

There will be a test statistic Λ
and a decision rule based on Λ

That is, \mathbb{R} will be partitioned into 2 sets
R_{1} and R_{2}, so that
if $\Lambda \in R_{1}$, th is selected !
it $\Lambda \in R_{2}, H_{1}$ is selected.

Lit $\alpha=P\left(\right.$ sigecting to $\mid H_{0}$ was octually true)

$$
=P\left(T_{y p e} I \text { ewor }\right)
$$

Select $H_{1} \Rightarrow$ "Rejelt Ho"
Seleet $H_{0} \Rightarrow$ "Fail to segeet H"
Likelihoad Ratio Test (LRT)
Ho: $\theta \in \Omega_{0}$ where $\Omega,<\Omega$ (parametor spea) $H_{1}: \Theta \notin \Omega$.

$$
\text { Let } \Lambda=\frac{\sup _{\sup _{\Omega} L(\theta)} L(\theta)}{\sup ^{\prime}(\theta)}
$$

Decision sule: Reject Ho when $\Lambda \leqslant c$, Whive c is selected so that ${\underset{H}{0}}_{P}(\Lambda \in c)=\alpha$.

Example: $X_{1}, \ldots, X_{n} \sim \operatorname{iid} \operatorname{Exp}(\lambda) \quad f f_{x}=\lambda e^{-\lambda x} x>0$

$$
\begin{array}{ll}
H_{0}: \lambda=\lambda_{0} & \Omega=\{\lambda \mid \lambda>0\} \\
H_{1}: \lambda \neq \lambda_{0} & \Omega_{0}=\left\{\lambda_{0}\right\}
\end{array}
$$

$$
L(\lambda)=\prod_{i=1}^{n} \lambda e^{-\lambda x_{i}}=\lambda^{n} e^{-\lambda \Sigma x_{i}}
$$

Denominator of $\Lambda: \quad \hat{\lambda}_{\text {cis }}=\frac{1}{\bar{X}}$

$$
L\left(\hat{\lambda}_{\mu L \sigma}\right)=\frac{1}{\bar{x}^{n}} e^{-\frac{1}{\bar{x}} \sum x_{i}}=\frac{e^{-n}}{\bar{x}^{n}}
$$

Numerator of $\Lambda: \quad L\left(\lambda_{0}\right)=\lambda_{0}^{n} e^{-\lambda_{0} \sum x_{i}}$

$$
\begin{aligned}
\Lambda=\frac{\lambda_{0}^{n} e^{-\lambda_{0} x_{i}}}{e^{-n} / \bar{x}^{n}} & =e^{n} \lambda_{0}^{n} \bar{x}^{n} e^{-n \lambda_{0} \bar{x}} \\
& =e^{n}\left(\lambda_{0} \bar{x}\right)^{n} e^{-n \lambda_{0} \bar{x}}
\end{aligned}
$$

Decision vale: reject A_{0} when $\Lambda \leq c$.
What does $g(t)=t^{n} e^{-n t}$ look like?

So $\Lambda \leq C$ is equivalent to $\lambda \vec{x} \geq C_{2}$
or $\lambda \bar{x} \leq c$,
OR

$$
\begin{aligned}
& \sum x_{i} \geq c_{2}^{\prime} \\
& \Sigma x_{i} \leq c_{1}^{\prime}
\end{aligned}
$$

Under $H_{4} \quad X_{1}, \ldots, X_{n} \sim \operatorname{Exp}\left(\lambda_{0}\right)$
So $\sum X_{i} \sim \operatorname{Gamma}\left(\alpha=n, \beta=\frac{1}{\lambda_{0}}\right)$
Thus $2 \lambda_{0} \sum X_{i} \sim \operatorname{Gamma}(\alpha=n, \beta=2)$

$$
\sim \chi_{2 n}^{2}
$$

Usually, we pit the area into 2 equal parts

Final decision rule:
Reject to it $2 \lambda_{0} \sum x_{i} \geq C_{2}$ or

$$
2 \lambda \Sigma y_{i} \leq C_{1} \text {, where }
$$

C_{2} cuts off the upper $\alpha / 2$ area and C_{1}." ". "lower A_{z} area in the X^{2} desk. with $2 n d t$.

Wording of your anduserm:
Regent Δ_{0} : found sufficient widence favoring H_{c}

Example: X_{1}, \ldots, X_{n} ~iid $N\left(\mu, \sigma_{\uparrow}^{2}\right)$

$$
\begin{align*}
& H_{0}: \mu \leq \mu_{0} \\
& H_{1}: \mu>\mu_{0} \\
& \begin{aligned}
& L(\mu)=\prod_{i=1}^{n} \frac{1}{\sigma \sqrt{2 \pi}} e^{-\frac{1}{2}\left(\frac{x_{i}-\mu}{\sigma}\right)^{2}} \\
&=\sigma^{-n}\left(2 x^{-\frac{n}{2}} e^{-\frac{1}{2 \sigma^{2}} \sum\left(x_{i}-\mu\right)^{2}}\right. \\
& K_{\text {Howl }} \hat{\mu}_{\text {MLG }}=\bar{x} \\
& L\left(\hat{\mu}_{\text {MLE }}\right)=\sigma^{-n}(2 \pi)^{-\frac{n}{2}} e^{-\frac{1}{2 \alpha^{2}} \sum\left(x_{i}-\bar{x}\right)^{2}} \\
&=\sigma^{-n}(2-\pi)^{-\frac{n}{2}} e^{-\frac{(n-1) s^{2}}{2 \sigma^{2}}}
\end{aligned}
\end{align*}
$$

For the numerator, we need to maximize $L(\mu)$, subjeet to $\mu \leqslant \mu_{0}$

$$
\begin{aligned}
& l(\mu)= \ln L(\mu)=-n \ln \sigma-\frac{n}{2} \ln (2 \pi)-\frac{1}{2 \sigma^{2}} \underbrace{\sum\left(x_{i}-\mu\right)^{2}}_{\downarrow} \\
& \uparrow \sum \sum \sum x_{i}^{2}-2 \mu \Sigma x_{i}+\mu \mu^{2} \\
& n\left(\frac{1}{n} \Sigma x^{2}-2 \mu \bar{x}+\mu^{2}\right)
\end{aligned}
$$

Suliject to $H, l(\mu)$ is maximized at $\mu=\mu_{0}$

$$
\begin{aligned}
& \text { Now } \Lambda=\frac{\sigma^{-n}(2-x)^{\frac{n}{2}} e^{-\frac{1}{\partial_{0} z^{2}} \sum\left(x_{i}-\mu\right)^{2}}}{\sigma^{-n}(2 x)^{-\frac{A}{2}} e^{-\frac{1}{x_{0}^{2}}(n-1)^{2}}}
\end{aligned}
$$

$$
\begin{aligned}
& =e^{-\frac{n}{2 \sigma^{2}}\left(-2 \mu_{0} \bar{x}+\mu_{0}^{2}+2 \bar{x}^{2}-\bar{x}^{2}\right)} \\
& =e^{-\frac{1}{\partial_{0}}\left(\bar{x}-\mu_{0}\right)^{2}}
\end{aligned}
$$

Rule: Rejest it whon $\Lambda \leqslant c$,
l.e. when $\frac{(\bar{x}-\mu)^{2}}{\sigma / n} \geq c^{\prime}$

This is equivelent to aejecting to when

$$
\frac{\frac{\bar{x}-\mu_{0}}{0 / \sqrt{n}} \geq \sqrt{c_{1}}}{\alpha} \text { or } \underbrace{}_{N_{0} t \text { feasible } \frac{\bar{x}-\mu_{0}}{\sigma \sqrt{n}} \leq \sqrt{C_{2}}}
$$

8.5 A random sample, X_{1}, \ldots, X_{n}, is drawn from a Pareto population with pdf

$$
f(x \mid \theta, \nu)=\frac{\theta \nu^{\theta}}{x^{\theta+1}} I_{[\nu, \infty)}(x), \quad \theta>0, \quad \nu>0
$$

(a) Find the MLEs of θ and ν.
(b) Show that the LRT of

$$
H_{0}: \theta=1, \nu \text { unknown, } \quad \text { versus } \quad H_{1}: \theta \neq 1, \nu \text { unknown, }
$$

has critical region of the form $\left\{\mathbf{x}: T(\mathbf{x}) \leq c_{1}\right.$ or $\left.T(\mathbf{x}) \geq c_{2}\right\}$, where $0<c_{1}<c_{2}$ and

$$
T=\log \left[\frac{\prod_{i=1}^{n} X_{i}}{\left(\min _{i} X_{i}\right)^{n}}\right]
$$

(c) Show that, under $H_{0}, 2 T$ has a chi squared distribution, and find the number of degrees of freedom. (Hint: Obtain the joint distribution of the $n-1$ nontrivial terms $X_{i} /\left(\min _{i} X_{i}\right)$ conditional on $\min _{i} X_{i}$. Put these $n-1$ terms together, and notice that the distribution of T given $\min _{i} X_{i}$ does not depend on $\min _{i} X_{i}$, so it is the unconditional distribution of T.)
8.17 Suppose that X_{1}, \ldots, X_{n} are iid with a beta $(\mu, 1)$ pdf and Y_{1}, \ldots, Y_{m} are iid with a beta $(\theta, 1)$ pdf. Also assume that the $X \mathrm{~s}$ are independent of the $Y \mathrm{~s}$.
(a) Find an LRT of $H_{0}: \theta=\mu$ versus $H_{1}: \theta \neq \mu$.
(b) Show that the test in part (a) can be based on the statistic

$$
T=\frac{\Sigma \log X_{i}}{\Sigma \log X_{i}+\Sigma \log Y_{i}}
$$

(c) Find the distribution of T when H_{0} is true, and then show how to get a test of size $\alpha=.10$.
8.19 The random variable X has pdf $f(x)=e^{-x}, x>0$. One observation is obtained on the random variable $Y=X^{\theta}$, and a test of $H_{0}: \theta=1$ versus $H_{1}: \theta=2$ needs to be constructed. Find the UMP level $\alpha=.10$ test and compute the Type II Error probability.

