
 

Appendix A: The Thermodynamics of Oxygen in Silicon 
 

The formation of oxide precipitates within a silicon crystal lattice has been treated in 

general; however it is instructive to consider actual quantitative data.  For convenience, 

an oxide precipitate is assumed to be a small, spherical particle of SiO2 embedded within 

an otherwise perfect silicon crystal.  Of course, the standard formation reaction for silicon 

dioxide is as follows: 

 

22 SiO    )(O    )Si(  gs  
 

As a matter of chemistry, a standard formation reaction defines a process for which one 

mole of some material (in this case, SiO2) is formed from corresponding elements in 

standard state.  (Here, this is crystalline silicon and oxygen gas.)  Extensive tabulations of 

thermodynamic data for formation reactions have been compiled and are summarized for 

silicon, oxygen, and silicon dioxide in the following table: 
 

Thermodynamic Potentials of Silicon, Oxygen, and Silicon Dioxide: 

 Hf* Gf* S** 

Si(s) 0 0 18.81 
4.50 

O2(g) 0 0 205.152 
49.03 

SiO2(quartz) 

SiO2(cristobalite)† 

SiO2(tridymite)† 

SiO2(quartz glass)† 

-910.7 
-217.7 

-909.5 
-217.37 

-909.1 
-217.27 

-903.5 
-215.94 

-856.3 
-204.7 

-855.5 
-204.46 

-855.3 
-204.42 

-850.7 
-203.33 

41.46 
9.909 

42.68 
10.20 

43.5 
10.4 

46.9 
11.2 

* kJ/mole (italics: kcal/mole); ** J/moleK (italics: cal/moleK) 

† data taken from Handbook of Chemistry and Physics-1
st
 Student Ed. (1988), all other data taken from 

CODATA Key Values for Thermodynamics 

 

Of course, standard conditions are defined as 298.15K and an ambient pressure of one 

atmosphere.  Clearly, the thermodynamic potentials for all forms of silicon dioxide 

(quartz, cristobalite, tridymite, and glass) are quite similar. 

However, within the silicon lattice, oxygen is not in gaseous diatomic form.  

Therefore, to be applicable to oxide precipitation, the formation reaction must be 

modified as follows: 

 

2SiO    )2O(    )Si(  ints  
 



 

Here, O(int) denotes oxygen atoms occupying interstitial sites within the silicon crystal 

lattice.  Clearly, this reaction and the standard formation reaction are related by a third 

reaction that represents dissolution of oxygen gas in the silicon lattice and which can be 

formally written as follows: 

 

)2O(    )(O2 intg   
 

If the standard free energy of this reaction can be found, then the standard free energy of 

the previous reaction is easily determined. 

For this purpose, it is useful to consider the dissolution of oxygen in solid silicon as a 

microscopic process.  Obviously, oxygen molecules must react with the silicon lattice to 

form oxygen interstitials.  This is represented schematically below: 
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Of course, this is just an alternative representation of the dissolution reaction appearing 

above, however, the silicon lattice is included explicitly.  Clearly, the overall enthalpy 

change for this process must include contributions from strain energy associated with an 

oxygen interstitial, binding energy of an oxygen molecule, and binding energy of an 

oxygen atom within the silicon crystal.  One expects the first two of these contributions to 

be positive and the last one to be negative.  However, with the exception of the binding 

energy of molecular oxygen, these contributions are not readily determined.  In contrast, 

the entropy change can be represented as the difference of the configurational entropy 

change due to random distribution of oxygen atoms in interstitial sites, CSO , and the 

standard entropy of oxygen gas, )(
2O TS : 
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Here, NO is the number of oxygen interstitials and NA is Avogadro’s number.  Of course, a 

standard entropy is also associated with the silicon lattice itself; however, if the lattice is 

not disrupted by oxygen interstitials, this entropy can be taken to be unchanged when 

oxygen interstitials are introduced into the lattice and therefore makes no contribution to 

S.  (One should note here that S is defined as the entropy change associated with the 

formation of NO oxygen interstitials.) 

Naturally, if N is defined as the number of interstitial sites in the crystal, then the 

configurational entropy change is easily represented as a binomial coefficient: 
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As is usual, one applies Stirling’s approximation to obtain: 
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One formally adds and subtracts NOlnN  to the quantity within the parenthesis, from 

which it follows that: 
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Clearly, one expects that N will be much larger than NO, hence the second logarithmic 

term can be ignored, thus: 
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Conceptually, it is convenient to replace absolute numbers of oxygen interstitials and 

interstitial sites, NO and N, by corresponding concentrations, CO and C.  Furthermore, S 

can be recast as a molar quantity if one rescales the right hand side by the ratio, NA/NO.  

Thus, it follows that: 
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Since there are five interstitial sites per diamond cubic unit cell, it follows that C is just 

5/a3, such that a is just the lattice parameter for silicon.  Therefore, one finds that C is 

approximately 3.123(1022) cm3.  Furthermore, kNA is the ordinary ideal gas constant, R, 

which has a nominal value of 8.31441 J/moleK. 

The standard entropy of oxygen gas at any temperature and one atmosphere pressure 

can be obtained from the standard entropy at 298K by means of the integral formula: 
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Here, Cp is the molar heat capacity at a constant pressure of one atmosphere.  If one 

assumes that oxygen is an ideal diatomic gas, then Cp has the value of 7R/2, hence it 

follows that: 
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Alternatively, )(
2O TS  can be determined more accurately from published curve fits for 

the temperature dependence of constant pressure heat capacity, Cp(T). 
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Here, a, b, c, and d, are empirical coefficients.  Thus, one obtains: 
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For convenience, an aggregate coefficient, B, can be defined in terms of a, b, c, d, and the 

standard entropy of oxygen gas: 

 

)K298(
)298(22

)298(298298ln
2O2

2  S
dc

baB

 
 

Hence, )(
2O TS  has the following form: 

 

B
T

dcT
bTTaTS 

2

2

O
22

ln)(
2

 
 

For oxygen gas, published values for a, b, c, and d are 34.602 J/moleK, 1.0795(103) 

J/moleK2, 0 J/moleK3, and 785377 JK/mole, respectively.  From these values, one 

finds B equal to 3.2777 J/moleK. 

Obviously, it follows from the fundamental definition of Gibbs free energy that for 

the oxygen dissolution reaction: 
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Obviously, H is unknown.  However, an method for the determination of H is afforded 

by the oxygen solubility equilibrium.  Of course, G vanishes if dissolved oxygen is in 

equilibrium with ambient oxygen gas.  Therefore, it follows that: 

 

2

)()(
ln)( 2OO

TTS

C

TC
RTTH

sat


 

 

Here, )(O TC sat  is saturated interstitial oxygen concentration at an absolute temperature, T.  

As shown in the following figure, this quantity has been determined experimentally over 

the temperature range 1000-1300C: 
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Fig. A1: Interstital oxygen solubility as a function of temperature 

 

Clearly, the saturated oxygen interstitial concentration varies from 1017 to 1018 cm3 over 

the given temperature range.  This is consistent with typical oxygen concentrations 

observed in CZ silicon wafers.  Furthermore, it seems clear from the trend, that the solid 

solubility of oxygen in silicon should further decrease when extrapolated to lower 

temperatures.  This effect is likely the result of an increased strain energy contribution to 

enthalpy due to increased lattice rigidity at lower temperatures.  Accordingly, if these 

concentrations are used to determine H(T ), one finds that resulting values are negative, 

but relatively small.  Of course, negative values imply that energy is released when 

oxygen dissolves in a silicon crystal.  This can be rationalized if one considers 

experimentally measured binding energies.  In particular, Si-Si and O-O binding energies 

are observed to be 326.8 kJ/mole (78.1 kcal/mole) and 498.34 kJ/mole (119.106 

kcal/mole), respectively.  These can be compared to the Si-O binding energy, which is 

found to be 798.7 kJ/mole (190.9 kcal/mole).  Clearly, the formation of Si-O bonds from 

Si-Si and O-O bonds is strongly exothermic.  (This is also clear just from the large, 

negative formation enthalpy of silicon dioxide.)  However, lattice strain largely offsets 

this so that the magnitude of the enthalpy of formation for oxygen interstitials is fairly 



 

small.  Calculated values for the enthalpy of formation for oxygen interstitials is given in 

the following figure: 
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Fig. A2: Enthalpy of formation of interstitial oxygen as a function of temperature 

(Heavy line: Cp obtained from empirical curve fit;  Light line: Cp taken as 7R/2) 

 

Here, Cp has been estimated both from an empirical curve fit (heavy line) or as a 

constant, 7R/2 (light line).  The difference is found to be only about 3 kJ/mole and a 

simple linear fit is quite sufficient to describe the temperature dependence of both results.  

Hence, H(T ) can be represented by the empirical linear expression: 

 

0)( HTcTH p 
 

 

From the curve fit data, the parameters, cp and H0 are found to be 0.12459 kJ/moleK 

and 124.87 kJ/mole, respectively.  Similarly, for Cp taken as 7R/2, cp and H0 are found 

to be 0.11873 kJ/moleK and 120.52 kJ/mole, respectively.  This expression may be 

substituted into the expression for G to obtain the empirical result: 
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This is the Gibbs free energy of formation per mole of oxygen interstitials for an 

elemental silicon crystal having an oxygen interstitial concentration of CO. 

Conventional enthalpy of formation of SiO2 as a function of temperature is readily 

obtained by integrating over the heat capacity for SiO2 as follows: 
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Again, as in the case of elemental oxygen, Cp(T) for SiO2 as is expressed as an empirical 

curve fit.  This result is then combined with H(T ) for oxygen dissolution to obtain the 

quantity, 
2SiOH , hence: 
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This is represented by the figure: 
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Fig. A3: Enthalpy of formation of bulk silicon dioxide in silicon as a function of temperature 



 

 

Here, 
2SiOH , defined as enthalpy of formation of bulk silicon dioxide from elemental 

silicon and oxygen interstitials (ignoring surface and strain energies associated with 

precipitates), corresponds to the heavy plot.  This is contrasted with ordinary enthalpy of 

formation of SiO2 (corresponding to the light plot).  Clearly, over the temperature range 

1000-1300K, 
2SiOH  varies only by about 120 kJ/mole. 

Of course, entropies for silicon, oxygen, and silicon dioxide can be determined as a 

function of temperature in an entirely analogous fashion.  These quantities can be 

combined with the enthalpy of formation obtained previously to obtain the conventional 

Gibbs free energy of formation of SiO2 as a function of temperature.  Naturally, the 

resulting Gibbs free energy of formation is then combined with G(T) for oxygen 

dissolution to obtain the quantity, 
2SiOG , hence: 
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As before, this relation is represented figuratively as follows: 
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Fig. A4: Gibbs free energy of formation of bulk silicon dioxide in silicon as a function of temperature 
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Of course, 
2SiOG  is Gibbs free energy of formation of bulk silicon dioxide from 

elemental silicon and oxygen interstitials (again, ignoring any precipitate surface and 

strain energies).  Clearly, the Gibbs free energy has a much larger temperature variation 

than enthalpy.  Furthermore, unlike enthalpy, Gibbs free energy is a function of 

interstitial oxygen concentration.  This is illustrated by the heavy plots of various colors 

in the preceding figure.  As one would expect, when interstitial oxygen concentration 

decreases, 
2SiOG  becomes more positive (i.e., oxide formation from interstitial oxygen is 

less favored.)  As for enthalpy, the light plot corresponds to the conventional Gibbs free 

energy of formation of SiO2.  Clearly, if at some temperature the ordinary Gibbs free 

energy of formation and 
2SiOG  are equal (i.e., corresponding plots intersect), then the 

associated concentration of oxygen interstitials, CO, can be identified with the solubility 

limit, i.e., G(T ), as defined previously, exactly vanishes.  Furthermore, since elemental 

oxygen gas is no longer a formal reactant for formation of bulk silicon dioxide from 

interstitial oxygen, all reactant and product phases can be considered condensed.  

Therefore, enthalpy, 
2SiOH , is equivalent to internal energy, 

2SiOE , and, likewise Gibbs 

free energy, 
2SiOG , is equivalent to Helmholtz free energy, 

2SiOA .  Along with 

appropriate expressions for surface and strain energies, these quantities can be used to 

describe oxygen precipitation in silicon. 


