
Homework Set #1: 
 

1.  If for silicon at 27C the effective densities of states at the conduction and valence 

band edges are NC3.28(1019) cm3 and NV1.47(1019) cm3, respectively, and if at any 

temperature, the effective densities of states are proportional to T  3/2, calculate the intrinsic 

Fermi energy, Ei, relative to the midgap energy at 73C, 27C, and 127C.  Is it 

reasonable to approximate Ei as simply the midgap energy for all of these temperatures?  

At what temperature would the intrinsic Fermi energy differ from the midgap energy by 

0.30 eV?  Is this a physically realizable condition for crystalline silicon?  (Boltzmann’s 

constant8.61735(105) eV/K) 

 

The intrinsic Fermi energy is given by the expression: 
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The midgap energy is just the average of the energies of the valence and 

conduction band edges.  Hence, the first term on the right hand side is just the 

midgap energy.  Now, if one defines Ei as the difference between the intrinsic 

Fermi energy and midgap, one has: 
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The densities of states are assumed to be both proportional to T 3/2, therefore, the 

ratio is independent of temperature.  Thus, one finds that: 

 

4482.0
)10(28.3

)10(47.1
19

19


C

V

N

N
 

 

8026.0ln 
C

V

N

N
 

 

KeV/  )10(459.3ln
2

5  

C

V

N

Nk
 

 

Accordingly, it immediately follows that: 

at 73C(200K), EF  equals 0.0069 eV 

at   27C(300K), EF  equals 0.0104 eV 

at 127C(400K), EF  equals 0.0138 eV 

 



The Fermi energy falls slightly below midgap because the density of conduction 

band states is more than twice as large as the density of valence band states.  

However, the band gap in silicon is more than 1 eV, therefore, even at relatively 

high temperature, the Fermi energy is less than 2% below the middle of the gap.  

Thus, it is reasonable for all of these temperatures to assume that the Fermi 

energy is in the middle of the gap. 

 

Now, since the intrinsic Fermi energy always lies below midgap, if one assumes 

that Ei is  0.30 eV, then one can solve for the corresponding temperature: 
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Silicon melts at 1687K and boils at 3528K and, thus, vaporizes long before this 

temperature is reached, therefore, this is not a physically realizable situation. 

 

2.  Assuming that over the ambient temperature range 200-500C, the band gap energy 

for silicon is a function of absolute temperature according to the empirical formula: 
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where energy is in eV’s, use data given in the preceding problem to find the intrinsic 

carrier concentration in silicon at 73C, 27C, and 127C.  Would you expect the 

conductivity of undoped silicon to increase or decrease as a function of temperature? 

 

The intrinsic carrier concentration is given by the formula: 
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One takes the square root to obtain: 
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Again, the densities of states are proportional to T  3/2, however, the temperature 

dependence does not disappear since it is the product of the densities of states 

that enters into the equation.  One can substitute to obtain: 
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Therefore, it immediately follows that: 

at 73C(200K), ni  equals 5.18(104) cm3 



at   27C(300K), ni  equals 1.04(1010) cm3 

at 127C(400K), ni  equals 5.31(1012) cm3 

 

One expects that, as temperature increases the conductivity of intrinsic silicon 

will also increase just due to a large increase in the concentration of mobile 

carriers generated by thermal excitation alone.  Naturally, a corresponding 

decrease in mobility due to lattice scattering must somewhat reduce this effect.  

However, for intrinsic silicon the exponential dependence of carrier 

concentration as a function of temperature dominates the relatively weak, power 

law dependence of mobility on temperature.  In contrast, for extrinsic silicon, 

temperature does not increase mobile carrier concentrations significantly (until 

very high temperatures are reached) and mobility effects will dominate 

conductivity. 

 

3a.  Using the value of ni obtained in the last problem and assuming complete impurity 

ionization, at 27C determine the actual Fermi energy relative to the intrinsic Fermi 

energy for silicon doped with 2(1013), 1016, and 5(1018) acceptor atoms/cm3.  Then, 

using the results obtained, check if this assumption is justifiable in all three cases. 

 

Assuming Maxwell-Boltzmann statistics, the ratio of mobile carrier 

concentrations can be written as follows: 
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If one takes the natural logarithm of both sides of this expression, one obtains: 
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The first two terms are immediately recognizable as the Fermi energy for an 

intrinsic semiconductor, hence: 
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Of course, as was found previously, Ei lies very close to the middle of the band 

gap.  This expression is valid for extrinsically doped as well as intrinsic 

semiconductors.  Thus, for fully ionized acceptor dopant of concentration, NA: 
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hence: 
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Using the intrinsic carrier concentration value of 1.04(1010) cm3 obtained in the 

preceding problem, one finds: 

for 2(1013) acceptors cm3 Ei  EF is 0.1955 eV 

for       1016 acceptors cm3 Ei  EF is 0.3561 eV 

for 5(1018) acceptors cm3 Ei  EF is 0.5168 eV 

 

At 27C according to the previous empirical formula, the bandgap in silicon is 

1.11 eV, hence, half of the bandgap is 0.555 eV.  Furthermore, it was shown 

previously that Ei lies 0.0104 eV below midgap, therefore, the difference between 

Ei and the valence band edge is 0.545 eV.  Clearly, this implies that at the highest 

doping concentration, the Fermi level lies just 0.0282 eV above the valence band 

edge.  Therefore, in this case the assumption of Maxwell-Boltzmann statistics for 

mobile carriers becomes suspect and the full Fermi-Dirac distribution function 

must give a much better description of carrier density.  In contrast, Maxwell-

Boltzmann statistics can be used for the two lower doping concentrations.  To 

understand if complete ionization is a valid assumption consider part b. 

 

 b.  If the Fermi energy coincides exactly with the energy of the shallow acceptor states, 

what is the occupation probability and can dopant impurities be assumed to be completely 

ionized as in part a?  Be sure to explain your reasoning clearly and take the acceptor 

states to lie 0.05 eV above the valence band edge. 

 

If the Fermi level coincides exactly with the shallow acceptor states, then the 

Fermi-Dirac distribution implies that the occupation probability for these states 

should be exactly one half, i.e., shallow acceptor states are 50% occupied.  

Therefore, in this case the dopant atoms cannot be completely ionized. 

 

Accordingly, in part a for concentrations of 2(1013) and 1016 acceptor atoms/cm3 

the Fermi level lies 0.2995 and 0.1389 eV above the acceptor states, respectively.  

Moreover, at 27C kT has a nominal value of 0.0259 eV; hence for these dopant 

concentrations acceptor states are essentially fully occupied and the assumption 

of complete ionization remains applicable.  However, for the highest 

concentration since the Fermi level lies 0.0218 eV below the acceptor states, they 

must be less than 50% occupied and, thus, the assumption of complete ionization 

cannot be valid for dopant concentration as high as 5(1018) acceptor atoms/cm3.  

In practice, a semiconductor doped at such a high concentration is said to be 

degenerate. 

 



 c.  What atomic species is the most practical acceptor dopant? 

 

As a practical matter, boron is the most practical acceptor dopant.  In principle, 

any Group III element substituted into the silicon lattice would work, viz., 

aluminum, gallium, indium, etc.; however, all other alternatives suffer from 

undesirable characteristics such as low solubility, high diffusivity, etc. 

 

4.  Consider a pure silicon crystal uniformly doped with 5(1015) boron atoms/cm3.  What 

is the doping type (n or p)?  If the lattice scattering contribution to carrier mobilities has 

the explicit absolute temperature dependence: 
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where  equals exactly 1.5 and 300 is 480 cm2/volt sec for holes and 1400 cm2/volt sec 

for electrons and if the ionized impurity contribution to carrier mobilities has the explicit 

absolute temperature dependence: 
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where 2.0(1020) per cm volt sec for holes and 4.5(1020) per cm volt sec for electrons 

and CI is the total ionized impurity concentration, what, then is the resistivity of the 

silicon crystal at 73C, 27C, and 127C?  If an additional 2.5(1017) boron atoms/cm3 

and 2.5(1017) phosphorus atoms/cm3 together are uniformly added to the crystal, what 

happens to carrier concentrations, mobilities, and resistivities at the three temperatures? 

 

Clearly, this silicon is extrinsically doped p-type.  The expression for the 

resistivity of a silicon crystal is given by the formula: 
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At all of the temperatures but, perhaps, the highest one, the carrier concentration 

is completely dominated by the extrinsic doping and, therefore, since holes are the 

majority carriers, the resistivity is just determined by the hole mobility.  Now, one 

can use the given formulae to calculate the hole mobilities at the three 

temperatures.  First, one notes that the total hole or electron mobility is given by 

the formula: 
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hence: 
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Thus, substituting the above parameters yield lattice and impurity contributions to 

the hole mobility as follows: 

at 73C(200K), L equals 882 cm2/V sec; I equals 21773 cm2/V sec 

at   27C(300K), L equals 480 cm2/V sec; I equals 40000 cm2/V sec 

at 127C(400K), L equals 312 cm2/V sec; I equals 61584 cm2/V sec 

Clearly, at this doping level, the mobility is dominated by the lattice scattering 

mechanism. 

 

The above results can be combined to give total hole mobilities: 

at 73C(200K),  equals 847 cm2/V sec 

at   27C(300K),  equals 474 cm2/V sec 

at 127C(400K),  equals 310 cm2/V sec 

 

Using q equal to 1.602(1019) C, and the extrinsic carrier concentration, one finds 

resistivities: 

at 73C(200K),  equals 1.47  cm 

at   27C(300K),  equals 2.63  cm 

at 127C(400K),  equals 4.02  cm 

 

In this case, only majority carriers (holes) have been considered.  Indeed, if one 

calculates the contribution due to minority carriers (electrons) one finds that it is 

negligible. 

 

If one adds equal amounts of acceptor and donor type dopants to the crystal, the 

doping is unchanged.  However, the impurity contribution to the mobility is 

greatly increased because the total ionized impurity concentration is the sum of 

all dopant concentrations irrespective of type.  Thus, CI  is 5.05(1017) cm3 

instead of 5(1015) cm3.  The contribution to hole mobility from lattice scattering 

remains unchanged, however, the contribution from ionized impurity scattering 

changes as follows: 

at 73C(200K), I equals 216 cm2/V sec 

at   27C(300K), I equals 396 cm2/V sec 

at 127C(400K), I equals 610 cm2/V sec 

and, thus, the total hole mobilities are: 

at 73C(200K),  equals 173 cm2/V sec 

at   27C(300K),  equals 217 cm2/V sec 

at 127C(400K),  equals 206 cm2/V sec 



Clearly, under these conditions, mobility is substantially reduced by the ionized 

impurity scattering mechanism. 

 

Again, resistivities are immediately obtained considering only holes: 

at 73C(200K),  equals 7.21  cm 

at   27C(300K),  equals 5.75  cm 

at 127C(400K),  equals 6.05  cm 

 

These two results illustrate that lightly doped silicon has a normal, positive TCR, 

i.e., resistivity increases with temperature.  In contrast, heavily doped silicon, 

even if compensated, can have a negative TCR.  (Note the behavior of  resistivities 

at 73 and 27C.)  This kind of behavior has important implications for the 

operation and reliability of real devices in real circuits. 

 

 b.  If the exponent, , for lattice scattering is 2 instead of 1.5, repeat part a and explain 

why results are either the same or different. 

 

If  has a value of 2, then the expression for overall mobility must be modified as 

follows: 
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Clearly, only the contribution due to lattice scattering has changed, thus these 

values need to be redetermined as follows 

at 73C(200K), L equals 1080 cm2/V sec 

at   27C(300K), L equals   480 cm2/V sec 

at 127C(400K), L equals   270 cm2/V sec 

 

Thus, for the uncompensated case: 

at 73C(200K),  equals 1028 cm2/V sec 

at   27C(300K),  equals   474 cm2/V sec 

at 127C(400K),  equals   268 cm2/V sec 

 

at 73C(200K),  equals 0.823  cm 

at   27C(300K),  equals 2.63  cm 

at 127C(400K),  equals 4.66  cm 

 

Likewise, for the compensated case 

 

at 73C(200K),  equals 180 cm2/V sec 

at   27C(300K),  equals 217 cm2/V sec 

at 127C(400K),  equals 187 cm2/V sec 



 

at 73C(200K),  equals 6.93  cm 

at   27C(300K),  equals 5.75  cm 

at 127C(400K),  equals 6.68  cm 

 

Clearly, temperature dependence remains broadly similar to the previous case 

showing that qualitative behavior of mobility and resistivity is much more 

sensitive to concentration rather than temperature. 
 


