MTH 621: Homework \# 3, due 11/24, in class

To receive full credit, present complete answers that show all work.

P1 (15 points). Let ϵ a constant such that $0<\epsilon<1$ and consider the two-dimensional domain Ω defined as the open ball with center at origin and radius ϵ in \mathbb{R}^{2} :

$$
\Omega=\left\{(x, y) \mid r<\epsilon, \text { where } r=\sqrt{x^{2}+y^{2}}\right\}
$$

Let $0<k<1 / 2$ a constant coefficient. Decide whether the given function belongs to $H^{1}(\Omega)$. Justify your answer.
(5 points) $u(x, y)=r^{-k}, r \neq 0$
(10 points) $u(x, y)=|\ln (r)|^{k}, r \neq 0$

P2 (10 points). Consider $\Omega \subset \mathbb{R}^{n}$ a bounded domain and the Sobolev space $W_{0}^{1, p}(\Omega)$ defined as the closure of $C_{c}^{\infty}(\Omega)$ in the $W^{1, p}$-norm, $1 \leq p<\infty$,

$$
W_{0}^{1, p}(\Omega)=\overline{\left\{C_{c}^{\infty}(\Omega),\|\cdot\|_{1, p}\right\}}
$$

Show that the Poincaré inequality holds on $W_{0}^{1, p}(\Omega)$: there is a constant $C(\Omega, p)>0$ such that

$$
\int_{\Omega}|u|^{p} d x \leq C(\Omega, p) \int_{\Omega} \sum_{i=1}^{n}\left|\frac{\partial u}{\partial x_{i}}\right|^{p} d x, \quad \forall u \in W_{0}^{1, p}(\Omega)
$$

P3 (15 points). Consider the following problem in a bounded domain $\Omega \subset \mathbb{R}^{2}$:

$$
\begin{aligned}
-\Delta u+b_{1} \frac{\partial u}{\partial x_{1}}+b_{2} \frac{\partial u}{\partial x_{2}} & =f, x \in \Omega \\
u & =0, x \in \partial \Omega
\end{aligned}
$$

where b_{1} and b_{2} are arbitrary constants.
(5 points) Give a variational formulation to this problem.
(10 points) Show that for every $f \in L^{2}(\Omega)$ and any values of the constants b_{1} and b_{2} there is a unique solution to the variational problem.

P4 (15 points). Let $\Omega=(0,1) \times(0,1)$.
(5 points) Show that

$$
\int_{\Omega} v^{2} d x d y \leq \int_{\Omega}|\nabla v|^{2} d x d y, \quad \forall v \in H_{0}^{1}(\Omega)
$$

(10 points) Show that for every $f \in L^{2}(\Omega)$ and any constant $c>-1$ there is a unique weak solution to the problem

$$
\begin{aligned}
-\Delta u+c u & =f \text { in } \Omega \\
u & =0 \text { on } \partial \Omega
\end{aligned}
$$

