CHAPTER 9: Green’s functions for time-independent problems

Introductory examples

One-dimensional heat equation

Consider the one-dimensional heat equation

Ou 0%u
ot k8x2 (1)
with boundary conditions
u(0,t) =0 (2)
w(L,t) =0 (3)
and initial condition
u(z,0) = f() (4)
We already know that the solution of this problem is given by
Z ayp, sin —e k(n/L)%t (5)
n=1
where a,, are the Fourier sine series coefficients of f(x).
nwx
Z ap, sin ——
n=1
9 (L
= E/o f(z)sin ?dw (6)
After replacing (6) in (5) we may express the solution as
u(x,t) / f(=zo) sin 2 dx()] sin n%e*k("”/m
n= 1
which may be written ( after interchanging [ and >" )
u(zx,t) /L f(zo) i 2 sin (200 gin L o—k(nm/ L)%t ) g (7)
o — L L L
We define the quantity
— 2
nz::l 7 sin 7717;960 sin sze—k(m/L)%

as the influence function for the initial condition. For every point zy this quantity shows the influence of
the initial temperature at xy on the temperature at position x and time ¢.
Further insight may be obtained by considering the heat equation with sources

ou 0%u
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with boundary conditions (2-3) and the initial condition (4).



Q: Show that the solution of (8), (2-3), (4) may be expressed as

L L pt
u(z,t) = / f(x0)G(x, t; 29, 0)dxo +/ / Q(zo,t0)G(x,t; 20, to)dtodxg (9)
0 o Jo
where G(z, t; xo,to) is given by
o~ 2
G(x,t;20,t0) = ; I sin merO sin ?e‘k(””/f‘)z(t%(’) (10)

The function G(z,t;xg,to) defined by (10) is called the Green’s function for the heat equation problem

(8)a (2'3)a (4)

At to = 0, G(z,t;z0,t0) expresses the influence of the initial temperature at xp on the temperature at
position z and time t. In addition, G(z,t;zg,to) shows the influence of the source/sink term Q(zg,to) at
position zg and time ¢ty on the temperature at position x and time t.

Notice that the Green’s function depends only on the elapsed time ¢ — ¢y since

G(l‘,t;.’l}o7t0> = G($7t — to; To, 0)

Green’s functions for boundary value problems for ODE’s

In this section we investigate the Green’s function for a Sturm-Liouville nonhomogeneous ODE

subject to two homogeneous boundary conditions.
The simplest example is the steady-state heat equation

with homogeneous boundary conditions

The method of variation of parameters

Consider the linear nonhomogeneous problem

L(u) = f(x) (11)

where u = u(x),a < x < b satisfies homogeneous boundary conditions and L is the Sturm-Liouville operator

d d
L=—(p—
dx (pdx) T4

If u; and ug are two linearly independent solutions of the homogeneous problem L(u) = 0, the general
solution of the homogeneous problem is
U = C1U1 + CoUs

where ¢; and co are arbitrary constants. To solve the nonhomogeneous problem, we use the method of
variation of parameters and search for a particular solution of (11) of the form

u(x) = v1(z)ur (2) + va(x)us() (12)



where v1(x) and vo(x) are functions to be determined such that (12) satisfies (11). Since we have only one

equation to be satisfied and two unknown functions, we impose an additional constraint

Using (13), we obtain from (12)

de = "Vr e
and the equation (11) is satisfied if
dvy duy | dvy dup f(2)
dz Vdz dz Vdr ~
From (13) and (14) we obtain
dvy _ —fus
dr ¢
dva _ fua
dr ¢

where

Remark: The quantity

Uy U
duy  dup

dx dzx
is called the Wronskian of u; and us and satisfies the differential equation

aw _ _ldp
de  pdz
Q: Using the Wronskian, show that expression (17) is constant.
Then, integrating (15) and (16) we obtain

vi(z) = —% /9” J(wo)uz(zo)dzo + 1

1 x
’Ug(a',‘) = E/ f(mo)ul(l‘o)dl‘o + co
a
such that the general solution of the nonhomogeneous problem (11) is

u(z)

vi(z)ur () + va(2)uz(z)

= crur(x) + coug(x) — ulT(I) /z f(xo)ua(xo)dxo + UQT(x) /I f(xo)ug (zg)dxg

The constants ¢; and co are determined by the boundary conditions.

A simple example. Consider the following problem
d*u

@:f(x)

with homogeneous boundary conditions

u(0) =0, uw(L)=0

Two linearly independent solutions of the homogeneous differential equation are

u(z) =

(13)

(22)



us(z) =L —x (23)
Then, W = u; &2 — yy @4 = — [ such that from (18) and (19) we obtain

vi(x) = i/om f(xo)(L — zo)dxo + 1 (24)

1 xT
vg(x) = _f/ f(xo)zodzo + 2 (25)
0
Using the boundary conditions,

u(0)=0=c=0

L
wL)=0= ¢ = _%/0 fzo)(L — zo)dzo

and replacing in (24), (25) it follows that

T L L
vi(x) = %/0 f(xo)(L — zo)dzg — %/0 f(xo)(L — zg)dxg = —%/J: F(zo)(L — zg)dxg (26)

1 x
UQ(Z‘) = —z/ f(xo)l‘odxo (27)
0
and the solution of the nonhomogeneous problem is
w(z) = vi(z)ur(z) + va(z)uz(x) (28)
= —*/ f J)o - .Z‘O dafo - / f .TO l‘odl‘o (29)
This solution may be written as
L
= / f(zo)G(x, z9)dxg (30)
0
where the Green’s function G(x,x) is given by
el 1) B
G(x, o) { ot (31)
%) T > T

The method of eigenfunction expansion for Green’s functions

Consider a general Sturm-Liouville nonhomogeneous ODE
L(u) = f(x), a<z<b

subject to two homogeneous boundary conditions. We know that the eigenfunctions @, (x) of the related
eigenvalue problem
L(®) = —-Xo®

(for an arbitrary weight function o) subject to the same homogeneous boundary conditions form a ” complete
set”, such that u(z) may be expressed as a generalized Fourier series of eigenfunctions

= a,®,(x) (32)

Term-by-term differentiation of (32) implies (together with the linearity of L)



=1L (Z anq)n(x)) = Z anL(®,) = — Z anAn,o®,,

n=1 n=1

In the last relation above we used L(®,,) = —A,0®,,. Therefore,

n=1
and using the orthogonality of the eigenfunctions (with weight o) we obtain the coefficients

b
a, = o (@) Pnde. (33)
o [} 2oda

Replacing (33) in (32) we obtain ( after interchanging [ and )" )

I, ! ®,,(2) Py (o)
nzl A f ¢2 / f= A [ ¢202de0 39

For this problem,
b
= / f(20)G(x, zo)dxg

where the Green’s function G(z, xq) is

Remark: Formula (35) implies that the Green’s function is symmetric:

G(z,x0) = G(xo, )

The Dirac Delta Function and its relationship to Green’s function

In the previous section we proved that the solution of the nonhomogeneous problem

subject to homogeneous boundary conditions is

b
sc):/ f(x0)G(z, z0)dxq

In this section we want to give an interpretation of the Green’s function. Let x5,a < x5 < b represent an
arbitrary fixed point. We consider a perturbation of the source term

f(x) +0c(x)

where () is a continuous function with the following properties:

1. f; Se(z)dw =

2. 0 (x)=0ifx>zs+eorz<zs—c¢



A possible choice for d.(z) is the hat function

0, a<r<xs—€
1
_ = (T — 25 +€), Ty — €< T < Ty
Oc(x) €%(a:—xs—e), Ty < <Tg+e€ (36)
0, ro+e<zxr<b

Denote u.(z) the solution of the perturbed problem
L(uc) = f(z) + 0c(x)

subject to the same homogeneous boundary conditions as u. The variation Au = u. — u in the solution u
due to the perturbation of the source term satisfy the following problem:

L(Au) = §.(x)

with homogeneous boundary conditions, such that we have

Tste€ Ts+e€

de(x0)G(z, xo)dxo = G(z,a:e)/ de(xo)dxo

Ts—€

Au(z) /abée(xO)G(x»on)da?o :/z

s—E€

where z. is a point in the interval (zs — €, 25 + €). The existence of such point is a consequence of the mean
value theorem, since G(z, o) is continuous. Notice that

Ts+e b
/ 5€($0)d$0 = / 55(1’0)61350 =1

If we let ¢ — 0, we obtain
Au(z) = Gz, zy)

The limit
liH(l) de = 0(x — ) (37)
€E—>
represents an infinitely concentrated pulse at x4, that is zero everywhere, except at x = x4
_ 0, x # g
0z —xs) = { S (38)

We define the Dirac delta function §(z — z;) as an operator with the property (38) such that for every
continuous function f(z) we have

f(z) = /_ T F@)d(e — o) da,

The Dirac delta function has unit area
/ 0(x —xg)drs =1

and is even in the argument z — x4

Oz —xs) = (x5 — )

Then G(z, ;) satisfies
LIG(z,xs)] = 6(x — xs)

and the homogeneous boundary conditions at = a and = b, such that we obtain the following interpreta-
tion: the Green’s function G(z,z;) is the response at x due to a concentrated source at z;. The
symmetry of the Green’s function

G(z,zs) = G(zs, )



implies that the response at x due to a concentrated source at z, is the same as the response at
zs due to a concentrated source at z. This property is known as Mazwell’s reciprocity.

Jump conditions

Next we show how the Green’s function may be obtained by directly solving
L[G(x,20)] = 6(x — zg) (39)

subject to homogeneous boundary conditions.

Ezample consider the steady-state problem
u'(z) = f()
u(0) =0,u(L) =0

The Green’s function to this problem is then a solution to

d*G(x,z0)
g2 = 0(x — xp) (40)
G(07£L'0) = 0, G(L,.’Eo) =0 (4].)
It follows then that % = 0,z # xg, therefore G(z,zp) must be a linear function on each interval

T < x9 and T > xg

a+bx, x<uxg
G(z, o) = (42)
c+dzx, x>z

The constants a, b, ¢, d need to be determined. From the boundary conditions we have
G(0,29) =0=a=0
G(L,zp) =0— c=—dL

such that we obtain
bx, x <z

G(x,xq) = 43
(= 0) {d(:c—L), T > xo (43)
To find b and d, first we require that G(z, zo) must be continuous at xg

G(xy,70) = G(xg,70) = brg = d(vo — L) (44)

Next, for any € > 0, integrating (40) in (xo — €, ¢ + €)
d d
%G(ﬂﬁo +€,20) — %G(fﬂo —€m0) =1

then passing to the limit as € — 0, we get the jump condition

d d _
Solving (44-45) we get
i) o — L
d=— b=
L’ L

such that the Green’s function (43) is
—2(L—x0), x<uxo
G(x,x0) = { L

—2(L —x), =>x

which is the same expression we obtained using the variation of parameters.



Nonhomogeneous boundary conditions

The Green’s function may be used to solve problems with nonhomogeneous boundary conditions e.g.,

u = f() (47)
u(0) =a, u(L)=p (48)

The solution u(x) may be written as the sum
U = Uy + Usg
where wu; (x) solves the nonhomogenous ODE with homogeneous boundary conditions
Wl = f(2), u(0) = us(L) =0
and ug(x) solves the homogenous ODE with nonhomogeneous boundary conditions

uy =0, u(0) =a,us(L) =7

Then,
L
we) = [ fa0)Gla0) doo
tale) =t £
such that i
u(r) = ug(v) + ug(x) = / F(20)G(, o) dzo + o + B ; a.
0

is the solution to the nonhomogeneous problem (47-48).



