MTH 621: Homework \# 1, due 10/15, in class

To receive full credit, present complete answers that show all work.

Problem 1 (10 points). Consider the continuity equation for $\rho(x, t)$,

$$
\begin{equation*}
\rho_{t}+\nabla \cdot(\rho \mathbf{v})=0 \tag{1}
\end{equation*}
$$

where $x \in \mathcal{R}^{n}, t>0$, and $\mathbf{v}(x, t) \in \mathcal{R}^{n}$ is a given vector field on Ω. Let $\rho_{A}(x, t)$ and $\rho_{B}(x, t)$ solutions to (1), and assume that $\rho_{B}(x, t)>0$. Show that the ratio ρ_{A} / ρ_{B} solves the PDE

$$
\begin{equation*}
\rho_{t}+\mathbf{v} \cdot \nabla \rho=0 \tag{2}
\end{equation*}
$$

Problem 2 (10 points). Let Ω an open, bounded domain in \mathcal{R}^{n} with smooth boundary partitioned as $\Gamma=\Gamma_{1} \cup \Gamma_{2} \cup \Gamma_{3}$. Consider the Poisson's boundary value problem for $u: \Omega \rightarrow \mathcal{R}$

$$
\begin{align*}
-\Delta u(x) & =f(x), x \in \Omega \tag{3}\\
u(x) & =g_{1}(x), x \in \Gamma_{1} \tag{4}\\
-\nabla u(x) \cdot \nu(x) & =g_{2}(x), x \in \Gamma_{2} \tag{5}\\
-\nabla u(x) \cdot \nu(x) & =h(x)\left[u(x)-u_{B}(x)\right], \quad x \in \Gamma_{3} \tag{6}
\end{align*}
$$

where $f, g_{1}, g_{2}, h, u_{B}$ are given functions and ν denotes the outward unit vector normal to boundary. In addition, assume that $h(x) \geq 0, x \in \Gamma_{3}$. Show that there is at most one smooth solution to the problem (3) - (6).

Problem 3 (15 points). Let Ω an open, bounded domain in \mathcal{R}^{n} with smooth boundary partitioned as $\Gamma=\Gamma_{1} \cup \Gamma_{2} \cup \Gamma_{3}$. Consider the heat equation for $u: \Omega \times[0, \infty) \rightarrow \mathcal{R}$, $u=u(x, t)$:

$$
\begin{equation*}
u_{t}(x, t)-\Delta u(x, t)=f(x, t),(x, t) \in \Omega \times(0, \infty) \tag{7}
\end{equation*}
$$

with the initial condition

$$
\begin{equation*}
u(x, 0)=u_{0}(x), x \in \Omega \tag{8}
\end{equation*}
$$

and boundary conditions

$$
\begin{align*}
u(x, t) & =g_{1}(x, t), \quad(x, t) \in \Gamma_{1} \times[0, \infty) \tag{9}\\
-\nabla u(x, t) \cdot \nu(x) & =g_{2}(x, t), \quad(x, t) \in \Gamma_{2} \times[0, \infty) \tag{10}\\
-\nabla u(x, t) \cdot \nu(x) & =h(x)\left[u(x, t)-u_{B}(x, t)\right], \quad(x, t) \in \Gamma_{3} \times[0, \infty) \tag{11}
\end{align*}
$$

where $f, g_{1}, g_{2}, h, u_{B}$ are given functions and ν denotes the outward unit vector normal to boundary. In addition, assume that $h(x) \geq 0, x \in \Gamma_{3}$. Show that there is at most one smooth solution to the problem (7) - (11).

Problem 4 (15 points). Let Ω an open, bounded domain in \mathcal{R}^{n} with smooth boundary partitioned as $\Gamma=\Gamma_{1} \cup \Gamma_{2} \cup \Gamma_{3}$. Consider the wave equation for $u: \Omega \times[0, \infty) \rightarrow \mathcal{R}$, $u=u(x, t)$:

$$
\begin{equation*}
u_{t t}(x, t)-\Delta u(x, t)=f(x, t),(x, t) \in \Omega \times(0, \infty) \tag{12}
\end{equation*}
$$

with the initial conditions

$$
\begin{align*}
u(x, 0) & =u_{0}(x), x \in \Omega \tag{13}\\
u_{t}(x, 0) & =v_{0}(x), x \in \Omega \tag{14}
\end{align*}
$$

and boundary conditions

$$
\begin{align*}
u(x, t) & =g_{1}(x, t), \quad(x, t) \in \Gamma_{1} \times[0, \infty) \tag{15}\\
-\nabla u(x, t) \cdot \nu(x) & =g_{2}(x, t), \quad(x, t) \in \Gamma_{2} \times[0, \infty) \tag{16}\\
-\nabla u(x, t) \cdot \nu(x) & =h(x)\left[u(x, t)-u_{B}(x, t)\right], \quad(x, t) \in \Gamma_{3} \times[0, \infty) \tag{17}
\end{align*}
$$

where $f, g_{1}, g_{2}, h, u_{B}$ are given functions and ν denotes the outward unit vector normal to boundary. In addition, assume that $h(x) \geq 0, x \in \Gamma_{3}$. Show that there is at most one smooth solution to the problem (12) - (17).

