Chapter10: Fourier Transform Solutions of PDEs

In this chapter we show how the method of separation of variables may be extended to solve PDEs defined on
an infinite or semi-infinite spatial domain. Several new concepts such as the ”Fourier integral representation”
and ”Fourier transform” of a function are introduced as an extension of the Fourier series representation to
an infinite domain.

We consider the heat equation

gu _ @ —00 <z < 00 (1)
ot oz’
with the initial condition
u(z,0) = f(z), —00o <z <00 (2)
As physical conditions at £0o0 we impose
u(—o00,t) =0, u(co,t) =0, t >0 (3)
Using separation of variables,
u(z,t) = ®(x)h(t) (4)
we obtain the differential equations
dh
— = —Mkh = h(t) = ce M (5)
dt
d*®
— = -)\D 6
T2 (6)

First problem we face is to impose boundary conditions at +oo for ®(x).
Q: Show that equation (6) with the boundary conditions ®(—o0) = ®(00) = 0 has no solutions.

Therefore, the correct boundary condition for ®(z) at x = +o0 is different from the boundary condition for
u(z,t) at © = £oo. We require that ®(x) is bounded at z = oo

|P(£o00)| < 00 (7)
Q: Show that problem (6)-(7) has no solutions if A < 0.
If A > 0 the solution of the problem (6),(7) is
®(x) = ¢ cos VAZ + o sin Vz (8)

which remains bounded at x = £oo for all A > 0. The major difference from the finite domain problem is
that in this case all X > 0 are eigenvalues!

Q: Show that A = 0 is an eigenvalue of the problem (6),(7) and the corresponding eigenfunction is ®(z) = c.
The set of eigenvalues for a problem is usually referred to as the spectrum. For the heat equation on a finite
domain we have a discrete spectrum X\, = (nm/L)?, whereas for the heat equation defined on —oo < x < 00

we have a continuous spectrum X\ > 0.

Superposition principle. From (5) and (8) we obtain the product solutions u(z,t) = sin v Aze *** and
u(zx,t) = cos VAze M for all A > 0. The general solution is obtained using the principle of superposition:

u(x,t) = /Ooo[cl (A) cos VAze ™ 4 ¢o(X) sin vV Aze N dA (9)



where ¢1(\) and co(\) are arbitrary functions of .
Q: Show that (9) is a solution of the equation (1) for any c¢;(A) and ca(A).
If we let A = w? then (9) becomes

u(zx,t) = /000 [A(w) coswz ekt 4 B(w) sinwz e_kWQt]dw (10)
where A(w) = 2we (w?), B(w) = 2weg(w?) are arbitrary functions.
To satisfy the initial condition (2) we must have

flx) = /OOO[A(w) coswzx + B(w) sin wz]dw (11)

The problem is now to determine the functions A(w) and B(w) such that (11) is satisfied.

Complex exponentials

Complex exponentials may be used to express the sin and cos functions (Euler’s formulas):

sinf="—° (12)

With these formulas, we may write (10) as

u(z,t) = / B e

0 21

= / Jr ¢ - iB(w)i]e*k‘”?tdw
0 2

_ /OO A — ZB )ezwuL —kw? tdw + /Oo Me_i“‘@e_kw%dw
0 0 2

_ /0 A — — ZB( )efiwxefkuﬂtdw + /OO Mefiwmefkw%dw

such that we obtain -
u(z,t) :/ c(w)e‘iw’”e_k“’2tdw (13)

where the function ¢(w) : R — C (takes a real argument and returns a complex value) is defined as

A(w)—;iB(w)’ w>0
c(w) = , (14)
A(—w)—Q’LB(—w)7 w<0

Remark: Notice that from (14) it follows that ¢(—w) = ¢(w).
At t = 0 we obtain from (13)
oo
f(z) :/ c(w)e T dw (15)
—o0
Q: Show that (15) with ¢(w) given by (14) is equivalent to (11).
To determine the coefficients ¢(w) from (15) we need to introduce a couple of new concepts: Fourier trans-
form and Fourier integral representation of a function.



Fourier transform pair

Given a piecewise smooth function f(z) defined on —L < x < L, the Fourier series representation if f is

M—a(ﬁ-zancosiﬁ-zb Slni (16)

2
1 L
—L/_L flx)dx
= i/LL f(x)cos ?daz
_ i/_LL Flaysin "7 d

The complex form of (16) is (see Section 3.6 for a proof):

where

f(w+) + f Z en e—ZTLﬂ'ZD/L (17)

n=—oo

where the the coefficients ¢, are complex numbers given by

_ l/L f( ) imr.r/Ld (18)
cn—2L > T)e T

By replacing (18) in (17) we obtain the Fourier series identity

flat) +fla)
= Z

I - :
M/Lf(x)eznﬂ'z/de] e*’Lnﬂ'I/L (19)

n—=—oo

For functions defined for —oco < & < oo the following Fourier integral identity is valid

You may think about (20) as a limit of (19) as L — oo.

Definition: Given a function f(x),—oco < & < 0o, we define the Fourier transform of f(x) as the function

. - T)e“TdT
- [ f@era (21)

where v is an arbitrary constant (# 0).
From (20) and (21) it follows that

f(:l)+) / F 7zwzdw (22)

Relation (22) is called the Fourier integral representation of f(z) and f(x) determined by (22) is called
the inverse Fourier transform of F(w). If f is continuous we simply have

1 * —iwT
= 5 /_Oo F(w)e *“dw (23)



The relations (21) and (22) are valid for any function f(z) that satisfies [ |f(z)|dz < co and are also

known as the Fourier transform pair. In our applications we will let v = 1.

Next we mention several properties of the Fourier transform.

1. The Fourier transform is a linear operator:

Flerf(x) + cag(@)] = a1 Ff (2)] + c2Fg ()] (24)

where F[f(x)] = F(w) denotes the Fourier transform of f(x).

2. Given a real valued function f(z) we have
F-w) = F*(w) (25)
where F*(w) denotes the complex conjugate of F'(w).

3. If f(x) is an odd function then F(w) is an odd function. In addition, in this case we have

L[ . —2i [ ,
flz)=— F(w)(coswz — isinwz)de = — F(w) sinwz dw
Y J-o Y 0
Flw) = X /OO f(x)e™® do = X /Oo f(z)(coswz + isinwz) dx
2 J_ o 2 J_ o
= ﬂ/ f(a:)sinwxdxzﬁ/ f(z) sinwz dz
271’ — oo T 0
If we choose, for convenience, v = —2i, then we obtain
(oo}
f(z) = / F(w) sinwa dw (26)
0
2 [ .
F(w) = f/ f(x)sinwz dx (27)
T Jo

Relations (26) and (27) are called the Fourier sine transform pair and are valid if f(x) is an odd function.
F(w) = S[f(z)] is called the Fourier sine transform of f(x) and f(z) = S7![F(w)] is called the inverse
Fourier sine transform of F(w).

4. Similarly, if f(x) is an even function then F(w) is an even function and we obtain the Fourier cosine
transform pair

flx) = /000 F(w) cos wzdw (28)

F(w) = 72T/O°° f(x) coswz dx (29)

In this case F(w) = C[f(z)] is called the Fourier cosine transform of f(z) and f(z) = C7'[F(w)] is called
the inverse Fourier cosine transform of F(w).

5. The Fourier transform of a Gaussian is a Gaussian and the inverse Fourier transform of a Gaussian is a

Gaussian
]_ 2

fl@) = e P o F(w) = o e 18 (30)

g



fla) = \/Ze o Fw) = e’ (31)

6. Convolution Theorem: If F'(w) and G(w) are the Fourier transforms of f(z) and g(z), respectively, then

) = 5= | " @i - z)dz (32)

:% -

is the inverse Fourier transform of the product F(w)G(w). The function h(x) defined in (32) is called the
convolution of the functions f and g and is denoted h = f % g. Notice that fxg=gx* f.

Fourier transform and the heat equation

We return now to the solution of the heat equation on an infinite interval and show how to use Fourier
transforms to obtain u(z,t). From (15) it follows that ¢(w) is the Fourier transform of the initial temperature
distribution f(z):

1 [ ;
o) = 5 /_ @) (33)
such that by replacing (33) in (13) we may express the solution u(z,t) as
u(x,t) :/ {2/ f(z)e“”df} emiwr ekt g, (34)
oo 127 oo
which may be written in the equivalent form
1 o0 oo 2 . _
uz,t) = o / f(@) [ / ek te”’<“>dw] dz (35)
T J-— —o0
Notice that o
g(x) :/ e hettemive gy, (36)

is the inverse Fourier transform of e=***. With this notation, the solution (35) becomes

w(a, ) = % [ T @)l - T)dT (37)

The only problem now is to obtain an explicit formula for g(z) defined by (36).
Inverse Fourier Transform of a Gaussian

Functions of the form

G(w) = e’

where o > 0 is a constant are usually referred to as Gaussian functions. The function g(z) whose Fourier
transform is G(w) is given by the inverse Fourier transform formula

g(x) :/ G(w)e ™ dw :/ e oW’ iz g, (38)

— 00 — 00

The last integral in (38) may be evaluated (the proof is not trivial, see the Appendix to 10.3 for details) to

obtain
o) = [ 2e (39)




showing that the inverse Fourier transform of a Gaussian is itself a Gaussian.

If we let oo = kt in (38), (39) we obtain
00 ) .2
[m e kwtto—ivr g, /Tjt@m

such that replacing in (36) it follows that
9(@) = | e T (40)

The solution u(x,t) is obtained by replacing (40) in (37)

w(z, t) = %/_OO f(x)\/Ze_(z;tz)2 iz (41)

< 1 —(e-m)2
u(z,t) —[w f(z)me dz (42)

Remark: Notice that if the initial condition is specified as a Dirac impulse concentrated at the origin,
f(x) = é(x), then from (42) we get

which may be written as

u(x,t) = €7TkE (43)

which is called the fundamental solution of the heat equation.

Transform of the derivatives: the following properties hold:

1. The Fourier transform of a time derivative equals the time derivative of the Fourier transform

#[2] - 2o ”

2. In general, the Fourier transform of the n*" derivative of a function u(z,t) with respect to = equals

(—iw)™ times the Fourier transform of u(z,t), if u(x,t) — 0, sufficiently fast as © — +oo. In particular,
82
F [axﬂ = (—iw)2U(w, 1) (45)
Q: Prove (44) and (45).
Fourier transforming the heat equation

Next we show how the Fourier transform may be used to solve directly the heat equation on an infinite
interval

ou 0%u
with the initial condition
u(z,0) = f(z), —00o <z <0 (47)
u(—00,t) =0, u(co,t) =0, t >0 (48)



Since the Fourier transform is a linear operator, by applying the Fourier transform to the equation (46) we

obtain 5 o2
u u
| =kF | == 4
] = 5] o
The Fourier transform of u(x,t) is
1 [ ox
Flu] =U(w,t) = 2—/ u(z, t)e™* dx (50)
™ —0o0

If we are able to find F[u] then the solution u(z,t) is given by the inverse Fourier transform formula
u(z,t) = / Ulw,t)e™ ™7 dw (51)

After replacing (44) and (45) in (49) we obtain an ordinary differential equation for the Fourier transform
U(w,t)

0
&U(w,t) = —kw?U(w, 1) (52)

Therefore, the Fourier transform operation converts a linear PDE with constant coefficients into an ODE!

The general solution of (52) is

U(w,t) = c(w)e*kw% (53)
To determine ¢(w) we use the initial condition (47) and require that U(w, 0) is the Fourier transform of f(z).
Then
1 [ -
c(w) = o /_Oo f(z)e™" dx (54)
After replacing (53) in (51) we obtain the solution wu(z,t)
u(z,t) = / c(w)e‘iwe_k‘”ztdw (55)

which may be written after replacing (54) and rearranging the terms

1 o0 oo 2 . _
u(z,t) = %/ f(@) {/ ek temiw@=) g, | dx (56)

This is the same formula we obtained by using the separation of variables.

Heat equation on semi-infinite intervals

We consider the heat equation on a semi-infinite interval z > 0

ou 0%u
with the initial condition
u(z,0) = f(z), 0 <z < o0 (58)
u(0,t) =0, u(co,t) =0, t>0 (59)

Using separation of variables,

u(x,t) = ¢(x)h(t)

we obtain dh
— = —\kh
dt



and the boundary value problem

d*®
ST\
dx? A
B(0) =0
|®(c0)| < o0

whose eigenvalues are all positive A and the eigenfunctions are
®(z) = esin VAz = esinwz
where w = VA > 0. Therefore, the product solutions are

u(z,t) = Asin wre ket

and using the principle of superposition we obtain
> 2
u(z,t) :/ A(w) sinwze™ " dw (60)
0
To satisfy the initial condition we require
f(z) = / A(w) sinwz dw
0
If we consider the odd extension f(z) of f(z) to —oo < z < co then
f(z) = f(x) :/ F(w)sinwz dw, x>0
0
where F(w) is the Fourier sine transform of f(z)
2 [ . 2 [ .
Flw)=- f@)sinwz dx = — f(x) sinwz dx
™ Jo T Jo

Therefore, A(w) is given by the Fourier sine transform of f(x)

Alw) = 721_/000 f(z)sinwz dx (61)



Fourier sine and cosine transforms of derivatives
We defined the Fourier sine and cosine transforms of a function f(x) as
2 [ .
S[f(x)] == f(x) sinwz dx (62)
T Jo

Clf(z)] = 72T/0°° f(z) coswz dx (63)

For the Fourier sine and cosine transforms of derivatives, assuming that lim,_, f(z) = 0, we have the
following formulas:

¢| L] =210+t (64)

5| %] =-wein (65)
c[Th]--2L w0 +us [ L] - -2 L) - el (66)
s[52] =~ [ L] - Zaro - wrsin (67)

Q: Prove formulas (64-67).

Formulas (66) and (67) suggest the appropriate choice of the Fourier sine/cosine transform when solving
PDEs involving second order derivatives on a semi-infinite interval x > 0. Replace f(x) by u(z,t) in the
formulas above: if u(0,t) is given we will use a Fourier sine transform; if Ou/0x(0,t) is given we will use a
Fourier cosine transform.

Example: Consider the heat equation on 0 < z < oo with nonhomogeneous boundary condition at = 0

du 0%u
2z
5 92 0<z<oo (68)
u(z,0) = f(z), 0<z < o0 (69)
u(0,t) = g(t), u(oo,t) =0, t>0 (70)
We introduce the Fourier sine transform of u(x,t)
2 [ .
U(w,t) = 7/ u(z,t) sinwz dx (71)
T Jo
By applying the Fourier sine transform to equation (68) and using the property (67) we obtain a first order
linear ODE oU )
2
- z — 2
5 k <7ng(t) w U> (72)

We require that U(w,0) must be the Fourier sine transform of u(x,0) = f(x) such that
2 [ .
U(w,0) = ;/ f(z) sinwz dx (73)
0
By solving (72-73) we obtain U(w,t). The solution u(x,t) is given then by the inverse Fourier sine transform

u(z,t) = /OOO U(w,t)sinwx dw (74)



Worked examples using transforms

One-dimensional wave equation on an infinite interval

Consider the one-dimensional wave equation

Pu 0%
ﬁ—Cw, —o<r <o (75)
with the initial conditions
u(z,0) = f(z) (76)
ou
S0 =0 (1)
To solve this problem we consider the Fourier transform
Uet) = o [ u(wterd (78)
wt) =5 - u(z,t)e x
(o, ) = / U (w, £)e="" du (79)

By applying the Fourier transform to equation (75) and using the properties of the transforms of the deriva-
tives we obtain the ODE

with the initial conditions | oo
U(w,0) = Flu(z,0)] = %/ f(x)e™" dx (81)
9 0w, 0)=0 (82)
ot
The general solution of equation (80) is
U(w,t) = A(w) cos cwt + B(w) sin cwt (83)

and from the initial conditions (81-82) we obtain the coefficients

Bw) = 0 (84)

1 e .

Alw) = U(w,0)= %/ f(@)e™ dx (85)

Therefore,
U(w,t) = U(w,0) cos cwt
and from (79) we obtain the solution
u(z,t) = / U(w, 0) cos cwte ™7 dw (86)

To simplify this expression we use Euler’s formula

rcwt + efzcwt

COoS cwt = c
S cwt = 5
such that (86) becomes
1 [ : :
u(z,t) = 5/ U(w,0) [eiW(I*Ct) + eiW(I“ﬂ dw (87)

10



From (81) we have (inverse Fourier transform)

such that (87) becomes
w(z, ) = %[ flo—ct)+ flo+ ct) (88)

which is the same expression we obtained using the method of characteristics.

Laplace’s equation in a semi-infinite strip

Consider the Laplace’s equation in a semi-infinite strip

9%u  O%u

2, _
Vu—@+a—y2—0,0<x<L,y>0 (89)
with the boundary conditions
w(0,y) =g1(y), y >0 (90)
u(L,y) = g2(y), y >0 (91)
u(z,0) = f(z), 0<z <L (92)
In addition we assume that
lim u(z,y) =0, 0<z <L (93)
yHOO

We split this problem into two subproblems that are easier to solve:

u(@,y) = ui(z,y) + u2(z,y) (94)

where u; and ug satisfy the Laplace’s equation (89) and respectively, the boundary conditions

ul(ovy) = gl(y)a ul(Lvy) = 92(y)7 ul(xao) =0, yll)r{.lo U1($,y) =0 (95)
uz(0,y) =0, us(L,y) =0, ua(x,0) = f(x), ylin;o us(z,y) =0 (96)

Zero-temperature sides

Using separation of variables, we search for a solution

uz(v,y) = ®(z)h(y) (97)

After replacing (97) in (89) and using the boundary conditions (95) we obtain

d*®

3 = AP, 2(0) =0, B(L) =0 (98)
d*h
—— =M 99
T (99)

From (98) we obtain the eigenvalues A, = (nmz/L)? and the corresponding eigenfunctions ®,,(z) = sin “7%.

The general solution of (99) is
h(y) = ane_ﬁ"y + bneﬁ"y

11



such that using the principle of superposition

Z an, sin L g=nmy/L 4 Z by, sin Lx enmy/L (100)

n=1 n=1

The boundary condition
lim wg(x,y) =0

Y—00

implies b, =0, n =1,2,.... The nonhomogeneous boundary condition us(x,0) = f(x) implies then

nmwx
E ap Sin ——

such that a,, are the Fourier sine coefficients of f(x)

2 [ m
:Z/o f(x)sin%dm (101)

Therefore, the solution us(z,y) is
> nmwx
y) = Z ay, sin Te_"”y/L (102)
where the coeflicients a,, are evaluated according to (101).
Zero-temperature bottom

To find the solution u(z,y) we introduce the Fourier sine transform in y

ul(x,y):/ Ui (z,w)sinwy dw (103)
0

Ui(z,w) = i/ooo ui(x,y) sinwy dy (104)

Taking the Fourier sine transform with respect to y of the Laplace’s equation and using the properties of
the transforms of the derivatives, we obtain

2

dx?

Now, Ui (z,0) = S[ui(z,0)] = S[0] = 0 such that (105) becomes

2
Ui (z,w) + ;wUl(z,O) — WU (z,w) =0 (105)

2

—U,(z,w) — WUy (z,w) =0 106
0x?

The solution of (106) may be expressed in terms of sinh as
Ui(z,w) = a(w) sinhwx + b(w) sinhw(L — ) (107)

The coefficients a(w) and b(w) are obtained from the boundary conditions

2 [ 2 1 e

U1(0,w) = = /0 91(y) sinwy dy = b(w) sinhwlL = b(w) = N /0 91 (y) sinwy dy
2 [ 2 1 o

U1(L,w) = ;/0 92(y) sinwy dy = a(w) sinhwl = a(w) = T /0 g2(y) sinwy dy

12



This completes the evaluation of the Fourier sine transform U; (z,w) and the solution wuq(z,y) is given by
(103).

Remark: The solution u(zx,y) = ui(x,y) + uz(z,y) of the Laplace’s equation in a semi-infinite strip is the
sum of a solution u;(x,y) obtained using the Fourier sine transform and a solution us(z,y) obtained using

a Fourier sine series.

An alternative approach to obtain the solution w(z,y) is to directly apply the Fourier sine transform in y to
the equation (89) with nonhomogeneous boundary conditions

u(z,y) = / U(z,w)sinwy dw
0

The differential equation for U(x,w) is then nonhomogeneous

ou

2
2
5z Y U:f;wf(x)

and must be solved with two nonhomogeneous boundary conditions at + = 0 and z = L.

Laplace’s equation in a half-plane

We consider the Laplace’s equation in a half-plane

VQuZZiZ—i—gZZ:O, —co< T <00,y>0 (108)
with the boundary conditions
u(z,0) = f(z) (109)
mlirxgo u(z,y) =0 (110)
Tgrfloou(x,y) =0 (111)
ylirxgo u(z,y) =0 (112)

To solve this problem we consider the Fourier transform in z

u(z,y) = /jo Uw,y)e” " dw (113)
U(w,y) = % /_00 u(z,y)e™” da (114)

Taking the Fourier transform in x of the Laplace’s equation (108) we obtain the ODE

02U 9
whose general solution is
U(w,y) = a(w)e®? 4+ b(w)e™ Y (116)

Next we use the boundary conditions to determine a(w) and b(w).

lim u(z,y) =0= lim U(w,y) =0
Y—00

Yy—00

13



such that a(w) =0 if w > 0 and b(w) = 0 if w < 0. Therefore, (116) becomes

Ulony) a(w)e?, w<0
w,y) =
bw)e ™Y, w>0

which may be written in a compact form

Ulw,y) = c(w)e™ v

where ¢(w) = a(w),w < 0 and ¢(w) = b(w),w > 0.
From the boundary condition (109) we have

Ul 0) = F@) = 5 [ S to

such that ¢(w) in (118) must be the Fourier transform of f(z):

= i/ f(z)e™® dx
21 J_ o

The solution u(z,y) is then given by (113) where U(w, y) is evaluated according to (118)-(119).

Q: Using the convolution theorem, show that the solution u(z,y) may be expressed as

/f )erdf

Laplace’s equation in a quarter-plane

To solve the Laplace’s equation in a quarter-plane z > 0,y > 0

?u  0%*u
2
Vu:@—i—az 0, >0,y>0
with the boundary conditions
u(0,y) = g(y), y>0
(.0 = f(a), 2> 0
lim u(x,y) = hm u(z,y) =0

we decompose the problem into two subproblems that are easier to solve:

u(z,y) = w(2,y) + uz(z,y)

where
Viu; =0 VZuy =0

u1(0,y) = g(y) u2(0,9) =0

0 P

@ul(x,O) =0 Fyu2<x70) :f(.T)
lim wuy(z,y) =0 limg o u2(z,y) =0
lim wy(z,y) =0 limy o0 u2(z,y) =0
y—>OO
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The techniques for solving these problems are very similar, and we only indicate how to solve the problem
for uy (z,y). We consider the Fourier cosine transform in y since we have a homogeneous boundary condition

Ouy /0y(x,0) = 0.

u1(x,y):/ Ui (z,w) cos wy dw (125)
0
2 o0
Ur(z,w) = ;/ ui(z, y) coswy dy (126)
0

Taking the Fourier cosine transform in y of the Laplace’s equation for v and using the homogeneous boundary
condition duy/Ay(xz,0) = 0 we obtain the ordinary differential equation

02U,

2 —
81'2 — W U1—0

whose general solution is
Ui(z,w) = a(w)e % + b(w)e*”, > 0,w>0

To determine a(w) and b(w) we use the boundary conditions.

lim ui(z,y) =0= lim Uj(z,w) =0=b(w) =0

Therefore,
Ui(z,w) = a(w)e™™* (127)
02(0.) = Clur (0] = Clo()] = o) = 2 [ gt coseoyy (128)

The solution uq(z,y) is obtained from (125) with U; (z,w) given by (127)-(128).
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