
Chapter10: Fourier Transform Solutions of PDEs

In this chapter we show how the method of separation of variables may be extended to solve PDEs defined on
an infinite or semi-infinite spatial domain. Several new concepts such as the ”Fourier integral representation”
and ”Fourier transform” of a function are introduced as an extension of the Fourier series representation to
an infinite domain.

We consider the heat equation
∂u

∂t
= k

∂2u

∂x2
, −∞ < x < ∞ (1)

with the initial condition
u(x, 0) = f(x), −∞ < x < ∞ (2)

As physical conditions at ±∞ we impose

u(−∞, t) = 0, u(∞, t) = 0, t > 0 (3)

Using separation of variables,
u(x, t) = Φ(x)h(t) (4)

we obtain the differential equations

dh

dt
= −λkh ⇒ h(t) = ce−λkt (5)

d2Φ
dx2

= −λΦ (6)

First problem we face is to impose boundary conditions at ±∞ for Φ(x).

Q: Show that equation (6) with the boundary conditions Φ(−∞) = Φ(∞) = 0 has no solutions.

Therefore, the correct boundary condition for Φ(x) at x = ±∞ is different from the boundary condition for
u(x, t) at x = ±∞. We require that Φ(x) is bounded at x = ±∞

|Φ(±∞)| < ∞ (7)

Q: Show that problem (6)-(7) has no solutions if λ < 0.

If λ > 0 the solution of the problem (6),(7) is

Φ(x) = c1 cos
√

λx + c2 sin
√

λx (8)

which remains bounded at x = ±∞ for all λ > 0. The major difference from the finite domain problem is
that in this case all λ > 0 are eigenvalues!

Q: Show that λ = 0 is an eigenvalue of the problem (6),(7) and the corresponding eigenfunction is Φ(x) ≡ c.

The set of eigenvalues for a problem is usually referred to as the spectrum. For the heat equation on a finite
domain we have a discrete spectrum λn = (nπ/L)2, whereas for the heat equation defined on −∞ < x < ∞
we have a continuous spectrum λ ≥ 0.

Superposition principle. From (5) and (8) we obtain the product solutions u(x, t) = sin
√

λxe−λkt and
u(x, t) = cos

√
λxe−λkt for all λ ≥ 0. The general solution is obtained using the principle of superposition:

u(x, t) =
∫ ∞

0

[c1(λ) cos
√

λxe−λkt + c2(λ) sin
√

λxe−λkt]dλ (9)
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where c1(λ) and c2(λ) are arbitrary functions of λ.

Q: Show that (9) is a solution of the equation (1) for any c1(λ) and c2(λ).

If we let λ = ω2 then (9) becomes

u(x, t) =
∫ ∞

0

[A(ω) cos ωx e−kω2t + B(ω) sinωx e−kω2t]dω (10)

where A(ω) = 2ωc1(ω2), B(ω) = 2ωc2(ω2) are arbitrary functions.

To satisfy the initial condition (2) we must have

f(x) =
∫ ∞

0

[A(ω) cos ωx + B(ω) sinωx]dω (11)

The problem is now to determine the functions A(ω) and B(ω) such that (11) is satisfied.

Complex exponentials

Complex exponentials may be used to express the sin and cos functions (Euler’s formulas):

cos θ =
eiθ + e−iθ

2
, sin θ =

eiθ − e−iθ

2i
(12)

With these formulas, we may write (10) as

u(x, t) =
∫ ∞

0

[A(ω)
eiωx + e−iωx

2
+ B(ω)

eiωx − e−iωx

2i
]e−kω2tdω

=
∫ ∞

0

[A(ω)
eiωx + e−iωx

2
− iB(ω)

eiωx − e−iωx

2
]e−kω2tdω

=
∫ ∞

0

A(ω)− iB(ω)
2

eiωxe−kω2tdω +
∫ ∞

0

A(ω) + iB(ω)
2

e−iωxe−kω2tdω

=
∫ 0

−∞

A(−ω)− iB(−ω)
2

e−iωxe−kω2tdω +
∫ ∞

0

A(ω) + iB(ω)
2

e−iωxe−kω2tdω

such that we obtain
u(x, t) =

∫ ∞

−∞
c(ω)e−iωxe−kω2tdω (13)

where the function c(ω) : R → C (takes a real argument and returns a complex value) is defined as

c(ω) =


A(ω)+iB(ω)

2 , ω > 0

A(−ω)−iB(−ω)
2 , ω < 0

(14)

Remark: Notice that from (14) it follows that c(−ω) = c(ω).
At t = 0 we obtain from (13)

f(x) =
∫ ∞

−∞
c(ω)e−iωxdω (15)

Q: Show that (15) with c(ω) given by (14) is equivalent to (11).
To determine the coefficients c(ω) from (15) we need to introduce a couple of new concepts: Fourier trans-
form and Fourier integral representation of a function.
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Fourier transform pair

Given a piecewise smooth function f(x) defined on −L ≤ x ≤ L, the Fourier series representation if f is

f(x+) + f(x−)
2

= a0 +
∞∑

n=1

an cos
nπx

L
+

∞∑
n=1

bn sin
nπx

L
(16)

where

a0 =
1

2L

∫ L

−L

f(x)dx

an =
1
L

∫ L

−L

f(x) cos
nπx

L
dx

bn =
1
L

∫ L

−L

f(x) sin
nπx

L
dx

The complex form of (16) is (see Section 3.6 for a proof):

f(x+) + f(x−)
2

=
∞∑

n=−∞
cne−inπx/L (17)

where the the coefficients cn are complex numbers given by

cn =
1

2L

∫ L

−L

f(x)einπx/Ldx (18)

By replacing (18) in (17) we obtain the Fourier series identity

f(x+) + f(x−)
2

=
∞∑

n=−∞

[
1

2L

∫ L

−L

f(x)einπx/Ldx

]
e−inπx/L (19)

For functions defined for −∞ < x < ∞ the following Fourier integral identity is valid

f(x+) + f(x−)
2

=
1
2π

∫ ∞

−∞

[∫ ∞

−∞
f(x)eiωxdx

]
e−iωxdω (20)

You may think about (20) as a limit of (19) as L →∞.

Definition: Given a function f(x),−∞ < x < ∞, we define the Fourier transform of f(x) as the function

F (ω) =
γ

2π

∫ ∞

−∞
f(x)eiωxdx (21)

where γ is an arbitrary constant (6= 0).
From (20) and (21) it follows that

f(x+) + f(x−)
2

=
1
γ

∫ ∞

−∞
F (ω)e−iωxdω (22)

Relation (22) is called the Fourier integral representation of f(x) and f(x) determined by (22) is called
the inverse Fourier transform of F (ω). If f is continuous we simply have

f(x) =
1
γ

∫ ∞

−∞
F (ω)e−iωxdω (23)

3



The relations (21) and (22) are valid for any function f(x) that satisfies
∫∞
−∞ |f(x)|dx < ∞ and are also

known as the Fourier transform pair. In our applications we will let γ = 1.

Next we mention several properties of the Fourier transform.

1. The Fourier transform is a linear operator:

F [c1f(x) + c2g(x)] = c1F [f(x)] + c2F [g(x)] (24)

where F [f(x)] = F (ω) denotes the Fourier transform of f(x).

2. Given a real valued function f(x) we have

F (−ω) = F ∗(ω) (25)

where F ∗(ω) denotes the complex conjugate of F (ω).

3. If f(x) is an odd function then F (ω) is an odd function. In addition, in this case we have

f(x) =
1
γ

∫ ∞

−∞
F (ω)(cos ωx− i sinωx)dx =

−2i

γ

∫ ∞

0

F (ω) sinωx dω

F (ω) =
γ

2π

∫ ∞

−∞
f(x)eiωx dx =

γ

2π

∫ ∞

−∞
f(x)(cos ωx + i sinωx) dx

=
iγ

2π

∫ ∞

−∞
f(x) sinωxdx =

iγ

π

∫ ∞

0

f(x) sinωxdx

If we choose, for convenience, γ = −2i, then we obtain

f(x) =
∫ ∞

0

F (ω) sinωxdω (26)

F (ω) =
2
π

∫ ∞

0

f(x) sinωxdx (27)

Relations (26) and (27) are called the Fourier sine transform pair and are valid if f(x) is an odd function.
F (ω) ≡ S[f(x)] is called the Fourier sine transform of f(x) and f(x) ≡ S−1[F (ω)] is called the inverse
Fourier sine transform of F (ω).

4. Similarly, if f(x) is an even function then F (ω) is an even function and we obtain the Fourier cosine
transform pair

f(x) =
∫ ∞

0

F (ω) cos ωxdω (28)

F (ω) =
2
π

∫ ∞

0

f(x) cos ωxdx (29)

In this case F (ω) ≡ C[f(x)] is called the Fourier cosine transform of f(x) and f(x) ≡ C−1[F (ω)] is called
the inverse Fourier cosine transform of F (ω).

5. The Fourier transform of a Gaussian is a Gaussian and the inverse Fourier transform of a Gaussian is a
Gaussian

f(x) = e−βx2
⇔ F (ω) =

1√
4πβ

e−
ω2
4β (30)
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f(x) =
√

π

α
e−

x2
4α ⇔ F (ω) = e−αω2

(31)

6. Convolution Theorem: If F (ω) and G(ω) are the Fourier transforms of f(x) and g(x), respectively, then

h(x) =
1
2π

∫ ∞

−∞
g(x)f(x− x)dx (32)

is the inverse Fourier transform of the product F (ω)G(ω). The function h(x) defined in (32) is called the
convolution of the functions f and g and is denoted h = f ∗ g. Notice that f ∗ g = g ∗ f .

Fourier transform and the heat equation

We return now to the solution of the heat equation on an infinite interval and show how to use Fourier
transforms to obtain u(x, t). From (15) it follows that c(ω) is the Fourier transform of the initial temperature
distribution f(x):

c(ω) =
1
2π

∫ ∞

−∞
f(x)eiωxdx (33)

such that by replacing (33) in (13) we may express the solution u(x, t) as

u(x, t) =
∫ ∞

−∞

[
1
2π

∫ ∞

−∞
f(x)eiωxdx

]
e−iωxe−kω2tdω (34)

which may be written in the equivalent form

u(x, t) =
1
2π

∫ ∞

−∞
f(x)

[∫ ∞

−∞
e−kω2te−iω(x−x)dω

]
dx (35)

Notice that
g(x) =

∫ ∞

−∞
e−kω2te−iωxdω (36)

is the inverse Fourier transform of e−kω2t. With this notation, the solution (35) becomes

u(x, t) =
1
2π

∫ ∞

−∞
f(x)g(x− x)dx (37)

The only problem now is to obtain an explicit formula for g(x) defined by (36).

Inverse Fourier Transform of a Gaussian

Functions of the form
G(ω) = e−αω2

where α > 0 is a constant are usually referred to as Gaussian functions. The function g(x) whose Fourier
transform is G(ω) is given by the inverse Fourier transform formula

g(x) =
∫ ∞

−∞
G(ω)e−iωxdω =

∫ ∞

−∞
e−αω2

e−iωxdω (38)

The last integral in (38) may be evaluated (the proof is not trivial, see the Appendix to 10.3 for details) to
obtain

g(x) =
√

π

α
e
−x2

4α (39)
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showing that the inverse Fourier transform of a Gaussian is itself a Gaussian.

If we let α = kt in (38), (39) we obtain∫ ∞

−∞
e−kω2te−iωxdω =

√
π

kt
e
−x2

4kt

such that replacing in (36) it follows that

g(x) =
√

π

kt
e
−x2

4kt (40)

The solution u(x, t) is obtained by replacing (40) in (37)

u(x, t) =
1
2π

∫ ∞

−∞
f(x)

√
π

kt
e
−(x−x)2

4kt dx (41)

which may be written as

u(x, t) =
∫ ∞

−∞
f(x)

1√
4πkt

e
−(x−x)2

4kt dx (42)

Remark: Notice that if the initial condition is specified as a Dirac impulse concentrated at the origin,
f(x) = δ(x), then from (42) we get

u(x, t) =
1√

4πkt
e
−x2

4kt (43)

which is called the fundamental solution of the heat equation.

Transform of the derivatives: the following properties hold:

1. The Fourier transform of a time derivative equals the time derivative of the Fourier transform

F
[
∂u

∂t

]
=

∂

∂t
U(ω, t) (44)

2. In general, the Fourier transform of the nth derivative of a function u(x, t) with respect to x equals
(−iω)n times the Fourier transform of u(x, t), if u(x, t) → 0, sufficiently fast as x → ±∞. In particular,

F
[
∂2u

∂x2

]
= (−iω)2U(ω, t) (45)

Q: Prove (44) and (45).

Fourier transforming the heat equation

Next we show how the Fourier transform may be used to solve directly the heat equation on an infinite
interval

∂u

∂t
= k

∂2u

∂x2
, −∞ < x < ∞ (46)

with the initial condition
u(x, 0) = f(x), −∞ < x < ∞ (47)

u(−∞, t) = 0, u(∞, t) = 0, t > 0 (48)
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Since the Fourier transform is a linear operator, by applying the Fourier transform to the equation (46) we
obtain

F
[
∂u

∂t

]
= kF

[
∂2u

∂x2

]
(49)

The Fourier transform of u(x, t) is

F [u] ≡ U(ω, t) =
1
2π

∫ ∞

−∞
u(x, t)eiωx dx (50)

If we are able to find F [u] then the solution u(x, t) is given by the inverse Fourier transform formula

u(x, t) =
∫ ∞

−∞
U(ω, t)e−iωx dω (51)

After replacing (44) and (45) in (49) we obtain an ordinary differential equation for the Fourier transform
U(ω, t)

∂

∂t
U(ω, t) = −kω2U(ω, t) (52)

Therefore, the Fourier transform operation converts a linear PDE with constant coefficients into an ODE!

The general solution of (52) is
U(ω, t) = c(ω)e−kω2t (53)

To determine c(ω) we use the initial condition (47) and require that U(ω, 0) is the Fourier transform of f(x).
Then

c(ω) =
1
2π

∫ ∞

−∞
f(x)eiωx dx (54)

After replacing (53) in (51) we obtain the solution u(x, t)

u(x, t) =
∫ ∞

−∞
c(ω)e−iωxe−kω2tdω (55)

which may be written after replacing (54) and rearranging the terms

u(x, t) =
1
2π

∫ ∞

−∞
f(x)

[∫ ∞

−∞
e−kω2te−iω(x−x)dω

]
dx (56)

This is the same formula we obtained by using the separation of variables.

Heat equation on semi-infinite intervals

We consider the heat equation on a semi-infinite interval x > 0

∂u

∂t
= k

∂2u

∂x2
, 0 < x < ∞ (57)

with the initial condition
u(x, 0) = f(x), 0 < x < ∞ (58)

u(0, t) = 0, u(∞, t) = 0, t > 0 (59)

Using separation of variables,

u(x, t) = Φ(x)h(t)

we obtain
dh

dt
= −λkh

7



and the boundary value problem
d2Φ
dx2

= −λΦ

Φ(0) = 0

|Φ(∞)| < ∞

whose eigenvalues are all positive λ and the eigenfunctions are

Φ(x) = c sin
√

λx = c sinωx

where ω ≡
√

λ > 0. Therefore, the product solutions are

u(x, t) = A sinωxe−kω2t

and using the principle of superposition we obtain

u(x, t) =
∫ ∞

0

A(ω) sinωxe−kω2t dω (60)

To satisfy the initial condition we require

f(x) =
∫ ∞

0

A(ω) sinωxdω

If we consider the odd extension f(x) of f(x) to −∞ < x < ∞ then

f(x) = f(x) =
∫ ∞

0

F (ω) sinωxdω, x > 0

where F (ω) is the Fourier sine transform of f(x)

F (ω) =
2
π

∫ ∞

0

f(x) sinωxdx =
2
π

∫ ∞

0

f(x) sinωx dx

Therefore, A(ω) is given by the Fourier sine transform of f(x)

A(ω) =
2
π

∫ ∞

0

f(x) sinωxdx (61)
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Fourier sine and cosine transforms of derivatives

We defined the Fourier sine and cosine transforms of a function f(x) as

S[f(x)] =
2
π

∫ ∞

0

f(x) sinωxdx (62)

C[f(x)] =
2
π

∫ ∞

0

f(x) cos ωxdx (63)

For the Fourier sine and cosine transforms of derivatives, assuming that limx→∞ f(x) = 0, we have the
following formulas:

C
[

df

dx

]
= − 2

π
f(0) + ωS[f ] (64)

S
[

df

dx

]
= −ωC[f ] (65)

C
[
d2f

dx2

]
= − 2

π

df

dx
(0) + ωS

[
df

dx

]
= − 2

π

df

dx
(0)− ω2C[f ] (66)

S
[
d2f

dx2

]
= −ωC

[
df

dx

]
=

2
π

ωf(0)− ω2S[f ] (67)

Q: Prove formulas (64-67).

Formulas (66) and (67) suggest the appropriate choice of the Fourier sine/cosine transform when solving
PDEs involving second order derivatives on a semi-infinite interval x ≥ 0. Replace f(x) by u(x, t) in the
formulas above: if u(0, t) is given we will use a Fourier sine transform; if ∂u/∂x(0, t) is given we will use a
Fourier cosine transform.

Example: Consider the heat equation on 0 < x < ∞ with nonhomogeneous boundary condition at x = 0

∂u

∂t
= k

∂2u

∂x2
, 0 < x < ∞ (68)

u(x, 0) = f(x), 0 < x < ∞ (69)

u(0, t) = g(t), u(∞, t) = 0, t > 0 (70)

We introduce the Fourier sine transform of u(x, t)

U(ω, t) =
2
π

∫ ∞

0

u(x, t) sinωxdx (71)

By applying the Fourier sine transform to equation (68) and using the property (67) we obtain a first order
linear ODE

∂U

∂t
= k

(
2
π

ωg(t)− ω2U

)
(72)

We require that U(ω, 0) must be the Fourier sine transform of u(x, 0) = f(x) such that

U(ω, 0) =
2
π

∫ ∞

0

f(x) sinωxdx (73)

By solving (72-73) we obtain U(ω, t). The solution u(x, t) is given then by the inverse Fourier sine transform

u(x, t) =
∫ ∞

0

U(ω, t) sinωxdω (74)
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Worked examples using transforms

One-dimensional wave equation on an infinite interval

Consider the one-dimensional wave equation

∂2u

∂t2
= c2 ∂2u

∂x2
, −∞ < x < ∞ (75)

with the initial conditions
u(x, 0) = f(x) (76)

∂u

∂t
(x, 0) = 0 (77)

To solve this problem we consider the Fourier transform

U(ω, t) =
1
2π

∫ ∞

−∞
u(x, t)eiωx dx (78)

u(x, t) =
∫ ∞

−∞
U(ω, t)e−iωx dω (79)

By applying the Fourier transform to equation (75) and using the properties of the transforms of the deriva-
tives we obtain the ODE

∂2U

∂t2
= −c2ω2U (80)

with the initial conditions
U(ω, 0) = F [u(x, 0)] =

1
2π

∫ ∞

−∞
f(x)eiωx dx (81)

∂

∂t
U(ω, 0) = 0 (82)

The general solution of equation (80) is

U(ω, t) = A(ω) cos cωt + B(ω) sin cωt (83)

and from the initial conditions (81-82) we obtain the coefficients

B(ω) = 0 (84)

A(ω) = U(ω, 0) =
1
2π

∫ ∞

−∞
f(x)eiωx dx (85)

Therefore,
U(ω, t) = U(ω, 0) cos cωt

and from (79) we obtain the solution

u(x, t) =
∫ ∞

−∞
U(ω, 0) cos cωte−iωx dω (86)

To simplify this expression we use Euler’s formula

cos cωt =
eicωt + e−icωt

2

such that (86) becomes

u(x, t) =
1
2

∫ ∞

−∞
U(ω, 0)

[
e−iω(x−ct) + e−iω(x+ct)

]
dω (87)
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From (81) we have (inverse Fourier transform)

f(x) =
∫ ∞

−∞
U(ω, 0)e−iωx dω

such that (87) becomes

u(x, t) =
1
2
[f(x− ct) + f(x + ct)] (88)

which is the same expression we obtained using the method of characteristics.

Laplace’s equation in a semi-infinite strip

Consider the Laplace’s equation in a semi-infinite strip

∇2u =
∂2u

∂x2
+

∂2u

∂y2
= 0, 0 < x < L, y > 0 (89)

with the boundary conditions
u(0, y) = g1(y), y > 0 (90)

u(L, y) = g2(y), y > 0 (91)

u(x, 0) = f(x), 0 < x < L (92)

In addition we assume that
lim

y→∞
u(x, y) = 0, 0 < x < L (93)

We split this problem into two subproblems that are easier to solve:

u(x, y) = u1(x, y) + u2(x, y) (94)

where u1 and u2 satisfy the Laplace’s equation (89) and respectively, the boundary conditions

u1(0, y) = g1(y), u1(L, y) = g2(y), u1(x, 0) = 0, lim
y→∞

u1(x, y) = 0 (95)

u2(0, y) = 0, u2(L, y) = 0, u2(x, 0) = f(x), lim
y→∞

u2(x, y) = 0 (96)

Zero-temperature sides

Using separation of variables, we search for a solution

u2(x, y) = Φ(x)h(y) (97)

After replacing (97) in (89) and using the boundary conditions (95) we obtain

d2Φ
dx2

= −λΦ, Φ(0) = 0, Φ(L) = 0 (98)

d2h

dy2
= λh (99)

From (98) we obtain the eigenvalues λn = (nπx/L)2 and the corresponding eigenfunctions Φn(x) = sin nπx
L .

The general solution of (99) is
h(y) = ane−

√
λny + bne

√
λny
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such that using the principle of superposition

u2(x, y) =
∞∑

n=1

an sin
nπx

L
e−nπy/L +

∞∑
n=1

bn sin
nπx

L
enπy/L (100)

The boundary condition
lim

y→∞
u2(x, y) = 0

implies bn = 0, n = 1, 2, . . .. The nonhomogeneous boundary condition u2(x, 0) = f(x) implies then

f(x) =
∞∑

n=1

an sin
nπx

L

such that an are the Fourier sine coefficients of f(x)

an =
2
L

∫ L

0

f(x) sin
nπx

L
dx (101)

Therefore, the solution u2(x, y) is

u2(x, y) =
∞∑

n=1

an sin
nπx

L
e−nπy/L (102)

where the coefficients an are evaluated according to (101).

Zero-temperature bottom

To find the solution u1(x, y) we introduce the Fourier sine transform in y

u1(x, y) =
∫ ∞

0

U1(x, ω) sinωy dω (103)

U1(x, ω) =
2
π

∫ ∞

0

u1(x, y) sinωy dy (104)

Taking the Fourier sine transform with respect to y of the Laplace’s equation and using the properties of
the transforms of the derivatives, we obtain

∂2

∂x2
U1(x, ω) +

2
π

ωU1(x, 0)− ω2U1(x, ω) = 0 (105)

Now, U1(x, 0) = S[u1(x, 0)] = S[0] = 0 such that (105) becomes

∂2

∂x2
U1(x, ω)− ω2U1(x, ω) = 0 (106)

The solution of (106) may be expressed in terms of sinh as

U1(x, ω) = a(ω) sinhωx + b(ω) sinhω(L− x) (107)

The coefficients a(ω) and b(ω) are obtained from the boundary conditions

U1(0, ω) = S[g1(y)] =
2
π

∫ ∞

0

g1(y) sinωy dy = b(ω) sinhωL ⇒ b(ω) =
2
π

1
sinhωL

∫ ∞

0

g1(y) sinωy dy

U1(L, ω) = S[g2(y)] =
2
π

∫ ∞

0

g2(y) sinωy dy = a(ω) sinhωL ⇒ a(ω) =
2
π

1
sinhωL

∫ ∞

0

g2(y) sinωy dy
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This completes the evaluation of the Fourier sine transform U1(x, ω) and the solution u1(x, y) is given by
(103).

Remark: The solution u(x, y) = u1(x, y) + u2(x, y) of the Laplace’s equation in a semi-infinite strip is the
sum of a solution u1(x, y) obtained using the Fourier sine transform and a solution u2(x, y) obtained using
a Fourier sine series.

An alternative approach to obtain the solution u(x, y) is to directly apply the Fourier sine transform in y to
the equation (89) with nonhomogeneous boundary conditions

u(x, y) =
∫ ∞

0

U(x, ω) sinωy dω

The differential equation for U(x, ω) is then nonhomogeneous

∂2U

∂x2
− ω2U = − 2

π
ωf(x)

and must be solved with two nonhomogeneous boundary conditions at x = 0 and x = L.

Laplace’s equation in a half-plane

We consider the Laplace’s equation in a half-plane

∇2u =
∂2u

∂x2
+

∂2u

∂y2
= 0, −∞ < x < ∞, y > 0 (108)

with the boundary conditions
u(x, 0) = f(x) (109)

lim
x→∞

u(x, y) = 0 (110)

lim
x→−∞

u(x, y) = 0 (111)

lim
y→∞

u(x, y) = 0 (112)

To solve this problem we consider the Fourier transform in x

u(x, y) =
∫ ∞

−∞
U(ω, y)e−iωx dω (113)

U(ω, y) =
1
2π

∫ ∞

−∞
u(x, y)eiωx dx (114)

Taking the Fourier transform in x of the Laplace’s equation (108) we obtain the ODE

∂2U

∂y2
− ω2U = 0 (115)

whose general solution is
U(ω, y) = a(ω)eωy + b(ω)e−ωy (116)

Next we use the boundary conditions to determine a(ω) and b(ω).

lim
y→∞

u(x, y) = 0 ⇒ lim
y→∞

U(ω, y) = 0

13



such that a(ω) = 0 if ω > 0 and b(ω) = 0 if ω < 0. Therefore, (116) becomes

U(ω, y) =

{
a(ω)eωy, ω < 0

b(ω)e−ωy, ω > 0
(117)

which may be written in a compact form

U(ω, y) = c(ω)e−|ω|y (118)

where c(ω) = a(ω), ω < 0 and c(ω) = b(ω), ω > 0.
From the boundary condition (109) we have

U(ω, 0) = F [f(x)] =
1
2π

∫ ∞

−∞
f(x)eiωx dx

such that c(ω) in (118) must be the Fourier transform of f(x):

c(ω) =
1
2π

∫ ∞

−∞
f(x)eiωx dx (119)

The solution u(x, y) is then given by (113) where U(ω, y) is evaluated according to (118)-(119).

Q: Using the convolution theorem, show that the solution u(x, y) may be expressed as

u(x, y) =
1
2π

∫ ∞

−∞
f(x)

2y

(x− x)2 + y2
dx (120)

Laplace’s equation in a quarter-plane

To solve the Laplace’s equation in a quarter-plane x > 0, y > 0

∇2u =
∂2u

∂x2
+

∂2u

∂y2
= 0, x > 0, y > 0 (121)

with the boundary conditions
u(0, y) = g(y), y > 0 (122)

∂u

∂y
(x, 0) = f(x), x > 0 (123)

lim
x→∞

u(x, y) = lim
y→∞

u(x, y) = 0 (124)

we decompose the problem into two subproblems that are easier to solve:

u(x, y) = u1(x, y) + u2(x, y)

where

∇2u1 = 0 ∇2u2 = 0

u1(0, y) = g(y) u2(0, y) = 0

∂

∂y
u1(x, 0) = 0 ∂

∂y u2(x, 0) = f(x)

lim
x→∞

u1(x, y) = 0 limx→∞ u2(x, y) = 0

lim
y→∞

u1(x, y) = 0 limy→∞ u2(x, y) = 0
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The techniques for solving these problems are very similar, and we only indicate how to solve the problem
for u1(x, y). We consider the Fourier cosine transform in y since we have a homogeneous boundary condition
∂u1/∂y(x, 0) = 0.

u1(x, y) =
∫ ∞

0

U1(x, ω) cos ωy dω (125)

U1(x, ω) =
2
π

∫ ∞

0

u1(x, y) cos ωy dy (126)

Taking the Fourier cosine transform in y of the Laplace’s equation for u1 and using the homogeneous boundary
condition ∂u1/∂y(x, 0) = 0 we obtain the ordinary differential equation

∂2U1

∂x2
− ω2U1 = 0

whose general solution is
U1(x, ω) = a(ω)e−ωx + b(ω)eωx, x > 0, ω > 0

To determine a(ω) and b(ω) we use the boundary conditions.

lim
x→∞

u1(x, y) = 0 ⇒ lim
x→∞

U1(x, ω) = 0 ⇒ b(ω) = 0

Therefore,
U1(x, ω) = a(ω)e−ωx (127)

U1(0, ω) = C[u1(0, y)] = C[g(y)] ⇒ a(ω) =
2
π

∫ ∞

0

g(y) cos ωy dy (128)

The solution u1(x, y) is obtained from (125) with U1(x, ω) given by (127)-(128).
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