Sexual Reproduction

The Evolution of Sex

Asexual Reproduction
What is Sex?

- **Recombination.**
 - The reshuffling of alleles on a chromosome due to crossing over with homologous chromosomes during meiosis.
 - No recombination during mitosis.

- **Segregation.**
 - The random assortment of one of each pair of chromosomes in gametes.

- **Syngamy**
 - Fusion of gametes from the same or different during fertilization.

- The production of novel genotypes.
Why is Sex Important

- Alleles do not interact in an “additive” manner.
 - Dominance – interaction among alleles at a single locus.
 - Epistasis – interaction among alleles at separate loci.
- Environmental variation.
 - Adaptive landscapes are not stable over time.
Why Sex?

- The cost of sex in dioecious species.
 - 2 X reduction in gene transmission.
- The cost of sex in an hermaphrodite.
 - Include male function.
 - 3/2 X advantage for a gene for apomixis.
- Ecological considerations.
 - Spread of a new mutant conferring asexuality in a population.
- The cost of meiosis.
 - Fitness distributions are leptokurtic.
 - A large proportion of sexually reproduced offspring will have low fitness.
 - Hermaphrodites do not experience the “cost of sex” per se, but are subject to the cost of meiosis – the cost of producing a genetically diverse pool of offspring.
- Sexual reproduction “breaks up” advantageous combinations of alleles.
 - Slows the rate of evolution (Williams 1975)?
- In hermaphrodites, reproductive success is always less consistent for one gender function (i.e., male function).
Why Not Sex?

- Sexual reproduction fuels evolution through the generation of novel allelic combinations.

- Three major advantages to recombination.
 1. Higher rates of recombination speed up evolution.
 - Adaptation to changing environments.
 - Populations never sustain fitness peaks because their position keeps shifting.
 2. Deleterious mutations accumulate in asexual lineages.
 - Recombination exposes mutations to selection.
 3. Novel mutations may confer high levels of fitness only in certain genetic backgrounds.
 - Recombination provides opportunities for “evolutionary experimentation” with new genetic combinations.

- In the evolutionary lottery the dice are loaded.
 - Most genetic combinations are losers, but when there is a rare winner, they really win big.
Does Sex Require Group Selection?

- **Group selection.**
 - Some groups (populations) grow and spread more than others because of an intrinsic group advantage.
 - Sex has a high cost for an individual, but it might help the population produce those few supper-good genotypes.

- **Individual selection.**
 - The tangled bank hypothesis (Ghiselin 1974).
 - In a saturated economy, it pays to diversify.
 - Filling those rare “empty niches.”
 - The red queen hypothesis (Bell 1982).
 - Sex is necessary because the environment is always changing.
Sexual and Asexual Reproduction

- Many plants do both.....
 - The “best of both worlds”?
- Modes of asexual reproduction.
 - Vegetative reproduction
 - High survival rates for offspring.
 - Low dispersal ability.
 - Allows dominance in local habitat.
 - Agamospermy
 - Similar survival to sexual reproduction.
 - High dispersal ability.
 - May land in an “inappropriate” habitat.
Vegetative Reproduction

- **Stolons**
 - Above-ground stems that root at the nodes.

- **Rhizomes**
 - Below-ground stems that grow horizontally and produce new shoots.

- **Tillers**
 - Grass shoots that are produced from the lower stem and roots.

- **Layering**
 - Branches that root as they touch the ground.

- **Bulbs (rosette), tubers (stem), and corms (root)**
 - Underground storage structures that may split to form new shoots.
Asexual Reproduction

Modes of attack:

- Guerilla strategy
 - Longer dispersal in search of local open sites.
 - Asexual seeds, bulbils, or vegetative reproduction with long internodes.

- Phalanx strategy
 - Exclusion of other individuals from the local area.
 - Short dispersal of propagules.
 - Tillers, bulbs, short rhizomes, etc.
Agamospermy (Apomixis)

- Production of fertile seeds in the absence of fertilization.
- At least 400 apomictic taxa.
 - Probably an underestimate.
 - Especially prevalent in the Rosaceae, Asteraceae, and the Poaceae (grasses).
 - Often associated with polyploidy.
- Difficult to detect without careful testing.
 - May require pollination or fusion of pollen nuclei with egg to produce endosperm (pseudogamy).
Mechanisms of Agamospermy

- **Embryos produced by budding.**
 - Adventitious embryony or sporohytic apomixis.
- **No meiosis – unreduced embryo sac.**
 - Gametophytic apomixis.
- **Pseudogamy.**
 - Pollination and maybe fertilization of endosperm required, but the embryo is a direct sporophytic product of the maternal plant.
Why be Apomictic?

- Reliable transmission of fit genotypes to the next generation.
 - No cost of sex or outcrossing.
 - Transmission of two genome copies per seed.
 - No cost of meiosis.
 - No recombination so advantageous genetic combinations are maintained.
- Dispersal ability.
 - Other modes of asexual reproduction have limited dispersal.
- The ultimate guerilla strategy?