Hand in solutions to the following problems:

P1 (35 points) Consider the eigenvalue problem:

$$
\begin{align*}
u^{\prime \prime \prime \prime}(x) & =\lambda u(x), \quad 0<x<1 \tag{1}\\
u(0) & =u^{\prime}(0)=0 \tag{2}\\
u(1) & =u^{\prime}(1)=0 \tag{3}
\end{align*}
$$

(5p) Show that all eigenvalues are strictly positive.
(30 points): Show that there is a basis to $L^{2}(0,1)$ that consists of the eigenfunctions $\left\{u_{k}\right\}_{k \geq 1}$ to the problem above and the eigenvalues are such that $\lambda_{k} \rightarrow \infty$. In your proof complete the following steps.
(5p) Let $f \in L^{2}(0,1)$. In the Hilbert space $H_{0}^{2}(0,1)$, give a variational formulation to the problem

$$
\begin{align*}
u^{\prime \prime \prime \prime}(x) & =f(x), \quad 0<x<1 \tag{4}\\
u(0) & =u^{\prime}(0)=0 \tag{5}\\
u(1) & =u^{\prime}(1)=0 \tag{6}
\end{align*}
$$

(10p) Show that there is a unique weak solution $u \in H_{0}^{2}(0,1)$.
(10p) Show that the operator $T: L^{2}(0,1) \rightarrow L^{2}(0,1)$ defined as $T(f)=u$ is linear, continuous, compact, and self-adjoint.
(5p) Use the Hilbert-Schmidt theorem to complete the proof. Explain why the set of eigenvalues is unbounded, $\lambda_{k} \rightarrow \infty$.

Optional bonus points: (5p) Find an equation that is satisfied by the eigenvalues and provide the expression of the eigenfunctions.

P2 (15 points) Let $\Omega=B(0,1)$ denote the open unit ball in \mathbb{R}^{2}. Consider the eigenvalue problem

$$
\begin{align*}
-\Delta u & =\lambda u, \text { in } \Omega \tag{7}\\
u & =0, \text { on } \partial \Omega \tag{8}
\end{align*}
$$

Let $\lambda_{1}>0$ denote the principal (smallest) eigenvalue. Use an analytical approach (no calculator/numerical approximation) to find two constants $c_{1}>0$ and $c_{2}>0$ such that $c_{1} \leq \lambda_{1} \leq c_{2}$ (that is, provide a nontrivial lower bound and an upper bound to λ_{1}).

