Homework #2 - due February 18, in class

Hand in solutions to the following problems:

P1 (35 points) Consider the eigenvalue problem:

$$u'''(x) = \lambda u(x), \quad 0 < x < 1$$
 (1)

$$u(0) = u'(0) = 0 \tag{2}$$

$$u(1) = u'(1) = 0 \tag{3}$$

(5p) Show that all eigenvalues are strictly positive.

....

(30 points): Show that there is a basis to $L^2(0,1)$ that consists of the eigenfunctions $\{u_k\}_{k\geq 1}$ to the problem above and the eigenvalues are such that $\lambda_k \to \infty$. In your proof complete the following steps.

(5p) Let $f \in L^2(0,1)$. In the Hilbert space $H^2_0(0,1)$, give a variational formulation to the problem

$$u^{''''}(x) = f(x), \quad 0 < x < 1 \tag{4}$$

$$u(0) = u'(0) = 0 \tag{5}$$

$$u(1) = u'(1) = 0 \tag{6}$$

(10p) Show that there is a unique weak solution $u \in H_0^2(0, 1)$. (10p) Show that the operator $T: L^2(0, 1) \to L^2(0, 1)$ defined as T(f) = u is linear, continuous, compact, and self-adjoint.

(5p) Use the Hilbert-Schmidt theorem to complete the proof. Explain why the set of eigenvalues is unbounded, $\lambda_k \to \infty$.

Optional bonus points: (5p) Find an equation that is satisfied by the eigenvalues and provide the expression of the eigenfunctions.

P2 (15 points) Let $\Omega = B(0,1)$ denote the open unit ball in \mathbb{R}^2 . Consider the eigenvalue problem

$$-\Delta u = \lambda u, \text{ in } \Omega \tag{7}$$

$$u = 0, \text{ on } \partial \Omega$$
 (8)

Let $\lambda_1 > 0$ denote the principal (smallest) eigenvalue. Use an analytical approach (no calculator/numerical approximation) to find two constants $c_1 > 0$ and $c_2 > 0$ such that $c_1 \leq \lambda_1 \leq c_2$ (that is, provide a nontrivial lower bound and an upper bound to λ_1).