Hand in solutions to the following problems:

P1 (30 points) Let $\Omega \subset \mathcal{R}^{n}$ an open and bounded domain with smooth boundary $\partial \Omega$. Consider the bilinear form $a: H^{1}(\Omega) \times H^{1}(\Omega) \rightarrow \mathcal{R}$ defined as

$$
\begin{equation*}
a(u, v)=\int_{\Omega} \nabla u \nabla v d x+\left(\int_{\Omega} u d x\right)\left(\int_{\Omega} v d x\right) \tag{1}
\end{equation*}
$$

(i) [5p] Show that $a(\cdot, \cdot)$ is H^{1}-continuous
(ii) [15p] Show that $a(\cdot, \cdot)$ is H^{1}-elliptic
(iii) [2p] From (i) and (ii), conclude that for any $f \in L^{2}(\Omega)$ there is a unique solution $u \in H^{1}(\Omega)$ to the problem

$$
\begin{equation*}
a(u, v)=\int_{\Omega} f v d x, \quad \forall v \in H^{1}(\Omega) \tag{2}
\end{equation*}
$$

(iv) $[3 \mathrm{p}]$ Show that the solution u to (2) satisfies

$$
\begin{equation*}
\int_{\Omega} u d x=\frac{1}{|\Omega|} \int_{\Omega} f d x \tag{3}
\end{equation*}
$$

(v) [5p] Assuming that the solution u is a smooth function, what PDE does it solve?
$\mathbf{P 2}$ (20 points) Let $\Omega \subset \mathcal{R}^{n}$ an open and bounded domain with smooth boundary $\partial \Omega$. Consider the boundary value problem

$$
\begin{align*}
-\Delta u & =f \text { in } \Omega \tag{4}\\
-\frac{\partial u}{\partial \vec{\nu}} & =\tau u \text { on } \partial \Omega \tag{5}
\end{align*}
$$

where $\tau>0$ is a positive constant and $f \in L^{2}(\Omega)$.
(i) [5p] Give a variational formulation to the problem (4)-(5).
(ii) [15p] Show that the variational problem has a unique solution $u \in H^{1}(\Omega)$ (show that the hypotheses of the Lax-Milgram theorem are satisfied).

