Problem 1 (50 points) Consider the wave equation

$$
\begin{align*}
u_{t t}-\Delta u & =0, \quad x \in \Omega, \quad t>0 \tag{1}\\
u & =0, \quad \text { on } \partial \Omega \times(0, \infty) \tag{2}\\
u(x, 0) & =u_{0}(x) \quad x \in \Omega \tag{3}\\
u_{t}(x, 0) & =v_{0}(x) \quad x \in \Omega \tag{4}
\end{align*}
$$

Introduce a new variable $v=u_{t}$ to obtain an equivalent formulation

$$
\begin{align*}
u_{t}-v & =0 \tag{5}\\
v_{t}-\Delta u & =0 \tag{6}\\
u(x, 0) & =u_{0}(x) \tag{7}\\
v(x, 0) & =v_{0}(x) \tag{8}\\
\left.u\right|_{\partial \Omega} & =0 \tag{9}
\end{align*}
$$

For $t \geq 0$ we view

$$
U=\left[\begin{array}{l}
u \\
v
\end{array}\right]
$$

as a function of t with values in an appropriate Hilbert space. Consider the Hilbert space ${ }^{1}$

$$
H=H_{0}^{1}(\Omega) \times L^{2}(\Omega)
$$

with the inner product

$$
\left(U_{1}, U_{2}\right)_{H}=\int_{\Omega} \nabla u_{1} \nabla u_{2} d x+\int_{\Omega} u_{1} u_{2} d x+\int_{\Omega} v_{1} v_{2} d x
$$

where

$$
U_{1}=\left[\begin{array}{l}
u_{1} \\
v_{1}
\end{array}\right], \quad U_{2}=\left[\begin{array}{l}
u_{2} \\
v_{2}
\end{array}\right]
$$

Define the linear operator

$$
A: D(A) \subset H \rightarrow H, \quad A U=\left[\begin{array}{c}
-v \\
-\Delta u
\end{array}\right]
$$

where $D(A)=\left(H^{2}(\Omega) \cap H_{0}^{1}(\Omega)\right) \times H_{0}^{1}(\Omega)$. Given $U_{0} \in D(A)$, we are interested to study the existence of the solution of the IVP

$$
\begin{align*}
\frac{d U}{d t}+A U & =0 \tag{10}\\
U(0) & =U_{0} \tag{11}
\end{align*}
$$

[^0](10 points) Show that $A+I: D(A) \rightarrow H$ is monotone ${ }^{2}$
(20 points) Show that $A+I: D(A) \rightarrow H$ is maximal monotone
Given $U_{0} \in D(A)$, apply the Hille-Yosida theorem to conclude that there is an unique solution to
\[

$$
\begin{align*}
\frac{d \tilde{U}}{d t}+A \tilde{U}+\tilde{U} & =0 \tag{12}\\
\tilde{U}(0) & =U_{0} \tag{13}
\end{align*}
$$
\]

(10 points) Show that $U(t)=e^{t} \tilde{U}(t)$ solves (10-11).
(10 points) The Hille-Yosida theorem states that the solution $U(t)$ has regularity

$$
U \in C([0, \infty) ; D(A)) \cap C^{1}([0, \infty) ; H)
$$

Using this result, what is the regularity of the solution $u(t)$?
(fill in the dots $u \in C([0, \infty) ; \ldots) \cap \ldots([0, \infty) ; \ldots) \cap \ldots([0, \infty) ; \ldots))$.

Bonus Problem (20 points): Telegraph Equation ${ }^{3}$

(5 points) Show that there is at most one smooth solution to the initial boundary value problem

$$
\begin{align*}
u_{t t}+d u_{t}-u_{x x} & =0, \quad(x, t) \in(0,1) \times(0, T) \tag{14}\\
u & =0, \quad(x, t) \in\{0,1\} \times(0, T) \tag{15}\\
u=g, u_{t} & =h, \quad(x, t) \in(0,1) \times\{0\} \tag{16}
\end{align*}
$$

where d is a constant.
(15 points) Write the problem above in the form

$$
\begin{align*}
\frac{d U}{d t}+A U & =0 \tag{17}\\
U(0) & =U_{0} \tag{18}
\end{align*}
$$

and use the Hille-Yosida theorem to give a result of existence of the solution.

[^1]
[^0]: ${ }^{1}$ notice that the boundary conditions are included in the definition of H

[^1]: ${ }^{2}(A+I) U=A U+U$
 ${ }^{3}$ See also Evans, section 7.5, problem 9

