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Preface 
 
Computational Econometrics is an emerging field of applied economics which focuses on the 
computational aspects of econometric methodology. To explore an effective and efficient 
approach for econometric computation, GAUSS Programming for Econometricians and 
Financial Analysts (GPE) was originally developed as the outcome of a faculty-student joint 
project. The author developed the econometric program and used it in the classroom. The 
students learned the subject materials and wrote about their experiences in using the program 
and GAUSS. 
 
We know that one of the obstacles in learning econometrics is the need to do computer 
programming. Who really wants to learn a new programming language while at the same time 
struggling with new econometric concepts? This is probably the reason that “easy-to-use” 
packages such as RATS, SHAZAM, EVIEWS, and TSP are often used in teaching and 
research. However, these canned packages are inflexible and do not allow the user sufficient 
freedom in advanced modeling. GPE is an econometrics package running in the GAUSS 
programming environment. You write simple codes in GAUSS to interact with GPE 
econometric procedures. In the process of learning GPE and econometrics, you learn GAUSS 
programming at your own pace and for your future development. 
 
Still, it takes some time to become familiar with GPE, not to mention the GAUSS language. 
The purpose of this GPE project is to provide hands-on lessons with illustrations on using the 
package and GAUSS. GPE was first developed in 1991 and has since undergone several 
updates and revisions. The first version of the project, code-named LSQ, started in the 
summer of 1995 with limited functions of least squares estimation and prediction. This book 
and CDROM represent a major revision of this work in progress, including linear and 
nonlinear regression models, simultaneous linear equation systems, and time series analysis. 
 
Here, in your hands, is the product of GPE. The best way to learn GPE is to read the book, 
type in and run each lesson, and explore the sample programs and output. For your 
convenience, all the lessons and data files are available on the distribution disk.  
 
During several years of teaching econometrics using the GPE package, many students 
contributed to the ideas and codes in GPE. Valuable feedback and suggestions were 
incorporated into developing this book. In particular, the first LSQ version was a joint project 
with Lani Pennington, who gave this project its shape. Special thanks are due to Geri 
Manzano, Jennifer Showcross, Diane Malowney, Trish Atkinson, and Seth Blumsack for their 
efforts in editing and proofreading many draft versions of the manuscript and program 
lessons. As always, I am grateful to my family for their continuing support and understanding. 
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I 
Introduction 
 

GAUSS Programming for Econometricians and Financial Analysts (GPE) is a 
package of econometric procedures written in GAUSS, and this book is about 
GAUSS programming for econometric analysis and applications using GPE. To 
explore the computational aspects of applied econometrics, we adopt the 
programming environment of GAUSS and GPE. 
 
As you probably know, GAUSS is a programming language designed for matrix-
based operations and manipulations, suitable for high level statistical and 
econometric computation. Many universities and research institutions have used 
GAUSS in their econometrics curricula. Unfortunately, GAUSS is not an easy 
language to learn and master, particularly for those without computer programming 
experience. GPE is designed to provide access to the full power of GAUSS without 
the intimidation of learning a new programming language. By using GPE, getting 
acquainted with techniques for econometric analysis as well as the GAUSS 
programming environment is fast and easy. This book was written so that you could 
easily use GAUSS as a tool for econometric applications. 
  
You cannot learn econometrics by just reading your textbook or by just writing 
GAUSS code or programs. You must interact with the computer and textbook by 
working through the examples. That is what this book is all about—learning by 
doing. 
 

Why GAUSS? 

GAUSS is a programming language similar to C or Pascal. GAUSS code works on 
matrices as the basis of a complete programming environment. It is flexible and 
easily applies itself to any kind of matrix-based computation. 
 
GAUSS comes with about 400 intrinsic commands ranging from file input/output 
(I/O) and graphics to high-level matrix operations. There are many GAUSS libraries 
and application packages, which take advantage of these built-in commands and 
procedures for implementing accurate and efficient computations. 
 
The use of libraries and packages hides complex programming details and simplifies 
the interface with a set of extended procedures and control variables. For instance, 
GAUSS supports publication quality graphics by use of a library which extends the 
main system with a set of control variables manipulated on the defined graphic 
procedures. 
 

What is GPE? 

GPE is a GAUSS package for linear and nonlinear regression useful for econometric 
analysis and applications. GPE contains many econometric procedures controllable 
by a few groups of global variables. It covers most basic econometric computations 
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including single linear equation estimation and prediction, systems of simultaneous 
linear equations, nonlinear models, and time series analysis. 
 
However, beyond econometric computation, GPE does not provide a user interface 
for data input and output nor are there any procedures for data transformation. Both 
of these operations and other related topics, which build the interaction between GPE 
and the GAUSS programming environment, will be discussed in the next chapter on 
GAUSS Basics. Using the GPE package in a GAUSS environment is first introduced 
in Chapter III on linear least squares estimation and is the foundation of the rest of 
the book. 
 

Using GPE 

This book and CDROM were developed based on the latest version of GAUSS for 
Windows1. Before using the GPE package, it must be properly installed with your 
GAUSS program. Install GPE according to the instructions given with the 
distribution CD. Make sure that the version number of GPE matches with that of 
your GAUSS program.2 
 
Following the completion of GPE installation, the compiled GPE program named 
GPE2.GCG should reside in the GAUSS directory. GPE2.GCG is a compiled 
GAUSS program. It is an encoded binary file, which requires the correct version of 
GAUSS. In addition, a GPE subdirectory is created and stores all the lesson 
programs and data files. GPE is the working directory for all the empirical lessons. 
By going through this book lesson by lesson, program files may be overwritten and 
additional output files are generated. If you want a fresh start, just reinstall the GPE 
package. 
 
All the GPE lesson programs are written with direct reference to the GPE 
subdirectory created during installation. Using the default GPE subdirectory is 
convenient because all the lesson programs and data files are already there for you to 
explore. Alternately, you may want to use a working diskette for the practice of 
creating each lesson. If you don’t mind typing, using a working diskette is not only 
portable but also a true hands-on experience. You need only to change the references 
of the GPE subdirectory in each lesson program to the floppy drive your working 
diskette resides on (a: is assumed). That is, in the beginning of each lesson program, 
replace gpe\ with a:\. You may also need to copy the required data files to the 
working diskette. A working diskette is recommended especially if you are using 
GAUSS in a laboratory environment.  
 
It is important to recognize that this book is not a GAUSS how-to manual or program 
documentation, for which you are advised to consult GAUSS for Windows User 
Guide and GAUSS Language References supplied from Aptech Systems. Also, this is 
not a book on econometrics, although many fundamental formulas for econometric 
computation are introduced in order to use the implemented algorithms and routines. 
There are many textbooks on econometrics that describe the technical details. Rather, 
this is a book on computational aspects of implementing econometric methods. We 
provide step by step instruction using GPE and GAUSS, complete with explanations 
and sample program codes. GAUSS program codes are given in small chunks in a 
piece-meal construction. Each chunk, or lesson, offers hands-on practice for 

                                                           
1 This writing is based on GAUSS for Windows version 5.0. 
2 GPE is also available for earlier versions of GAUSS.  
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economic data analysis and econometric applications. Most examples can be used on 
different computer platforms without modification.  
 

Conventions Used in this Book 

To distinguish our explanations from your typing, as seen on your video display, all 
program code and output are in the monospace font Courier. For reference 
purposes, each line of program code is numbered. Menu items in the Windows 
interface, directory paths, file names, and key-stroke combinations are in bold. In 
addition, the following icons are used to designate special information: 
 

 

Extra notes and additional information are given here. 

 

 

This warns of common mistakes causing programming errors. 

 

 

Hints or remarks specific to GAUSS and GPE.3 

 
 A number of abbreviations for statistical and econometric terms are used in this text. 

Although all are defined upon their first appearance, we provide a list of these 
abbreviations below for reference purposes: 

 
2SLS  Two-stage least squares  
3SLS  Three-stage least squares  
ACF  Autocorrelation function  
ADF  Augmented Dickey-Fuller test 
AIC  Akaike Information Criterion  
AOV  Analysis of Variance  
ARCH  Autoregressive conditional heteroscedasticity  
ARDL  Autoregressive distributed lag  
ARMA Autoregressive moving average  
BFGS  Broyden-Fletcher-Goldfarb-Shanno quasi-Newton optimization method  
BHHH  Berndt-Hall-Hall-Hausman maximum likelihood estimation method 
BIC  Schwartz Baysian Information Criterion   
DF  Dickey-Fuller test  
DGP  Data generating process  
FIML  Full information maximum likelihood  
GARCH  Generalized autoregressive conditional heteroscedasticity  
GMM  Generalized method of moments  
IV  Instrumental variable estimation  
LIML  Limited information maximum likelihood  
LM  Lagrangian multiplier  
LR  Likelihood Ratio 
ML  Maximum likelihood  
OLS  Ordinary least squares  
PACF  Partial autocorrelation function  

                                                           
3 We thank Aptech Systems for permission to use their GAUSS 3.2 “hammer on numbers” 
icon. 
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QHC  Quadratic hill-climbing optimization method  
RSS  Residual sum-of-squares  
SUR  Seemingly unrelated regressions  
VAR Vector autoregression 
VIF  Variance Inflation Factors 



 

 

II 
 GAUSS Basics 
 

GAUSS is a high-level computer language suitable for mathematical and matrix-
oriented problem solving. It can be used to solve any kind of mathematical, 
statistical, or econometric model. Since GAUSS is a computer language, it is 
flexible. But it is also more difficult to learn than most canned (prewritten) 
econometric programs such as EVIEWS, SHAZAM, and TSP.  
 
In this chapter we begin with the basics of starting GAUSS for Windows. After 
learning how to get in and out of GAUSS, we discuss much of the GAUSS language. 
At the end of the chapter, we introduce the GPE (GAUSS Programming for 
Econometricians and Financial Analysts) package and briefly describe its capacity 
for econometric analysis and applications. 
 

Getting Started 

Start GAUSS for Windows in one of the following ways: 
 
• Click the short-cut (an icon with GAUSS logo) on the desktop. 
• From Start button at the lower left corner, from Programs menu, select and run 

GAUSS. 
• Use Windows Explorer or File Manager to locate the GAUSS directory4 and 

execute the file GAUSS.EXE. 
 
To quit and exit GAUSS for Windows, do either one of the following: 
 
• Click and select File/Exit from the menu bar. 
• Click on the “close” button (the box with the “X”) in the upper right-hand corner 

of the GAUSS main window. 
 

Windows Interface 

If you are new to the GAUSS programming environment, you need to spend some 
time to familiarize yourself with the GAUSS Windows interface. A good reference is 
GAUSS for Windows User Guide. Or, from the menu bar go to Help/Contents to 
learn about GAUSS and its Windows interface. Understanding the working function 
of each button on the menu bar, toolbar (below the menu bar), and status bar (bottom 
bar of the main window) is the crucial beginning of GAUSS programming.  
 
Briefly, GAUSS for Windows runs in two modes: Command and Edit. Each mode 
has its own window. The Command Input-Output window (or Command mode) is 

                                                           
4 GAUSS directory refers to the directory in which you have successfully installed the 
GAUSS program in your computer. Assuming C: is your boot drive, by default installation, 
the GAUSS directory may be C:\GAUSS, C:\GAUSS50 (for Version 5.0), or C:\GAUSSLT 
(for Light Version 5.0). In the following, we refer to C:\GAUSS as the GAUSS directory. 
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for running single-line commands or program files. It is more commonly referred as 
the interactive mode. The Edit window (or Edit mode) is for modifying or editing 
program and data files. A file is created from the menu bar File/New. An existing 
file can be open and edited from the menu bar File/Open. There is only one 
Command Input-Output window, but you can open as many as Edit windows as 
needed for the program, data, output, etc. The title of each Edit window consists of 
the directory path and file name to indicate where the contents came from. From the 
Run button on the menu bar, a program file is executed either from Run Main File 
or Run Active File. Your program output can be displayed either in the Command 
Input-Output window or in a separate Output window (if Window/Output Window 
is selected from the menu bar). The ability to work simultaneously with multiple 
program and data files in GAUSS allows straightforward monitoring of project 
development. Screen displays of GAUSS Command and Edit Windows look like the 
following (your screen may be slightly different because of differences in the 
configuration setup of the Windows environment you use): 
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You may want to configure the programming environment to fit your taste as 
desired. This is done from the menu bar button Configure in which you can change 
the program setup and window properties. In the GAUSS programming 
environment, you can also trace and debug a program file in the Debug window. 
This is more suited for a programmer in developing a large program, which we will 
not cover in this book. 
 

An Introduction to GAUSS Language5 

The rest of this chapter covers the basics of GAUSS language. It is written for 
anyone who has no prior or only limited computer programming knowledge. Only 
the basics of GAUSS programming are introduced, followed by discussions of more 
advanced topics useful for econometric analysis. We aspire to promote a reasonable 
proficiency in reading and understanding procedures that we will write in the 
GAUSS language. If you are in a hurry to use the econometric package GPE for the 
project at hand, you can skip the rest of this chapter and go directly to the next 
chapter on linear regression models and least squares estimation. However, we 
recommend that later, at your leisure, you come back for a thorough overview of the 
GAUSS language. 
 
We have seen that GAUSS commands are either written in the Command or Edit 
mode. Command mode executes each line of code as it is written. Simple GAUSS 
commands can be typed and executed (by pressing the carriage return or Enter key) 

                                                           
5 This session is written based on introductory materials for MathWorks’ MATLAB prepared 
by William F. Sharpe for his finance course at Stanford (http://www.stanford.edu/~wfsharpe/ 
mia/mat/mia_mat3.htm). We thank Professor Sharpe for his helpful comments and 
suggestions. Both GAUSS and MATLAB are matrix programming languages, and they are 
syntactically similar. 
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line by line at the “>>” prompt in the Command window. In the beginning, to 
introduce the basic commands and statements of GAUSS, we shall stay in the 
Command Input-Output window and use the Command or interactive mode. If the 
Output window is open, close it. 
 

Matrices as Fundamental Objects  

GAUSS is one of a few languages in which each variable is a matrix (broadly 
constructed), and the language knows what the contents are and how big it is. 
Moreover, the fundamental operators (e.g. addition, multiplication) are programmed 
to deal with matrices when required. The GAUSS environment handles much of the 
bothersome housekeeping that makes all this possible. Since so many of the 
procedures required for economic and econometric computing involve matrices, 
GAUSS proves to be an extremely efficient language for implementation and 
computation.  
 
First of all, each line of GAUSS code must end with a semi-colon (;). 
 
Consider the following GAUSS expression:  
 
C = A + B;  
 

If both A and B are scalars (1 by 1 matrices), C will be a scalar equal to their sum. If 
A and B are row vectors of identical length, C will be a row vector of the same 
length. Each element of C will be equal to the sum of the corresponding elements of 
A and B. Finally, if A and B are, say, 3×4 matrices, C will also be a 3×4 matrix, with 
each element equal to the sum of the corresponding elements of A and B.  
 
In short the symbol “+” means “perform a matrix addition.” But what if A and B are 
of incompatible sizes? Not surprisingly, GAUSS will complain with a statement such 
as:  
 

(0) : error G0036 : matrices are not conformable 
 
So the symbol “+” means “perform a matrix addition if you can and let me know if 
you can’t.” Similar rules and interpretation apply to matrix operations such as “-” 
(subtraction) and “*” (multiplication).  
 

Assignment Statements 

GAUSS uses a pattern common in many programming languages for assigning the 
value of an expression to a variable. The variable name is placed on the left of an 
equal sign and the expression on the right. The expression is evaluated and the result 
assigned to the variable. In GAUSS, there is no need to declare a variable before 
assigning a value to it. If a variable has previously been assigned a value, a number, 
or a string, the new value overrides the predecessor. Thus if A and B are of size 
20×30, the statement:  
 
C = A + B;  
 

creates a variable named C that is also 20×30 and fills it with the appropriate values 
obtained by adding the corresponding elements in A and B. If C already existed and 
was, say, 20×15 it would be replaced with the new 20×30 matrix. Therefore, matrix 
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variables in GAUSS are not fixed in size. In GAUSS, unlike some languages, there is 
no need to pre-dimension or re-dimension variables. It all happens without any 
explicit action on the part of the user.  
 

Variable Names 

The GAUSS environment is case insensitive. Typing variable names in uppercase, 
lowercase, or a combination of both does not matter. That is, GAUSS does not 
distinguish between uppercase and lowercase except inside double quotes. A variable 
name can have up to 32 characters, including letters, numbers and underscores. The 
first character must be alphabetic or an underscore. Therefore the variable 
PersonalDisposableIncome is the same as personaldisposableincome. 
While it is tempting to use long names for easy reading, small typing errors can mess 
up your programs. If you do mistype a variable name, you may get lucky (e.g. the 
system will complain that you have asked for the value of an undefined variable) or 
you may not (e.g. you will assign the new value to a newly created variable instead 
of the old one desired). In programming languages there are always tradeoffs. You 
don’t have to declare variables in advance in GAUSS. This avoids a great deal of 
effort, but it allows for the possibility that nasty and difficult-to-detect errors may 
creep into your programs. 
 

Showing Values 

If at any time you wish to see the contents of a variable, just type its name. GAUSS 
will do its best, although the result may extend beyond the Command or Output 
window if the variable is a large matrix (remember that you can always resize the 
window). If the variable, say x, is not defined or has not previously been given a 
value, a message such as:  
 

Undefined symbols: 
    x                            (0) 

 
will appear.  
 
GAUSS will not show you the result of an assignment statement unless you 
specifically request for it. Thus if you type:  
 
C = A + B;  
 

No values will be shown although C is now assigned with values of the sum of A and 
B. But, if you type:  
 
C;  
 
or, equivalently (though verbosely):  
 
print C;  
 

GAUSS will show you the value of C. It may be a bit daunting if C is, say, a 20 by 30 
matrix. If the variable C is not of interest, and what you want to see is the result of A 
plus B, simply type:  
 
A + B;  
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That is, if an expression has no assignment operator (=), it will be assumed to be an 
implicit print statement. Note that the value shown will be represented in 
accordance with the format specified. If there is no explicit format used, by default 
GAUSS will show the numeric value in 16 fields with 8 digits of precision.  
 

Initializing Matrices 

If a matrix is small enough, one can provide initial values by simply typing them in 
the Command window. For example:  
 
a = 3; 
b = {1 2 3}; 
c = {4, 5, 6}; 
d = {1 2 3, 4 5 6};  
 

Here, a is a scalar, b is a 1×3 row vector, c a 3×1 column vector, and d is a 2×3 
matrix. Thus, typing  
 
d;  
 
produces:  
 

       1.0000000        2.0000000        3.0000000  
       4.0000000        5.0000000        6.0000000  

 
The system for indicating matrix contents is very simple. Values separated by spaces 
belong on the same row; those separated by commas are on separate rows. All values 
are enclosed in brace brackets.  

 

 

The alternative to creating a matrix using constants is to use the GAUSS built-in 
command let. If dimensions are given, a matrix of that size is created. The 
following statement creates a 2×3 matrix: 
 
let d[2,3] = 1 2 3 4 5 6; 
 

Note that dimensions of d are enclosed in square brackets, not curly brace 
brackets. If dimensions are not given, a column vector is created: 
 
let d = 1 2 3 4 5 6; 
 

If curly braces are used, the let is optional. That is, the following two 
expressions will create the same matrix d: 
 
let d = {1 2 3, 4 5 6}; 
d = {1 2 3, 4 5 6}; 
 

Making Matrices from Matrices 

The general scheme for initializing matrices can be extended to combine or 
concatenate matrices. For example, 
 
a = {1 2}; 
b = {3 4}; 
c = a~b; 
print c;  
 
gives a row vector:  
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       1.0000000        2.0000000        3.0000000        4.0000000 
 
While 
 
a = {1 2 3}; 
b = {4 5 6}; 
d = a|b; 
print d;  
 

gives a 2×3 matrix:  
 

       1.0000000        2.0000000        3.0000000 
       4.0000000        5.0000000        6.0000000 

 
Matrices can easily be pasted together in this manner, a process that is both simple 
and easily understood by anyone reading a procedure. Of course, the sizes of the 
matrices must be compatible. If they are not, GAUSS will tell you.  

 

 

Note that by putting variables in brace brackets such as:  
 
c = {a b};  
 
or  
 
d = {a,b};  
 
will not work. It produces a syntax error message. 
 

Using Portions of Matrices 

Frequently one wishes to reference only a portion of a matrix. GAUSS provides 
simple and powerful ways to do so. To reference a part of a matrix, give the matrix 
name followed by square brackets with expressions indicating the portion desired. 
The simplest case arises when only one element is wanted. For example, using 
matrix d in the previous section, 
 
d[1,2];  
 
equals:  
 

       2.0000000 
 
While 
 
d[2,1];  
 
equals:  
 

       4.0000000 
 
In every case the first bracketed expression indicates the desired row (or rows), while 
the second expression indicates the desired column (or columns). If a matrix is a 
vector, a single expression may be given to indicate the desired element, but it is 
often wise to give both row and column information explicitly.  
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The real power of GAUSS comes into play when more than a single element of a 
matrix is wanted. To indicate “all the rows” use a dot for the first expression. To 
indicate “all the columns,” use a dot for the second expression. Thus, 
 
d[1,.];  
 
equals:  
 

       1.0000000        2.0000000        3.0000000 
 
That is, d[1,.] yields a matrix containing the entire first row of d. While, 
 
d[.,2];  
 
equals:  
 

       2.0000000 
       5.0000000 

 
That is, d[.,2] yields a matrix containing the entire second column of d. In fact, 
you may use any expression in this manner as long as it includes a valid row or 
column numbers. For example, 
 
d[2,2:3];  
 
equals: 
  

       5.0000000        6.0000000   
 
And 
 
d[2,3:2];  
 
equals: 
  

       6.0000000        5.0000000   
 
Variables may also be used as subscripts. Thus, 
 
z = {2,3}; 
d[2,z];  
 
equals: 
  

       5.0000000        6.0000000   
 
Another useful example is 
 
d[1:2, 2:3];  
which equals:  
 

       2.0000000        3.0000000  
       5.0000000        6.0000000    

 
This is the same as  
 
d[.,2:3];  
 
Try the following:  
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d[.,1 3]; 
 

Recall that “.” is a wildcard symbol and may be used when indexing a matrix, rows, 
or columns, to mean “any and all.” 
 

Text Strings 

GAUSS is wonderful with numbers. It deals with text too, but one can tell that its 
heart isn’t in it.  
 
A variable in GAUSS is one of two types: numeric or string. A string is like any 
other variable, except the elements in it are interpreted as ASCII numbers. Thus the 
number 32 represents a space, and the number 65 a capital A, etc. To create a string 
variable, enclose a string of characters in double quotation marks. Thus:  
 
stg = "This is a string"; 
 

The variable named stg is assigned a string of characters: “This is a string.” Since a 
string variable is in fact a row vector of numbers, it is possible to create a list of 
strings by creating a matrix in which each row or column is a separate string. As with 
all standard matrices, each element of a string matrix can only have up to 8 
characters long, which is exactly the 32-bit size number can hold. To print a string 
matrix, the variable must be prefixed with a dollar sign ($). Thus the statement 
 
x = {"ab", "cd"}; 
print $x;  
 
produces:  
 

       ab 
       cd 

 
While 
 
x = {"ab" "cd"}; 
print $x;  
 
produces:  
 

       ab               cd  
 
as always.  
 

 

To see the importance of including the dollar sign in front of a variable, type: 
 
print x; 
 
and see what GAUSS gives you. 
 

Matrix and Array Operations 

The term “matrix operation” is used to refer to standard procedures such as matrix 
multiplication, while the term “array operation” is reserved for element-by-element 
computations.  
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Matrix Operations 

Matrix transposition is as easy as adding a prime (apostrophe) to the name of the 
matrix. Thus 
 
x = {1 2 3}; 
print x';  
 
produces:  
 

       1.0000000    
       2.0000000 
       3.0000000 

 
To add two matrices of the same size, use the plus (+) sign. To subtract one matrix 
from another of the same size, use a minus (-) sign. If a matrix needs to be “turned 
around” to conform, use its transpose. Thus, if A is 3×4 and B is 4×3, the statement 
 
C = A + B;  
 
results in the message:  
 

(0) : error G0036 : matrices are not conformable 
 
While 
 
C = A + B';  
 

will get you a new 3×4 matrix C.  
 
In GAUSS, there are some cases in which addition or subtraction works when the 
matrices are of different sizes. If one is a scalar, it is added to or subtracted from all 
the elements in the other. If one is a row vector and its size matches with the number 
of columns in the other matrix, this row vector is swept down to add or subtract the 
corresponding row elements of the matrix. Similarly, if one is a column vector and 
its size matches with the number of rows in the other matrix, this column vector is 
swept across to add or subtract the corresponding column elements of the matrix. 
For instance, 
 
x = {1 2 3}; 
y = {1 2 3, 4 5 6, 7 8 9}; 
x + y; 
 
produces 
 

       2.0000000        4.0000000        6.0000000  
       5.0000000        7.0000000        9.0000000  
       8.0000000        10.000000        12.000000 

 
While, 
 
x' + y; 
 
produces 
 

       2.0000000        3.0000000        4.0000000  
       6.0000000        7.0000000        8.0000000  
       10.000000        11.000000        12.000000 
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These situations are what we call “array operation” or element-by-element 
compatibility to be discussed below. GAUSS does not make syntactical distinction 
between matrix addition (subtraction) and array addition (subtraction).  
 
Matrix multiplication is indicated by an asterisk (*), commonly regarded in 
programming languages as a “times sign.” The usual rules of matrix multiplication 
from linear algebra apply: the inner dimensions of the two matrices being multiplied 
must be the same. If they are not, you will be told so. The one allowed exception is 
the case in which one of the matrices is a scalar and one is not. In this instance, every 
element of the non-scalar matrix is multiplied by the scalar, resulting in a new matrix 
of the same size as the non-scalar matrix.  
 
GAUSS provides two notations for matrix division which provide rapid solutions to 
simultaneous equation or linear regression problems. They are better discussed in the 
context of such problems later.  
 

Array Operations 

To indicate an array (element-by-element) multiplication, precede a standard 
operator with a period (dot). Thus, 
 
x = {1 2 3}; 
y = {4 5 6}; 
x.*y;  
 
produces: 
 

       4.0000000        10.000000        18.000000 
 
which is the “dot product” of two row vectors x and y.  
 
You may divide all the elements in one matrix by the corresponding elements in 
another, producing a matrix of the same size, as in:  
 
C = A ./ B;  
 
In each case, one of the operands may be a scalar or the matrices must be element-
by-element compatible. This proves handy when you wish to raise all the elements in 
a matrix to a power. For example:  
 
x = {1 2 3}; 
x.^2;  
 
produces  
 

       1.0000000        4.0000000        9.0000000 
 
GAUSS array operations include multiplication (.*), division (./) and 
exponentiation (.^). Since the operation of exponentiation is obviously element-by-
element, the notation “.^” is the same as “^”. Array addition and subtraction are 
discussed earlier using the same matrix operators “+” and “-”.  
 

Logical and Relational Operations on Matrices 

GAUSS offers six relational operators:  
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• LT or < Less than 

 
• LE or <= Less than or equal to 

 
• GT or > Greater than 

 
• GE or >= Greater than or equal to 

 
• EQ or ==  Equal 

 
• NE or /= Not equal 

 
 
Note carefully the difference between the double equality and the single equality. 
Thus A==B should be read “A is equal to B,” while A=B should be read “A is 
assigned the value of B.” The former is a logical relation, the latter an assignment 
statement. For comparisons between character data and comparisons between strings, 
these operators should be preceded by a dollar sign ($).  
 
Whenever GAUSS encounters a relational operator, it produces a one (1) if the 
expression is true and a zero (0) if the expression is false. Thus the statement, 
 
x = 1 < 3;  
print x; 
 
produces:  
 

       1.0000000  
 
While 
 
x = 1 > 3; 
print x; 
produces:  
 

       0.0000000  
 
Relational operators can be used on element-by-element compatible matrices. For 
element-by-element comparisons of two matrices, the relational operator is preceded 
by a dot (.). If the relational operator is not preceded by a dot (.), then the result is 
always a scalar 1 (true) or 0 (false), based upon a comparison of all elements in the 
two matrices. If the relational operator is preceded by a dot (.), then the operation is 
performed element-by-element, resulting a matrix with ones in positions for which 
the relation is true and zeros in positions for which the relation is false. Thus, for 
example:  
 
A = {1 2, 3 4}; 
A > 2;  
 
produces:  
 

       0.0000000  
 
This is because there is at least one element of A that is not greater than 2. While  
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A .> 2;  
 
produces:  
 

       0.0000000        0.0000000  
       1.0000000        1.0000000    

 
Similarly,  
 
A = {1 2, 3 4}; 
B = {3 1, 2 2}; 
A > B;  
 
produces:  
 

       0.0000000  
 
While 
 
A .> B;  
 
produces:  
 

       0.0000000        1.0000000  
       1.0000000        1.0000000 

 
You may also use logical operators of which we will only mention the frequently 
used ones in passing:  
 
• not  
• and  
• or  
 
If the logical operator is preceded by a dot (.), the result will be a matrix of 1’s and 
0’s based on an element-by-element logical comparison of two matrices. Each 
operator works with matrices on an element-by-element basis and conforms to the 
ordinary rules of logic, treating any non-zero element as true and a zero element as 
false.  
 
Relational and logical operators are used frequently with if statements (described 
below) and scalar variables, as in more mundane programming languages. But the 
ability to use them with matrices offers major advantages in statistical and 
econometric applications.  
 

Creating and Editing a GAUSS Program 

So far, we have seen the working of GAUSS in the Command mode. That is, at the 
“>>” prompt in the Command Input-Output window, you enter a statement and press 
the carriage return (the Enter key) and the statement is immediately executed. Multi-
line commands can be entered by pressing CTRL Enter at the end of each line.  
Then at the end of the final line in a multi-line command, press Enter. GAUSS 
remembers all the variable names and their assigned values. Upon the execution of a 
statement, the available result is displayed in the Command window (or in the 
Output window if it is open). Given the power that can be packed into one GAUSS 
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statement, this is no small accomplishment. However, for many purposes it is 
desirable to store a set of GAUSS statements for use when needed. The simplest 
form of this approach is the creation and modification of a program file: a set of 
commands in a file. You need to get to the Edit mode to create and edit the file. Once 
such a file exists in the current directory, you can simply load and run the program 
file. The statements stored in the file will then be executed, with the results 
displayed. 
 
GAUSS for Windows provides a consistent and convenient window interface for 
program development. From the menu bar File/New (or by clicking on the blank 
page icon from the toolbar), you can open a blank Edit window to create a file from 
scratch. If the file exists, from the menu bar File/Open (or by clicking on the open 
folder icon from the toolbar), then select the name of the file to load its contents into 
the Edit window. You can also open a file in the Edit window by typing the file 
name in the Command window, including the directory in which the file is stored. 
This Edit window will then “pop up” and layer over the Command window. Note 
that the title of the Edit window is the name of the file you open for editing. After 
editing, selecting Run Active File from the Run menu button saves and runs the 
program file, with outputs shown in the Command or Output window. If you are not 
running the program file after editing, do not forget to save it.  
 
A group of program and data files may be involved in a project. They can be created, 
loaded, and edited each in their separate Edit windows. GAUSS keeps track of two 
types of files: an active file and a main file. The active file is the file that is currently 
displayed (in the front highlighted Edit windows). The main file is the file that is 
executed to run the current job or project. An active program file can be executed, 
and put in the main file list (that is, in the pull-down menu on the toolbar). The main 
file list contains the program files you have been running (the results of which appear 
in the Command window or in the Output window). Any files on the main file list 
can be selected, edited, and executed repeatedly. The list of main files may be 
retained or cleared anytime as you wish. 
 
Many Edit/Run cycles are involved in the writing and testing of a GAUSS program. 
The convention adopted in this book is that all example lessons (with only a few 
exceptions such as the first one below) will be set up to have two files. The first 
(program) file contains the GAUSS code, and the second (output) file will contain all 
output from running the program in the first file. You will see not only the results in 
the Command or Output window, but also the output is stored in a file you specified. 
The benefit of using Edit mode is the ability to have a record of each line of code. 
This is especially helpful when troubleshooting a long or complicated program. 
 

Lesson 2.1 Let’s Begin 

To get into the Edit mode, from the menu bar, select File/Open. Find and select the 
file named lesson2.1 in the GPE subdirectory.  
 

 
Alternatively, a file can be opened from the Command window by typing the file 
name at the “>>” prompt: 
 
edit gpe\lesson2.1; 
 
Press Enter key to load gpe\lesson2.1 into the Edit window.  
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You are now ready for program editing. The full path of file name 
c:\gauss\gpe\lesson2.1 (or something like that depending on your GAUSS 
installation) shows up as the title of the Edit window. lesson2.1 is just the name of 
the program file for the following exercise. GAUSS will create a file named 
lesson2.1 in the c:\gauss\gpe directory if it does not already exist. If a file named 
lesson2.1 does exist, GAUSS will simply bring the file to the Edit window. When 
working on your own project, you should use the name of your file. 
 
The purpose of this lesson is to demonstrate some basic matrix and array operations 
in the GAUSS language we have learned so far and to familiarize you with the 
Edit/Run dual mode operation of GAUSS. If you are typing the following lesson for 
practice, do not type the line number in front of each line of code. The numbering 
system is for reference and discussion only. 

 
 
 
 

1 
 
 

2 
3 
4 
5 
6 
7 
8 
9 

/* 
** Lesson 2.1: Let’s Begin 
*/ 
A = {1 2 3, 
     0 1 4, 
     0 0 1}; 
C = {2,7,1}; 
print"Matrix A" A; 
print; 
print "Matrix C" c; 
print "A*C" a*c; 
print "A.*C" a.*c; 
print "A.*C'" a.*c'; 
end; 

 
From the menu bar, click on the Run button and select Run Active File. This will 
save and run the program. The name of the program file lesson2.1 appears in the 
main file list located on the toolbar as a pull-down menu item. As of now, lesson2.1 
is the active file. You can run, edit, compile, and debug the main file all by clicking 
on the four buttons next to the main file list.  
 
Each line of code must end with a semi-colon (;). In line 1, we have typed in the 
numbers in matrix form to be easier to read. Spaces separate columns while commas 
separate rows. Carriage return is not seen by GAUSS. That is, 
 
A = {1 2 3, 0 1 4, 0 0 1}; 
 
is read by GAUSS in the same way as 
 
A = {1 2 3, 
     0 1 4, 
     0 0 1}; 
 

The GAUSS command, print, is used to print output to the screen. You may have 
wondered about the extra print statement in line 4. This creates an empty line 
between matrix A and matrix C, making the output easier to read. The rest of 
lesson2.1 demonstrates the difference between matrix multiplication (*) and 
element-by-element array multiplication (.*) with matrices. In addition, the use of 
matrix transpose notation (') is demonstrated. 
 
After running lesson2.1, the following output should be displayed: 
 

Matrix A 
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       1.00000000        2.0000000        3.0000000  
       0.00000000        1.0000000        4.0000000  
       0.00000000        0.0000000        1.0000000  
 
Matrix C 
       2.0000000  
       7.0000000  
       1.0000000  
A*C 
       19.000000  
       11.000000  
       1.0000000  
A.*C 
       2.0000000        4.0000000        6.0000000  
       0.00000000       7.0000000        28.000000  
       0.00000000      0.00000000        1.0000000 
A.*C' 
       2.0000000       14.0000000        3.0000000  
       0.00000000       7.0000000        4.0000000  
       0.00000000      0.00000000        1.0000000 

 
Notice that matrix multiplication requires that the number of columns in the first 
matrix equals the number of rows in the second matrix. Element-by-element array 
multiplication requires that both matrices have the same number of rows or columns. 
It “sweeps across” each row, multiplying every element of matrix A by the 
corresponding element in matrix C (line 7). Element-by-element array multiplication 
is “swept down” each column if C is transposed first (C') into a horizontal row 
vector as shown in line 8. 
 

Programming Tips 

Just a few comments on programming in general. Professional programmers judge 
their work by two criteria: Does it do what it is supposed to? Is it efficient? We 
would like to add a third criterion: Will you be able to understand what your program 
is supposed to be doing six months from now? Adding a blank line between sections 
in your program will not affect how it runs, but it will make reading your program 
easier. Describing the function of each section within comment symbols will benefit 
you not only in troubleshooting now, but also in understanding your program in the 
future. To do so in GAUSS, put the comment statement between a pair of “at” (@) 
signs or in between “/*” and “*/” symbols. Notice that the “*” is always adjacent 
to the comment text. Everything between the sets of “@” signs or between “/*” and 
“*/” symbols will be ignored by GAUSS. Comments can extend more than one line 
as desired. The difference between these two kinds of comments is shown in the 
following:  
 
/* This kind of  
      /* comment */  
           can be nested */ 
@ This kind of comment cannot be nested @ 
 
Another important programming style observed throughout this book is that we will 
keep each program small. Break down your problem into smaller tasks, and write 
sub-programs for each task in separate blocks of a larger program or in separate 
programs. Avoid long lines of coding. Write clear and readable code. Use indention 
where applicable. Remember that programming is very fluid, and there are always 
multiple routes to achieve any desired task. 
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File I/O and Data Transformation 

File input and output operations (I/O) and data transformation in a GAUSS 
programming environment are important prerequisites for econometric modeling and 
statistical analysis. The file I/O chapter of GAUSS for Windows User Guide (see also 
the on-line help from menu bar Help/Contents) describes various types of file 
formats available in the GAUSS programming environment.  
 
Most useful programs need to communicate and interact with peripheral devices such 
as a file storage device, console display, printer, etc. A typical GAUSS program will 
read input data from the keyboard or a file, perform the computation, show results on 
the screen, and send outputs to a printer or store in a file. 
 
GAUSS can handle at least three kinds of data formats: GAUSS data sets, GAUSS 
matrix files, and text (or ASCII) files. The first two data file formats are unique and 
efficient in GAUSS. For file transfer (import and export) between GAUSS and other 
application software or across platforms, the text file format is preferred. Although 
we do not limit the use of any particular file format, we focus here on text-formatted 
file input and output. For the use of data set and matrix files, see GAUSS Language 
References or on-line help from menu bar Help/References for more information.  
 

Data Input 

The most straightforward way to get information into GAUSS is to type it in the 
Command window as we have been doing in the first part of this chapter. This 
approach is useful for a small amount of data input. For example:  
 
prices = {12.50  37.875  12.25}; 
assets = {"cash", "bonds", "stocks"}; 
holdings = {100 200, 
            300 400,  
            500 600}; 
 
For long series of data, it is recommended that your create a text file for the data 
series using the GAUSS editor. That is, create the file and type the data in the Edit 
window. Such a file should have numeric ASCII text characters, with each element 
in a row separated from its neighbor with a space and each row on a separate line.  
 
Now, we will introduce a text data file named longley.txt which comes with the GPE 
package. If you installed GAUSS and GPE correctly, this data file should be located 
in the GPE subdirectory of the GAUSS directory. The easiest way to bring it into the 
Edit window is to click on the menu bar button File/Open and select the file name 
longley.txt located in the GPE directory.  
 

 
The alternative is typing the following in the Command window at the “>>” 
prompt: 
 
edit gpe\longley.txt; 
 
and pressing Enter key. 
 
The data matrix is arranged in seventeen rows and seven columns, and there are no 
missing values. The first row contains only variable names, so it must not be 
included in statistical operations. Each variable name is short, no longer than four 
characters in this case. All values, except the first two columns (YEAR and PGNP), 
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are too large to handle easily. Scaling these variables may make interpreting the 
resulting data easier. The bottom of the file contains the data source and description 
for reference purposes. Of course, the descriptive information should not be included 
for statistical analysis. 
 
To load the data into GAUSS, the following statement:  
 
load data[17,7] = gpe\longley.txt; 
 

will create a matrix named data containing the data matrix.  
 

 

Alternatively, it can be re-coded as the following two lines using GAUSS command 
reshape to form the desired 17×7 matrix: 
 
load data[]=gpe\longley.txt; 
data=reshape(data,17,7); 

 

 

Notice that the size of a matrix created with load must be equal to the size of the 
file being loaded (not counting optional reference information at the bottom of the 
file). If the matrix is larger than the actual file size, bogus data will be read. If it is 
smaller, part of the data series will be discarded. In either case, computations will be 
inaccurate. 
 

Data Output 

A simple way to output data is to display a matrix. This can be accomplished by 
either giving its name in interactive mode or using the print function as we have 
shown so far.  
 
print data;  
 

You can use the format statement to control the formats of matrices and numbers 
printed out. For prettier output, the GAUSS function printfm can print a matrix 
using different format for each column of the matrix.  
 
If you want to save essentially everything that appears on your screen (i.e. the output 
from your GAUSS program), issue the following command:  
 
output file = [filename] [option];  
 

where [filename] represents the name of a new file that will receive the 
subsequent output. When using the command output file you must designate 
one of three options in [option]: Reset, On, or Off. The option Reset clears 
all the file contents so that each run of the program stores fresh output; On is 
cumulative, each output is appended to the previous one; Off creates an output file, 
but no data are directed to it. An output file is not created if none of these three 
options is used. When you are through directing output, don’t forget to issue the 
command:  
 
output off;  
 
You may want to examine the output files. To create a text file containing the data 
from a matrix use output and print statements in combination. For example:  
 
output file = gpe\output2.1 reset; 
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print data; 
output off;  
 

will save the matrix named data in the file named output2.1 in the directory 
GPE.  
 

 

Sending output to a printer is as easy as sending output to a file:  
 
output file = lpt1 reset;  

 
If you are in the Edit mode to write a program file, it is a good habit to end your 
program with the statement:  
 
end;  
 

This will automatically perform output off and graciously close all the files still 
open.  
 

Lesson 2.2: File I/O 

In Lesson 2.2, we will demonstrate how to direct program output to a file and how to 
input data from a text file. In addition we will slice a matrix into column vectors, 
which can be useful for working on individual variables. Columns (or rows) can be 
joined as well. This is achieved through horizontal (or vertical) concatenation of 
matrices or vectors. 
 
Click on the menu bar button File/Open and select the file name lesson2.2 located in 
the GPE directory.  
 

 
Alternatively, at the “>>” prompt in the Command window, type: 
 
edit gpe\lesson2.2; 
 
and press Enter. 
 
Make sure that the highlighted Edit window, with the title c:\gauss\gpe\lesson2.2, is 
layered over the Command window and stays in the front. To run it, click on menu 
bar button Run/Run Active File. 
 

 
 
 

1 
2 
3 
 

4 
5 
6 
7 
 

8 
9 

10 

/* 
** Lesson 2.2: File I/O 
*/ 
output file = gpe\output2.2 reset; 
load data[17,7] = gpe\longley.txt; 
data = data[2:17,.];  
 
PGNP = data[.,2]; 
GNP = data[.,3]/1000;    
POPU = data[.,6]/1000; 
EM = data[.,7]/1000; 
 
X = PGNP~GNP~POPU~EM; 
print X; 
end; 

 

 

For those of you who are using a working diskette (a:\ is assumed) and want to type 
in the program, type these lines exactly as written. Misspellings, missing 
semicolons, or improper spaces will all result in error messages. Be warned that each 
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type of bracket, { }, [ ], or( ), is interpreted differently. Errors commonly result 
from using the wrong bracket. 

 
The first line of the program code tells GAUSS to direct the output of this program 
to a file named output2.2 located in the GPE subdirectory. If you want a printed 
copy of your work, just change it to: 
 
output file = lpt1 reset;   
 

Let’s examine the code for data loading. In line 2, a matrix named data, containing 
17 rows and 7 columns, is created using the GAUSS command load. A text file 
located in the GPE subdirectory named longley.txt is then loaded into the variable 
data. 
 
Remember that the first row of data contains variable names. Chopping off the first 
row, or indexing the matrix, is one way to remove these names from statistical 
analysis. In line 3, the new data takes from the old data the second row through 
the seventeenth row. After line 3, the matrix named data contains 16 rows and 7 
columns. Now try to make some sense about what line 4 is doing. It assigns PGNP to 
the second column of the modified data matrix. Notice that when a matrix is being 
created, the brackets are to the left of the equal sign. When a matrix is indexed, the 
brackets are to the right of the equal sign. In general, information is taken from the 
right side of an equal sign and assigned to either a matrix or variable on the left side 
of the equal sign. 

 
The next few lines, 4 through 7, create new variables by picking the corresponding 
columns of data. For easier handling of large numbers, quantity variables are 
scaled down by 1000-fold: GNP is now in billions of 1954 dollars; POPU and EM are 
in millions of persons. PGNP is kept as given. Note that only the variables needed for 
study are named and identified. 
We now have four variables (vectors) that have been scaled down to a workable size. 
Statistical operations can be done on each variable separately, or they can be joined 
together and then operated on with one command. Line 8 concatenates all of the four 
variables horizontally with a “~” symbol, forming a new data matrix named X. 
 
Line 9 prints the matrix X as follows:  
 

       83.000000        234.28900        107.60800        60.323000  
       88.500000        259.42600        108.63200        61.122000  
       88.200000        258.05400        109.77300        60.171000  
       89.500000        284.59900        110.92900        61.187000  
       96.200000        328.97500        112.07500        63.221000  
       98.100000        346.99900        113.27000        63.639000  
       99.000000        365.38500        115.09400        64.989000  
       100.00000        363.11200        116.21900        63.761000  
       101.20000        397.46900        117.38800        66.019000  
       104.60000        419.18000        118.73400        67.857000  
       108.40000        442.76900        120.44500        68.169000  
       110.80000        444.54600        121.95000        66.513000  
       112.60000        482.70400        123.36600        68.655000  
       114.20000        502.60100        125.36800        69.564000  
       115.70000        518.17300        127.85200        69.331000  
       116.90000        554.89400        130.08100        70.551000  
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If your output extends beyond your screen (in the Command or Output window), 
you can resize the window for a better view. You can also try another font such as 
New Courier, size 10, from the Configure button on the menu bar. 
 

Lesson 2.3: Data Transformation 

In Lesson 2.2 above, we have seen the utility of scaling data series to a more 
manageable unit of measurement for analysis. For econometric applications, some 
variables may be transformed for considerations of theoretical and empirical 
interpretation. Exponential, logarithmic, and reciprocal transformations are 
frequently used functional forms in econometrics. The data transformation chapter of 
GAUSS for Windows User Guide emphasizes the use of GAUSS internal data sets. 
Interested readers should refer to this chapter for more details. 
 
Lesson 2.3 below demonstrates the use of logarithmic functional transformation as a 
way to scale the size of each data series.  

 

 

For those of you who are using a working diskette (a:\ is assumed), the first two 
blocks of code in lesson2.2 can be used again. Duplicating and renaming lesson2.2 
to lesson2.3 and then editing it will save typing and time. To do that, just start with 
lesson2.2 in the Edit window and click on File/Save As. Since your working 
diskette is in a:\, make sure that in the “Select File to Save…” dialog window the 
“Save In:” line shows: “3 ½ Floppy (A):”. Type a:\lesson2.3 in the “File Name” line 
and click on “Save.” 
 
Here is the program lesson2.3: 
 

 
 
 

1 
2 
3 
  

4 
5 
6 
7 
 

8 
9 

10 

/* 
** Lesson 2.3: Data Transformation 
*/ 
output file = gpe\output2.3 reset; 
load data[17,7] = gpe\longley.txt; 
data = data[2:17,.];            
 
PGNP = ln(data[.,2]); 
GNP = ln(data[.,3]/1000);                
POPU = ln(data[.,6]/1000); 
EM = ln(data[.,7]/1000); 
 
X = PGNP~GNP~POPU~EM;  
print X; 
end; 

 

Running lesson2.3, the printout of matrix X looks like this:    
 

       4.4188406        5.4565554        4.6784950        4.0997135  
       4.4830026        5.5584715        4.6879660        4.1128719  
       4.4796070        5.5531689        4.6984146        4.0971905  
       4.4942386        5.6510812        4.7088904        4.1139347  
       4.5664294        5.7959818        4.7191683        4.1466365  
       4.5859874        5.8493219        4.7297743        4.1532265  
       4.5951199        5.9009516        4.7457492        4.1742180  
       4.6051702        5.8947113        4.7554763        4.1551417  
       4.6170988        5.9851169        4.7654847        4.1899426  
       4.6501436        6.0383004        4.7768857        4.2174025  
       4.6858281        6.0930482        4.7911932        4.2219899  
       4.7077268        6.0970535        4.8036111        4.1973974  
       4.7238417        6.1794036        4.8151555        4.2290940  
       4.7379513        6.2197966        4.8312534        4.2422472  
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       4.7510006        6.2503092        4.8508733        4.2388921  
       4.7613189        6.3187771        4.8681573        4.2563359  

 
Lines 4 through 7 introduce the logarithmic transformation of each variable in 
addition to simple scaling. Line 8 concatenates all these variables into a matrix 
named X. This is simply the logarithmic transformation of the data matrix presented 
in the previous Lesson 2.2. In GAUSS, ln computes a natural log transformation of 
a data matrix while log is a base 10 log transformation. We suggest the use of 
natural log transformation for data scaling if needed. 
 

GAUSS Built-In Functions 

GAUSS has a large number of built-in functions or procedures—many of which are 
very powerful. Without knowing it, you have been using some of them such as let, 
print, load, and output. Most functions take some input arguments and return 
some outputs. Before the outputs of a function are used, they must be retrieved. To 
get all the outputs from a function, use a multiple assignment statement in which the 
variables that are to receive the outputs are listed to the left of the equal sign, 
separated by commas, and enclosed in brace brackets. The name of the function is on 
the right of the equal sign, which takes input arguments separated by commas and 
enclosed in round brackets. Typically, a function is called (initiated) in one of the 
following two ways:  
 
output1=functionName(input1); 
{output1,output2,...}=functionName(input1,input2,...);  
 

In case the function outputs are not of interest, the command call is used to call the 
requested function or procedure without using any returned values. The syntax is, 
 
call functionName(input1,input2,...); 
 

Data Generating Functions 

The following functions are particularly useful for creating a new matrix. Their 
usage is explained by example: 
 

• ones Creates a ones matrix, here a 2x4 matrix: 
ones(2,4); 
 

• zeros Creates a zeros matrix, here a 4x4 matrix: 
zeros(4,4); 
 

• eye Creates an identity matrix, here a 3x3 matrix: 
eye(3); 
 

• rndu Creates a matrix of uniform random numbers, here a 6x3 
matrix: 
rndu(6,3); 
 

• rndn Creates a matrix of normal random numbers, here a 6x3 
matrix: 
rndn(6,3); 
 

• seqa Creates a vector of additive sequence of numbers starting at a 
given value and increasing with a given increment. For 
instance,  
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seqa(0,0.1,10);  
creates a 10x1 vector beginning at 0 and increasing with a 0.1 
increment (i.e. 0, 0.1, … , 0.9). 
 

• seqm Creates a vector of multiplicative sequence of numbers starting 
at a given value and increasing by a given multiplier. For 
instance, 
seqm(2,2,10);  
creates a 10x1 vector beginning at 2 and increasing with a 
multiplier of 2 (i.e. 2, 4, … , 1032 or 210). 

 
To convert or reshape an existing matrix to a new matrix of different size, use the 
reshape function as in the following example: … 
 
x=seqa(1,1,5); 
print x; 
y=reshape(x,5,5); 
print y;  
 
Creation of a sub-matrix based on some selection or deletion criteria is accomplished 
by selif and delif functions, respectively. For example:  
 
x=rndn(100,4); 
y=selif(x, x[.,1] .> 0.5); 
print y;  
 
Equivalently,  
 
y=delif(x, x[.,1] .<= 0.5); 
print y;  
 
There are other useful functions for vector or matrix conversion:  

 
• vec Stacks columns of a matrix into a column vector. 

 
• vech Stacks only the lower triangular portion of matrix into a 

column vector. 
 

• xpnd Expands a column vector into a symmetric matrix. 
 

• submat Extracts a sub-matrix from a matrix. 
 

• diag Retrieves the diagonal elements of a matrix. 
 

• diagrv Replaces diagonal elements of a matrix. 
 

Matrix Description Functions 

To describe a matrix, such as a matrix x defined as 
 
x=rndu(10,4); 
 
the following functions can be used:  
 

• rows Returns the number of rows of a matrix: 
rows(x);  
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• cols Returns the number of columns of a matrix: 
cols(x); 
 

• maxc Returns the maximum elements of each column of a matrix: 
maxc(x); 
 

• minc Returns the minimum elements of each column of a matrix: 
minc(x); 
 

 
To find the maximum and minimum of a matrix, try these:  
 
maxc(maxc(x)); 
minc(minc(x));  
 

There are many other GAUSS functions like maxc and minc which work on the 
columns of a matrix. For example:  
 
x = {1, 2, 3}; 
y = sumc(x) + 10; 
print y;  
 

Since sumc computes the sum of each column of a matrix, this will produce:  
 

       16.000000  
 

If a matrix is given as an argument to sumc function, the summation is applied 
separately to each column, and a column vector of results is returned. Thus, typing  
 
x = {1 2 3, 4 5 6}; 
sumc(x);  
 
will result in:   
 

       5.0000000         
       7.0000000         
       9.0000000 
 

To compute the cumulative sum of elements in each column of a matrix, use the 
function cumsumc as follows:  
 
cumsumc(x);  
 

Similar to sumc and cumsumc, there are:  
 

• prodc Computes the product of all elements in each column of a 
matrix. 
 

• cumprodc Computes the cumulative product of elements in each column 
of a matrix. 

 
We further list a few descriptive statistics functions which are applied to each 
column of a matrix: 
 

• meanc Computes the mean for each column of a matrix. 
 

• median Computes the median for each column of a matrix. 
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• stdc Computes the standard error for each column of a matrix. 
 

Matrix Sorting Functions 

To sort a matrix in ascending order, use one of the following sort functions:  
 

• sortc Sorts a matrix using quick sort algorithm. 
 

• sorthc Sorts a matrix using heap sort algorithm. 
 
These functions will sort the rows of a matrix with respect to a specified column. 
That is, they will sort the elements of a column and will arrange all rows of the 
matrix in the same order as the sorted column. The sort is in ascending order.  
 
Another useful sort function, sortind, returns the sorted index of a column vector. 
This can be used to sort several matrices in the same way that some other reference 
matrix is sorted. For example, 
 
x = {5, 2, 8}; 
idx = sortind(x); 
y = x[idx]; 
print idx~y;  
 

produces two columns containing the ordering index of the original x and the sorted 
x:  
 

       2.0000000        2.0000000  
       1.0000000        5.0000000  
       3.0000000        8.0000000  

 

Basic Matrix Computation 

The following functions are related to several basic matrix computations:  
 

• det Computes the determinant of a square matrix. 
 

• inv Computes the inverse of a general square matrix. 
 

• invpd Computes the inverse of a symmetric, positive definite square 
matrix. 
 

• corrx Computes a correlation matrix. 
 

• vcx Computes a variance-covariance matrix. 
 

• cond Computes the condition number of a matrix. 
 

• rank Computes the rank of a matrix. 
 

Solving Systems of Linear Equations 

The problem is to find x from A*x = b, where A is a nxn matrix, b is a nx1 (or nxm 
in general) matrix, and x has the same size as b. If A is a non-singular matrix, then x 
= A-1b. Consider the following example:  
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a = { 6 8, 
     -2 4}; 
b = {2, 1}; 
x = inv(a)*b; 
print x; 
 

If the matrix A is symmetric positive definite, use the GAUSS function solpd to 
solve for x. Note that the solpd function takes two arguments. The first is the 
matrix on the right-hand side of the matrix equation, while the second is the matrix 
being inverted. For example:  
 
a = {40 40, 
     40 72};  @ a is symmetric positive definite @ 
b = {2, 1}; 
x = solpd(b,a); 
print x; 
 
Therefore, if the matrix A is nxk and n is equal or greater than k, solving x from A*x 
= b is equivalent to solving x from (A'A)*x = (A'*b). In other words, x = 
invpd(A'A)*(A'b). Using the solpd function:  
 
a = { 6 8, 
     -2 4}; 
b = (2, 1}; 
x = solpd(a'b,a'a); 
print x; 
 

This is exactly the GAUSS division (/) operator for finding the least squares (LS) 
solution of A*x = b:  
 
x = b/a; 
print x; 
 

Another useful application of the solpd function is to find the inverse of a 
symmetric positive definite matrix, which is equivalent to the invpd command: 
 
x = solpd(eye(2),a'a); @ equivalent to invpd(a'a) @ 
print x; 
 

Characteristic Roots and Vectors 

Given a square matrix A, finding x from the characteristic equation (A-λI)x = 0 is a 
two-step procedure: First, solve |A-λI| = 0 for λ (characteristic roots or eigenvalues). 
Then, for each λ, solve (A-λI)x = 0 for x (characteristic vectors or eigenvectors). 
Since we are interested in the case of real eigenvalues and eigenvectors, A is 
assumed to be a real symmetric matrix only. Two GAUSS functions are used for the 
computation of eigenvalues and eigenvectors of a real symmetric matrix:  

 
• eigrs Computes the eigenvalues of a real symmetric matrix. 

 
• eigrs2 Computes the eigenvalues and eigenvectors of a real 

symmetric matrix. 
 
Consider the following example:  
 
a = {41 -23, 
    -23  13};  @ a is real and symmetric @ 
r = eigrs(a); 
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{r,v} = eigrs2(a); 
print r~v; 
 
We note that the function eigrs2 returns two values: the first is a vector of 
eigenvalues, while the second is a matrix of the corresponding eigenvectors. The 
returned results are listed to the left of the equal sign, enclosed in brace brackets. 
Running the above block of codes, we have: 
 

       0.074175964    -0.48992502      -0.87176457  
       53.925824      -0.87176457       0.48992502 

 
The first column of the matrix is the vector of two eigenvalues. The last two columns 
of eigenvectors correspond to each of the two eigenvalues, respectively. 
 
A useful application of eigenvalues is to compute the condition number of a data 
matrix—an indicator of multicollinearity for a least squares regression model. Let X 
be the data matrix of regressors. The condition number of X is computed as follows:  
 
xx = x'x; 
r = eigrs(xx); 
cn = sqrt(maxc(r)./minc(r)); 
print cn; 
 

The condition number, cn, is defined as the square root of the ratio of the largest 
eigenvalue to the smallest. Compared with the GAUSS built-in function cond, the 
identical result is:  
 
print cond(x);  
 
Not listed, but of great use, are the many functions that provide data plotting in two 
or three dimensions, as well as a number of more specialized functions. To whet the 
econometrician’s appetite, let’s name a few more in the following:  

 
• pdfn Computes the standard normal probability density function 

(pdf). 
 

• cdfn Computes the complement of cumulative distribution function 
(cdf) of standard normal distribution (i.e., the integral of 
normal distribution in the lower tail). 
 

• cdftc Computes the complement of cdf of t-distribution. 
 

• cdffc Computes the complement of cdf of F-distribution. 
 

• cdfchic Computes the complement of cdf of Chi-square distribution. 
 

• gradp Computes the first derivative or gradient of a function. 
 

• hessp Computes the second derivative or hessian of a function. 
 

• intsimp Computes the integration of a function by Simpson’s method. 
 

• dstat Computes descriptive statistics of a data matrix. 
 

• ols Computes a typical least squares regression. 
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• eqsolve Solves a system of nonlinear equations. 

 
• sqpsolve Solves the nonlinear programming problem using the 

sequential quadratic programming method. 
 
The full list of functions and information on each one can be obtained via GAUSS’s 
on-line help system.  
 

Lesson 2.4: Data Analysis 

 
In Lesson 2.4 we write a GAUSS program to review what we have learned so far. 
First we load the data matrix from the file longley.txt. Recall that the first row of this 
data matrix consists of variable names, therefore it will not be used in statistical 
calculations. We define y as the last (7th) column of the data matrix. In addition, we 
select all values of the first 6 variables and add a column of ones (constant vector) to 
form the matrix x. 
 
First, we call the built-in function dstat to report the descriptive statistics of all 
data series including y and x. Then the ordinary least squares (OLS) estimator of y 
on x is computed. Finally, the data matrix x is checked for its condition number. 
Here is the program: 
 

 
 
 

1 
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/* 
** Lesson 2.4: Data Analysis 
*/ 
output file = gpe\output2.4 reset; 
load x[17,7]=gpe\longley.txt; 
y=x[2:17,7]; 
x=x[2:17,1:6]~ones(16,1); 
call dstat(0,y~x); 
 
b=y/x; @ b=invpd(x'x)*x'y=solvpd(x'x,x'y) @ 
print b; 
 
xx=x'*x; 
r=eigrs(xx); 
cn=sqrt(maxc(r)./minc(r)); 
print cn cond(x); 
end; 
 
Note that in line 5, dstat is a GAUSS built-in procedure which when called prints 
descriptive statistics of a data matrix into a table. The output is arranged row-wise 
for each variable. In dstat, the first input argument 0 means that the data to be 
used involve a matrix defined earlier in the program. In this case, it is the matrix y~x 
defined in line 3 for y and line 4 for x. 
 
Line 6 demonstrates a simple way to obtain the least squares estimator: b = y/x. 
To compute the condition number of x, we first get the eigenvalues of x'x (line 9) 
and then take the square root of the ratio of maximum and minimum eigenvalues 
(line 10). The result of the formal calculation of the condition number should be the 
same as that from calling the GAUSS built-in function cond. We leave the rest of 
running the program and interpreting the results to you as an exercise. 
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Controlling Execution Flow 

It is possible to do a great deal in GAUSS by simply executing statements involving 
matrix expressions, one after the other. However, there are cases in which one 
simply must substitute some non-sequential order. To facilitate this, GAUSS 
provides several standard methods for controlling program flow. These are For 
Loops, Do Loops, and If statements. 
 

For Loops 

The For Loop is easy to use. The most common use of a For Loop arises when a set 
of statements is to be repeated a fixed number of times, as in: 
 
for i (0, 9, 1); 
  
    ....... 
 
endfor; 
 

where i is the counter integer followed by a pair of parentheses which enclose three 
arguments. The first argument is the initial value of the counter, the second is its 
final value, and the last is the increment value. The statements within the loop will be 
executed 10 times starting from the counter i at value 0 through 9, each time with 
increment of 1. Note that a For Loop ends with endfor statement. 
 
There are fancier ways to use For Loops, but for our purposes, the standard one 
suffices.  
 

Do Loops 

There are two kinds of Do Loops: do while and do until. The difference 
between a do while loop and a do until loop is that the former will continue 
the loop execution when the condition is true, while the latter will execute the loop 
when the condition is false (or until the condition becomes true). A Do Loop always 
ends with endo statement.  
 
A do while loop contains statements to be executed as long as a stated condition 
remains true, as in:  
 
do while x <= 0.5; 
 
    ....... 
 
endo; 
 

Similarly, a do until loop contains statements to be executed as long as a stated 
condition remains false, as in:  
 
do until x > 0.5; 
 
    ....... 
 
endo; 
 

The statements break and continue are used within Do Loops to control 
execution flow. When break is encountered, the execution will jump to the 
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statement following the endo. This terminates the loop. When continue is 
encountered, the execution will jump to the top of the loop and reevaluate the do 
while or do until expression. It reiterates the loop without executing any more 
of the statements inside the loop. For the For Loops, both break and continue 
statements work the same way as described for the Do Loops.  
 
In contrast to the For Loop, there is no counter variable that is automatically 
incremented in a Do Loop. If one is used, it must be set to its initial value before the 
loop is entered and explicitly incremented or decremented inside the loop.  

 

 

It is, of course, crucial that at some point a statement will be executed that will cause 
the condition in the do while (or do until) statement to be false (true). If this 
is not the case, you have created an infinite loop—one that will go merrily on until 
you pull the plug. 
 
For readability, it is sometimes useful to create variables for true and false, then use 
them in a do while or do until loop. For example:  
 
true = 1==1; 
false = 1==0; 
..... 
done = false; 
do while not done; 
 
    ........ 
 
endo; 
 
Of course, somewhere in the loop there should be a statement that will at some point 
set done equal to true.  
 

If Statements 

An If statement provides a method for executing certain statements if a condition is 
true and other statements (or none) if the condition is false. A complicated if 
section can come with elseif and else statements, but it always ends with an 
endif statement. For example:  
 
if x > 0.5; 
 
    ....... 
 
elseif x > 0; 
 
    ....... 
 
else; 
 
    ....... 
 
endif; 
 

In this case, if x is greater than 0.5 the first set of statements will be executed; if not, 
x is checked again for a positive value. If x is greater than 0, the second set of 
statements will be executed. Otherwise, the last set of statements will be executed.  
 
A simpler version omits the elseif section, as in:  
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if x > 0.5; 
 
    ....... 
 
else; 
 
    ....... 
 
endif; 
 

In this case, if x is greater than 0.5 the first set of statements will be executed; if not, 
the second set will be executed. An even simpler version omits the else section, as 
in:  
 
If x > 0.5; 
 
    ....... 
 
endif; 
 

Here, the statements will be executed if (and only if) x exceeds 0.5.  
 

Nesting 

All of these flow control structures allow nesting, in which one type of structure lies 
within another. For example:  
 
j = 1; 
do until j > n; 
    for k (1,n,1); 
        if x[j,k] > 0.5; 
            x[j,k] = 1.5; 
        endif; 
    endfor; 
    j=j+1; 
endo; 
 
The indentation is for the reader’s benefit, but is highly recommended in this and 
other situations for purposes of clarity. It is wise to pair up endo (endfor, endif) 
statements with preceding do (for, if) statements in a last-come-first-served 
manner. It is up to the programmer to ensure that this will give the desired results. 
Indenting can help, but hardly guarantees success on every occasion.  

 
While it is tempting for those with experience in traditional programming languages 
to take the easy way out, using Do Loops for mathematical operations, this 
temptation should be strenuously resisted in GAUSS. For example, instead of 
 
value = 0; 
j = 1; 
do while j <= n; 
    value = value + price[j] * quantity[j]; 
    j=j+1; 
endo; 
 
write:  
 
value = price'*quantity;  
 
The latter is more succinct, far clearer, and will run much, much faster. GAUSS 
performs matrix operations at blinding speed, but is downright glacial at times when 
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loops are to be executed a great many times, since it must do a certain amount of 
translation of each statement every time it is encountered. 
 

A Practical Example  

Do you know the accuracy of your computer’s numerical calculation? The following 
example addresses this important problem. Suppose e is a known small positive 
number, and the 5×4 matrix X is defined as follows:  

 
1  1  1  1 
e  0  0  0 
0  e  0  0 
0  0  e  0 
0  0  0  e 

 
Verify that the eigenvalues of X'X are 4+e^2, e^2, e^2, and e^2. How small a 
value of e can your computer use and still successfully invert X'X? Try to make 
some sense out of the following segment of code: 
 
one=ones(1,4); 
e=1.0; 
do until e<1.0e-16; 
    x=one|(e.*eye(4)); 
    print "e = " e; 
    print invpd(x'x); 
    e=e./10; 
endo; 
end; 
 

Writing Your Own Functions 

The power of GAUSS really comes into play when you add your own functions or 
procedures to enhance the language. There are two kinds of user-defined functions in 
GAUSS. Single-line functions that return one item can be defined with the fn 
statement. A multi-line procedure is a group of GAUSS statements put together to 
perform a given task. It is better to create a program file to hold the procedures for 
future use. Procedures are declared with the proc statement. A single-line function 
returns only one argument, while a multi-line procedure can return one or more 
arguments. Once a function or procedure is written, debugged, and placed in the 
library, it is for all practical purposes part of your version of GAUSS.  
 

Single-Line Functions 

A single-line function starts with a fn statement declaring the function, followed by 
the name of the function with its arguments enclosed in parentheses. The “guts” of 
the function are defined on the right-hand side of the equal sign, all in one line. It is 
called the same way as GAUSS built-in functions. However, it returns only one 
argument. For example:  
 
fn value(p,q) = p'*q;  
 

This value function takes two arguments, p and q, to produce the inner product of 
them. The result may be a scalar, a vector, or a matrix. Of course, this will only work 
if p and q vectors or matrices are compatible for matrix multiplication. A more 
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complex multi-line version (or procedure) could examine the sizes of these two 
matrices p and q, then use transpositions, etc., as required. 
 
It is important to note that the argument and output names used in a function are 
strictly local variables that exist only within the function itself. Thus, in a program 
one could write the following statement to use the value function defined above:  
 
cost = value(price,quantity);  

 
In this calling statement, the function value takes two arguments, price and 
quantity, which become assigned to matrices p and q of the function, 
respectively. This function returns an output, called cost, which is assigned to the 
output argument (value). There is no need for the names to be the same in any 
respect. Moreover, the function cannot change the original arguments in any way. It 
can only return information via its output.  
 
A powerful example of a single-line function for time series conversion is the 
following:  
 
fn qtoa1(x) = meanc(reshape(x,rows(x)/4,4)');  
 
This function converts a quarterly time series into an annual series by taking the 
average of every four data points. Of course, this function will work only if the input 
data series starts from the first quarter, and it is designed to handle one series at a 
time. That is, the input argument x is a column vector of quarterly series, and the 
function returns a column vector of annual series. Note that if the last year does not 
have a complete quarterly series of four data points for conversion, it is ignored.  

 
As another example of defining and using a single-line function statement, consider 
the following scalar-valued function of one variable: 
 
f(x) = ln(x) – x2 
 
The maximal of f(x) is found at x = ½  or 0.707. This can be checked by evaluating 
its first and second derivatives, respectively: 
 
f′(x) = 1/x –2x 
f″(x) = -1/x2 –2 
 
Let’s write these three single-line functions in GAUSS: 
 
fn f(x) = ln(x) – x^2; 
fn f1(x) = 1/x –2*x; 
fn f2(x) = -1/(x^2) –2; 
 

Now we check the maximum x = ½  for which f1(x) = 0 and f2(x) < 0: 
 
xmax = sqrt(0.5); 
f(xmax); 
f1(xmax); 
f2(xmax); 
 

Remember the built-in procedures gradp and hessp serve the same purpose of 
finding the first and second derivatives, the gradient vector, and hessian matrix of a 
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user defined function without writing their analytical forms f1 and f2 as above. Try 
this: 
 
gradp(&f,xmax); 
hessp(&f,xmax); 
 

The use of gradp and hessp procedures to numerically evaluate the first and 
second derivatives of a function is particularly useful when the analytical forms of 
derivatives are difficult to write. Consider the following function of two variables: 
 
g(x) = (x1

2 + x2 – 11)2 + (x1 + x2
2 –7)2 

 
With the 2×1 parameter vector x, the function is easily defined in GAUSS: 
 
fn g(x) = (x[1]^2 + x[2] – 11)^2 + (x[1] + x[2]^2 –7)^2; 
 
Writing out the analytical formulas of the first and second derivatives using single-
line functions may be difficult. For this function, there are four minima: (3, 2), 
(3.5844, -1.8481), (-3.7793, -3.2832), and (-2.8051, 3.1313). Using gradp and 
hessp to check them is easy. 
 
At this point you may be tempted to try using a graph to find the minima of the 
above function. GAUSS is not good at graphics. Nevertheless, there are functions 
available to do publication quality graphics in GAUSS. See GAUSS for Windows 
User Guide or the on-line help menu for more details.  
 

Procedures 

A procedure in GAUSS is basically a user-defined function which can be more than 
one line and as complicated as necessary to perform a given task. Any GAUSS built-
in command or function may be used in a procedure, as well as any user-defined 
function or other procedure. Procedures can refer to any global variable and declare 
local variables within. The basic structure of a GAUSS procedure consists of the 
following components:  
 

1. proc statement 
 

Procedure declaration 

2. local statement 
 

Local variable declaration 

3. Body of procedure 
 

… 

4. retp statement 
 

Return from procedure 

5. endp statement End of procedure definition 
 

There is always one proc statement and one endp statement in a procedure 
definition. Anything that comes between these two statements is part of the 
procedure. local and retp statements are optional, and may occur more than once 
in a procedure. GAUSS does not allow nested procedure definitions. That is, a 
procedure cannot be defined within another procedure.  
 
Variables other than input and output arguments may be included in procedures as 
needed. There are global and local variables. A global variable is already declared 
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and used outside the procedure. A local variable is only visible to the procedure and 
has no existence outside the procedure. Indeed, a local variable in one procedure may 
have the same name as a different local variable in another function or procedure; the 
two will coexist with neither bothering the other.  
 
A procedure can return multiple arguments of output through retp statements and 
by specifying the number of returned items in the beginning of the proc statement. 
As an example, the procedure version of the value function takes inputs of p and q 
and returns the total (called s) and average (called m) values as follows:  
 
proc (2) = value(p,q); 
    local s, m; 
    s = p'*q; 
    m = s./sumc(q); 
    retp(s,m); 
endp; 

 

 

In the proc statement, the syntax of an equal sign preceded with the number of 
returned arguments enclosed in parentheses (that is, “(2)= ” in the above example) 
is not needed for a procedure with single output argument (the default case).  
 
To use the multiple output arguments of a procedure call, simply assign them names 
in the declaration line, as in:  
 
{sum,mean} = value(price,quantity);  
 

Here, variables price and quantity are assigned to the input arguments p and q, 
respectively. Similarly, sum and mean are assigned to the output arguments s and 
m. All the input and output arguments are local variables.  
 
Note that as with inputs, the correspondence between outputs in the calling statement 
and the procedure itself is strictly by order. When the procedure has finished its 
work, its output values are assigned to the variables in the calling statement.  
 
If a procedure does not return any items or you want to discard the returned items, 
just call it as we have demonstrated in the above example lessons. For example:  
 
call value(price,quantity);  
 
Now let’s extend the earlier single-line version of time series conversion function 
qtoa1 to a multi-line procedure so that it can handle the conversion of a more 
general data matrix. The working method of the following procedure qtoa is to take 
a data matrix x which consists of quarterly data series in columns and convert it into 
a matrix of the yearly averages. The procedure takes advantage of the previously 
defined single-line function qtoa1 to compute the annual average series from each 
column of the quarterly data matrix, all in a Do Loop. Here is the procedure: 
 
proc qtoa(x); 
    local r,c,y,i; 
    r = rows(x); 
    c = cols(x); 
    y = qtoa1(x[.,1]); 
    i = 2; 
    do until i > c; 
        y = y~qtoa1(x[.,i]); 
        i = i+1; 
    endo; 
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    retp(y); 
endp; 
 
Of course, the above time series conversion function and procedure are limited to a 
quarterly data series. We can make them more flexible by specifying the number of 
periods of each seasonal cycle as an input argument in addition to the data matrix. 
 
The following function tss1 and procedure tss are essentially the same as qtoa1 
and qtoa, respectively. The difference is that now the number of periods n for time 
series conversion is specified as one of the input arguments. Depending on the 
seasonal cycle of the data series, you can use the same procedure for either quarterly 
or monthly conversion.  
 
fn tss1(x,n) = meanc(reshape(x,rows(x)/n,n)'); 
 
proc tss(x,n); 
    local r,c,y,i; 
    r = rows(x); 
    c = cols(x); 
    y = tss1(x[.,1],n); 
    i = 2; 
    do until i > c; 
        y = y~tss1(x[.,i],n); 
        i = i+1; 
    endo; 
    retp(y); 
endp; 
 
As an exercise, write the procedures to compute the analytical first and second 
derivatives of this scalar-valued function of two variables: 
 
g(x) = (x1

2 + x2 – 11)2 + (x1 + x2
2 –7)2 

 

User Library 

The purpose of writing functions and procedures is to keep tasks organized and self-
contained. Each function or procedure will perform a few given tasks and nothing 
else. To make programmers’ work easier, procedures allow programmers to build on 
their previous work and on the work of others rather than starting over again and 
again to perform related tasks. One way to organize the work is to collect a group of 
functions and procedures into a program file and register the file and its contents 
with the GAUSS library system. Note that you must have your own copy of GAUSS 
installed on your own computer in order to access and modify the GAUSS library 
facility. We will assume that your GAUSS comes with the User Library, to which 
you can add your creative functions and procedures.  
 
First, let’s put the function tss1 and procedure tss together in a file named 
TSS.SRC (SRC is the default file extension name for GAUSS source codes, 
although you can use any other name you want). Put the program file TSS.SRC in 
the SRC subdirectory of GAUSS path. Next, we will add the following lines to the 
library file USER.LCG located in the LIB directory of the GAUSS path:  
 
TSS.SRC 
    tss1 : fn 
    tss  : proc 
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Similar to the idea of using a dictionary, the function tss1 and procedure tss 
defined in the program file TSS.SRC are now part of GAUSS library system, which 
will be searched for name recognition every time GAUSS executes a program. You 
can also add variable names as matrices or strings in the library. Refer to GAUSS 
Language References or the on-line help system for more details on using and 
maintaining the library system.  
 
From now on, both tss1 and tss functions are an integral part of your version of 
GAUSS. You have just extended the environment for GAUSS programming! 
 

GPE Package 

The other way of extending GAUSS is to use a package, which is a set of compiled 
GAUSS libraries for special purposes. GAUSS Programming for Econometricians 
and Financial Analysts (GPE) is a GAUSS package of econometric procedures. The 
GAUSS command use is used to load a package at the beginning of your program. 
For example, 
 
use gpe2; 
 
will load the GPE package (version 2) for econometric analysis and applications. 
Note that use can only appear once and must occur at the top of a program. 
 
GPE consists of three main procedures (estimate, forecast, and reset) 
along with global control variables that modify the econometric routines. The 
procedure estimate computes linear and nonlinear regressions, while forecast 
performs least squares prediction. reset initializes global control variables to their 
default values. Global control variables are of two types: input and output. Global 
input variables control the execution behavior of the called procedure. For example, 
they can modify estimate and forecast to use linear restrictions, weighted 
variables, instrumental variables, lagged dependent and independent variables, etc.  
 
Output global variables are the results of calling estimate and forecast. They 
can be assigned to new variables for further analysis. Depending on the input global 
variables used which control the econometric routines, not all the output global 
variables will be available. The name of an input control variable starts with a single 
underscore (for example,  _b), while an output control variable starts with a double 
underscore (for example, __b). Refer to Appendix A for a complete list of GPE 
global control variables and their default or predefined values. 
 
A template for a typical program using GPE is given below: 
 

 
 
 
 
 

1 
 
 

. 

. 

. 
 

/* 
** Comments on program title, purposes,  
** and the usage of the program 
*/ 
 
use gpe2;  @ using GPE package (version 2) @ 
@ this must be the first executable statement @ 
 
/* 
** Writing output to file or sending it to printer:  
** specify file name for output 
*/ 
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/* 
** Loading data:  
** read data series from data files. 
*/ 
 
/* 
** Generating or transforming data series: 
** create and generate variables with 
** data scaling or transformation 
** (e.g. y and x are generated here and will be used below) 
*/ 
 
call reset;  @ initialize global variables @ 
 
/* 
** Set input control variables for model estimation 
** (e.g. _names for variable names, see Appendix A) 
*/ 
 
call estimate(y,x); @ do model estimation @ 
@ variables y, x are generated earlier @ 
 
/*  
** Retrieve output control variables for  
** model evaluation and analysis 
*/ 
 
/* 
** Set more input control variables if needed,  
** for model prediction 
** (e.g. _b for estimated parameters) 
*/ 
 
call forecast(y,x); @ do model prediction @ 
 
end; @ important: don’t forget this @ 
 
Using the GPE package in a GAUSS environment is the main focus of the rest of this 
book, which begins in the next chapter on linear regression models. If you are 
already familiar with linear least squares estimation, you can jump to the nonlinear 
models discussion which begins in Chapter VI. The topic of simultaneous equation 
systems is covered in Chapter XIII. In addition to many classical econometric 
methods, modern approaches such as generalized method of moments (Chapter XII), 
autoregressive conditional heteroscedasticity (Chapter XV), and panel data analysis 
(Chapter XVI), are programmed and solved with GPE (version 2) for GAUSS. 
 
Don’t forget that we are learning GAUSS as a tool to do econometrics. The package 
GPE written in GAUSS acts as a bridge between the domain knowledge 
(econometrics) and the programming environment (GAUSS). With this approach, 
only a limited knowledge of computer programming is required in the beginning. 
After gaining experience with GPE and GAUSS in general, you should be ready for 
your own programming adventure in advanced econometrics, by either extending 
GPE or writing new programs. 

 



 

 

 

III 
Linear Regression Models 
 

GPE (GAUSS Programming for Econometricians and Financial Analysts) is a 
GAUSS package for linear and nonlinear regressions useful for econometric analysis 
and applications. The purpose of this chapter is to show you how to use GPE for 
basic linear least squares estimation. 
 

Least Squares Estimation 

A linear regression model can be written either in a matrix form: 
 
Y = Xβ + ε 
 
or, in a vector form: 
 
Y = X1β1 + X2β2 + … + XKβK + ε 
 
where Y is the dependent variable, Xk is the k-th independent (explanatory) variable, 
and βk is the corresponding parameter (coefficient), k = 1, 2, … , K. Given a sample 
of N data observations, both Xk’s and Y are N-vectors of sample data. Denote X = 
[X1 X2 … XK]. Typically, we assume the last column of data matrix X, that is XK, is 
a constant one-vector. For parameter estimation of a linear regression model, the 
random error term ε is assumed to be identically independently distributed (iid). For 
statistical inference, an assumption of probability density will be necessary. For 
example, ε is normally identically independently distributed (nid) with zero mean 
and constant variance σ2. 
 
The ordinary least squares regression amounts to the following estimation results: 
 

b = (X'X)-1X'Y Estimator of β. 
Var(b) = s2(X'X)-1 Estimated variance-covariance matrix of β. 
e = Y - Xb Estimated errors ε or residuals. 
s2 = e'e/N-K Estimated regression variance σ2. N is the number of 

sample data; K the is the number of parameters. 
 
Consider the simple case of regressing the dependent variable Y against one 
independent variable X in addition to a constant: 
 
Y = α + βX + ε 
 
where ε is the difference between known Y and estimated Y, or the residual. The 
parameter α is the intercept and β is the slope of the linear regression equation. 
 
Continuing with the text data file longley.txt we used in Chapter II, Lesson 3.1 
introduces the use of GPE to estimate a simple regression equation. Lesson 3.2 
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examines a set of regression statistics obtained from the simple regression. Lesson 
3.3 is a multiple regression model. 
 

Lesson 3.1: Simple Regression 

This lesson estimates a simple regression relationship between employment EM in 
millions of persons and RGNP or real GNP expressed in billions of 1954 dollars. 
Note that the 1954 observation of PGNP is 100, which is the base year of the 
deflator. All data series are read from the text data file longley.txt. 
 

 
 
 

1 
2 
3 
4 
 

5 
6 
7 
8 
 

9 
10 
11 
12 

/* 
** Lesson 3.1: Simple Regression 
*/ 
use gpe2; @ using GPE package (version 2) @ 
output file = gpe\output3.1 reset; 
load data[17,7] = gpe\longley.txt; 
data = data[2:17,.]; 
   
PGNP = data[.,2]; 
GNP = data[.,3]/1000;           
EM = data[.,7]/1000; 
RGNP = 100*GNP./PGNP; 
 
call reset; 
_names = {"EM","RGNP"}; 
call estimate(EM,RGNP); 
end; 
 
In order to use GPE package for econometric analysis and applications, the first 
executable statement in your GAUSS program must be: 
 
use gpe2; 
 
This tells GAUSS where to look when GPE commands are used. However, remarks 
enclosed in comment symbols are permitted before the first line of program code. 
 
A linear regression model is estimated using the GPE econometric procedure, 
estimate. Before calling estimate, it is recommended to initialize all the global 
control variables first by calling the procedure reset. Between the two procedures, 
reset and estimate,  the required GPE input control variables for model 
estimation are set.  
 
In Lesson 3.1, line 9 initializes all the GPE global control variables by calling 
reset procedure. Then, in line 10, the input control variable _names is defined to 
be a list of character names for variables used in the regression (dependent variable 
first, followed by independent variables in the order of appearance in the equation). 
In this example, EM is the dependent variable, RGNP the independent variable, and 
_names is a character vector of variable names as: 
 
_names = {“EM”, “RGNP”}; 
 

 

Not starting GPE input control variables such as _names with an underline (_) is a 
common mistake. GAUSS ignores them without warning or an error message. Your 
program using GPE just will not work like it should. See Appendix A for more 
information about the usage of _names and other input control variables. 
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If _names is not specified, then the default variable names are used for the 
procedure estimate. That is, Y for the name of the dependent variable and X# for 
the names of the independent variables (# indicates the number in sequence, i.e., 1, 
2, … ). 

 
The GPE econometric procedure estimate is called in line 11. It takes the 
dependent variable as the first argument, and the list of independent variables as the 
second. A constant vector for the estimated intercept term is automatically added to 
the model estimation. 
 
Now, let’s look at the output from running this program: 

 
Least Squares Estimation 
------------------------ 
Dependent Variable = EM       
Estimation Range =  1          16         
Number of Observations = 16           
Mean of Dependent Variable = 65.317       
Standard Error of Dependent Variable = 3.5120       
 
R-Square = 0.97320      R-Square Adjusted = 0.97129      
Standard Error of the Estimate = 0.59511      
Log-Likelihood = -13.331      
Log Ammemiya Prediction Criterion (APC) =  -0.92023     
Log Akaike Information Criterion (AIC) =  -0.92154     
Log Schwarz Bayesian Information Criterion (BIC) =  -0.82497     
 
Sum of Squares         SS           DF          MSS            F       Prob>F 
Explained          180.05            1       180.05       508.39  2.1048E-012 
Residual           4.9582           14      0.35416  
Total              185.01           15       12.334  
 
Variable        Estimated     Standard      t-Ratio         Prob      Partial 
Name          Coefficient        Error        14 DF         >|t|   Regression 
RGNP             0.058726    0.0026045       22.547  2.1048E-012      0.97320  
CONSTANT           43.264      0.98931       43.732  2.2494E-016      0.99273  

 
The basic output of estimate is presented in four blocks. The first block gives 
general information about the regression. Goodness of fit of the estimated regression 
and several model selection criteria are given in block two. Block three is the 
standard Analysis of Variance (AOV) . The following discussion focuses on the last 
block of output information. Values of the estimated coefficient, standard error, and 
t-ratio for each variable are given row-wise. Reading the output for each variable 
gives the estimated model as: 
 
EM = 43.264 + 0.059 RGNP 
s.e.  (0.989)  (0.0026) 
t-ratio  43.7  22.5 
 
Interpreting this output tells us that, on average for each one billion dollar increase of 
RGNP (measured in 1954 value), there will be an increase of about 59 thousand in 
people employed (EM).  
 
Since the expected value of the residuals is zero, it is not in the estimated regression 
equation. However, a list of error values for each observation is available for further 
analysis to be discussed in later lessons. 
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Testing of the simple hypothesis that a given coefficient is equal to zero takes the 
estimated coefficient’s t-ratio and compares it with the critical value from the 
Student’s t distribution listed for the given degrees of freedom (DF). Prob > |t| is the 
corresponding P-value, or the probability of a type II error (that is, the probability of 
not rejecting the null (false) hypothesis that the corresponding coefficient equals 
zero). We know that RGNP’s coefficient is statistically significant from its t-ratio of 
22.5 and our chance of being wrong is 2×10-12, or very close to zero. 
 
The partial regression coefficient measures the marginal contribution of the variable 
when the effects of other variables have already been taken into account. For a linear 
regression including only one independent variable, this is just the R-square (0.9732 
in this case) of the regression. 
 
The GPE estimate routine is the foundation of most models that you will use to 
estimate a regression equation. Global control variables are then added in different 
combinations to check, test, and hopefully correct the fitted regression. In the next 
several lessons, further analysis of the regression is achieved through the use of input 
control variables for the estimate procedure. Again, refer to Appendix A for a 
more detailed description of GPE input control variables. 
 

Lesson 3.2: Residual Analysis 

How good are the results of the simple regression from Lesson 3.1? Of course, the 
measurement of R-square is a popular yardstick to judge the goodness of fit. One 
more tool for evaluating just how good an estimated regression fits a set of 
observations is to analyze residuals, the difference between the actual and estimated 
dependent variable. GPE provides several options in conjunction with the 
estimate procedure to analyze and evaluate residuals. This lesson explores three 
ways to perform residual analysis.  
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/* 
** Lesson 3.2: Residual Analysis 
*/ 
use gpe2; @ using GPE package (version 2) @ 
output file = gpe\output3.2 reset; 
load data[17,7] = gpe\longley.txt; 
data = data[2:17,.]; 
     
PGNP = data[.,2]; 
GNP = data[.,3]/1000;                
EM = data[.,7]/1000; 
RGNP = 100*GNP./PGNP; 
 
call reset;  @ initialize control variables @ 
_rstat = 1; @ report residual statistics @ 
_rlist = 1; @ list residuals @ 
_rplot = 1; @ plot residuals @ 
_names = {"EM","RGNP"}; 
call estimate(EM,RGNP); 
end; 
 
Before using global control variables, as we have mentioned earlier, you need to call 
the reset procedure once to initialize them. Calling reset returns all GPE global 
control variables to their default setting.  
 



LINEAR REGRESSION MODELS 

 

 

47 

 

The reset option used with an output file has nothing to do with a called 
reset in GPE. The latter is a GPE procedure, while the former is an option 
associated with the GAUSS command output. They are simply two different 
concepts. 

 

 _rstat is the residual analysis tool most frequently used in conjunction with 
GPE’s estimate. Setting the GPE input control variable to a non-zero value (the 
convention is 1, meaning true or yes) provides a set of simple residual statistics. 
These statistics are: squared correlation of the observed (actual) and predicted (fitted) 
values of the dependent variable, sum-of-squared residuals, sum of absolute 
residuals, sum of residuals, and the serial correlation coefficient, first-order Rho. The 
well-known Durbin-Watson test statistic is useful for testing the presence of first-
order serial correlation. The output of residual statistics is: 
 

Squared Correlation of Observed and Predicted = 0.97320      
Sum of Squared Residuals = 4.9582       
Sum of Absolute Residuals = 7.6446       
Sum of Residuals = 5.32197E-012 
First-Order Rho = 0.23785      
Durbin-Watson Test Statistic = 1.4408 

 
The option _rlist = 1 lists the observed (actual) and predicted (fitted) values of 
the dependent variable. The residual is computed as the difference between the actual 
and fitted values. Each observation of residual and its standard error is listed as well. 
 

List of Observed, Predicted and Residuals 
         Obs     Observed    Predicted     Residual    Std Error 
           1       60.323       59.841      0.48195      0.52253  
           2       61.122       60.479      0.64314      0.53477  
           3       60.171       60.446     -0.27506      0.53419  
           4       61.187       61.938     -0.75124      0.55639  
           5       63.221       63.347     -0.12561      0.56955  
           6       63.639       64.037     -0.39762      0.57341  
           7       64.989       64.938     0.050585      0.57597  
           8       63.761       64.588     -0.82719      0.57531  
           9       66.019       66.329     -0.31005      0.57446  
          10       67.857       66.798       1.0588      0.57246  
          11       68.169       67.251      0.91781      0.56979  
          12       66.513       66.826     -0.31280      0.57232  
          13       68.655       68.439      0.21576      0.55933  
          14       69.564       69.110      0.45430      0.55112  
          15       69.331       69.565     -0.23401      0.54454  
          16       70.551       71.140     -0.58873      0.51511   

 
Plotting is a quick way to evaluate the result of model estimation. Setting _rplot 
= 1 will return a plot of estimated residuals, while setting _rplot = 2 produces 
both the residual graph and fitted-vs.-actual dependent variable series. The graph is 
shown in a separate window when running the program. By viewing the plot of 
residuals, the correlation patterns in residuals may indicate a need to re-specify the 
model. 
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Lesson 3.3: Multiple Regression 

Evaluating output from Lesson 3.2 shows it was in general a good model, but could 
adding more explanatory variables make it better? Let’s see what happens when an 
additional variable, POPU (that is, population in millions of persons), is included in 
the regression.  
 
In the following, we add a few new twists to both the programs of Lesson 3.1 and 
3.2. In addition to _rstat, _rplot, _rlist, this lesson introduces the use of 
another input control variable, _vcov. By setting it to a non-zero value (i.e., 1), the 
regression output will include a variance-covariance matrix as well as a correlation 
matrix of the estimated coefficients. It is often useful to examine the relationship 
among estimated coefficients in a multiple regression. 
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/* 
** Lesson 3.3: Multiple Regression 
*/ 
use gpe2; @ using GPE package (version 2) @ 
output file = gpe\output3.3 reset; 
load data[17,7] = gpe\longley.txt; 
data = data[2:17,.]; 
    
PGNP = data[.,2]; 
GNP = data[.,3]/1000; 
POPU = data[.,6]/1000;              
EM = data[.,7]/1000; 
RGNP = 100*GNP./PGNP; 
 
call reset; @ initialize control variables @ 
_vcov = 1; @ print var-covar matrix @ 
_rstat = 1; @ report residual statistics @ 
_rlist = 1; @ list residuals @ 
_rplot = 2; @ plot data and residuals @ 
_names = {"EM","RGNP","POPU"}; 
call estimate(EM,RGNP~POPU); 
end; 
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Remember how to use “~” to horizontally concatenate vectors or matrices? 
RGNP~POPU is the data matrix of independent variables for this multiple regression. 
Line 16 indicates that the dependent variable EM is the first argument of the 
estimate procedure, followed by the data matrix of independent variables 
RGNP~POPU as the second argument. The list of respective variable names used in 
the regression is defined by _names, an input control variable, in line 15. Note that 
a constant vector for the estimated intercept is automatically added to the model 
estimation.  
 
Including POPU has changed our estimated regression, but is it better? Analyzing the 
following result will tell the story.  
 

Least Squares Estimation 
------------------------ 
Dependent Variable = EM       
Estimation Range =  1          16         
Number of Observations = 16           
Mean of Dependent Variable = 65.317       
Standard Error of Dependent Variable = 3.5120       
 
R-Square = 0.97434      R-Square Adjusted = 0.97039      
Standard Error of the Estimate = 0.60430      
Log-Likelihood = -12.983      
Log Ammemiya Prediction Criterion (APC) =  -0.83552     
Log Akaike Information Criterion (AIC) =  -0.84001     
Log Schwarz Bayesian Information Criterion (BIC) =  -0.69515     
 
Sum of Squares         SS           DF          MSS            F       Prob>F 
Explained          180.26            2       90.131       246.81  4.5725E-011 
Residual           4.7473           13      0.36518  
Total              185.01           15       12.334  
 
Variable        Estimated     Standard      t-Ratio         Prob      Partial 
Name          Coefficient        Error        13 DF         >|t|   Regression 
RGNP             0.068698     0.013386       5.1322   0.00019257      0.66954  
POPU            -0.086282      0.11353     -0.76001      0.46081     0.042542  
CONSTANT           49.651       8.4631       5.8667  5.5306E-005      0.72585  
 
 
Variance-Covariance Matrix of Coefficients 
RGNP           0.00017918  
POPU           -0.0014897     0.012888  
CONSTANT          0.10764     -0.95400       71.624  
                     RGNP         POPU     CONSTANT  
 
Correlation Matrix of Coefficients 
RGNP               1.0000  
POPU             -0.98029       1.0000  
CONSTANT          0.95017     -0.99293       1.0000  
                     RGNP         POPU     CONSTANT  
 
Squared Correlation of Observed and Predicted = 0.97434      
Sum of Squared Residuals = 4.7473       
Sum of Absolute Residuals = 7.4704       
Sum of Residuals = -5.47779E-010 
First-Order Rho = 0.32776      
Durbin-Watson Test Statistic = 1.2602       
 
List of Observed, Predicted and Residuals 
         Obs     Observed    Predicted     Residual    Std Error 
           1       60.323       59.758      0.56493      0.51924  
           2       61.122       60.416      0.70616      0.53666  
           3       60.171       60.279     -0.10802      0.49591  
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           4       61.187       61.925     -0.73787      0.56470  
           5       63.221       63.474     -0.25252      0.55371  
           6       63.639       64.178     -0.53860      0.55192  
           7       64.989       65.075    -0.086161      0.55650  
           8       63.761       64.568     -0.80739      0.58361  
           9       66.019       66.504     -0.48502      0.53598  
          10       67.857       66.937      0.92024      0.55198  
          11       68.169       67.319      0.85001      0.57167  
          12       66.513       66.692     -0.17851      0.55364  
          13       68.655       68.457      0.19823      0.56749  
          14       69.564       69.068      0.49565      0.55697  
          15       69.331       69.387    -0.055654      0.50068  
          16       70.551       71.036     -0.48547      0.50510  

 
Our estimated multiple regression equation is 
 
EM = 49.65 + 0.069 RGNP - 0.086 POPU 
s.e.  (8.46)  (0.013)  (0.114) 
t-ratio  5.87  5.13 - 0.76 

 
RGNP still has about the same influence on EM, as reported in the previous lesson. 
Based on residual statistics, the model has a similar performance to the simple 
regression without the POPU variable. 
 
Pay special attention to the “Partial Regression Coefficient,” which gauges the 
marginal contribution of each variable when the effects of other variables have 
already been taken into account. In terms of model interpretation, the negative slope 
coefficient of POPU is not what we would expect. POPU has an extremely low partial 
regression coefficient and it is not statistically significant as seen by its near zero t-
ratio. Looking at the outputs of the variance-covariance matrix and the correlation 
matrix of coefficients, the estimated coefficient of POPU has a relatively large 
variance and it is strongly correlated with that of RGNP. Therefore, our regression is 
better without POPU. 

 

Estimating Production Function 

So far this handbook has given cut and dried examples of what each GAUSS or GPE 
command does. Now we will attempt to show the flexibility that GPE has to offer. In 
the following sections, we will estimate the famous Cobb-Douglas production 
function with time series of U.S. real output and inputs. To do so, a new data set 
named cjx.txt is introduced; it also comes with the GPE package and is installed in 
the GPE subdirectory. cjx.txt contains six annual data series from 1929 to 1967. 
Let’s look at the contents of cjx.txt. The data matrix has 40 rows and 6 columns, 
with no missing values. The first row contains variable names and should not be 
included for analysis. The bottom of the file contains descriptive information and 
also should not be used. Why is looking at each data file so important? 
Troubleshooting problems caused by imperfect data files is very difficult. Error 
messages caused by loading imperfect data are not always obvious and can show up 
anywhere in your program.  
 
Out of the cjx.txt data series we will use only the following selected variables: 
 
GNP in constant dollars (X); 
Number of persons, adjusted for hours of work and educational level (L1); 
Capital stock, adjusted for rate utilization (K1).  
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To make our following presentation easier, L1 has been renamed L and K1 has been 
renamed K. With the introduced notations, a simple two-input Cobb-Douglas 
production function is written as 
 
X = α Lβ1 Kβ2 exp(ε) 
 
To transform the model into a more useful form, natural logarithms are taken on both 
sides of the equation:  
 
ln(X) = β0 + β1 ln(L) + β2 ln(K) + ε 
 
where β0 = ln(α) is the intercept of the log model, and the slopes β1 and β2 are 
interpreted as input elasticities. Econometric estimation of this Cobb-Douglas 
production function is the focus of the following few lessons. 
 

Lesson 3.4: Cobb-Douglas Production Function 

We will first estimate the unrestricted influences of labor input L and capital input K 
on real output X. Then, the economic theory of constant returns to scale (CRS) is 
formulated and tested with the use of linear restrictions. Testing CRS is done by 
restricting the summation of the two slope coefficients to 1 in the log specification of 
the model. That is, β1 + β2 = 1. To test the hypothesis of CRS, we need to check how 
residuals from both the first unrestricted and second restricted regressions compare.  
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/* 
** Lesson 3.4: Cobb-Douglas Production Function 
*/ 
use gpe2; 
output file = gpe\output3.4 reset; 
load data[40,6] = gpe\cjx.txt; 
 
year = data[2:40,1]; 
X = ln(data[2:40,2]); 
L = ln(data[2:40,3]); 
K = ln(data[2:40,5]); 
 
call reset;     
_names = {"X","L","K"}; 
call estimate(X,L~K); 
_restr = {1 1 1}; 
call estimate(X,L~K); 
end; 
 

 

Optional residual analysis: _rstat=1, _rplot=2, _rlist=1, _vcov=1 may 
be added to the program. 

 
Before examining the output, let’s look at the programming style. This program is 
efficient, that is, many actions are combined in few lines of code. Line 4 removes the 
first row (variable names) of the data file and indexes the matrix data into a vector, 
all in one step. Lines 5, 6, and 7 go one step further. In addition to indexing the 
matrix, they take the natural logarithm of each variable.  
 
Line 10 estimates the basic, unrestricted, least squares regression output:  
 

Least Squares Estimation 
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------------------------ 
Dependent Variable = X        
Estimation Range =  1          39         
Number of Observations = 39           
Mean of Dependent Variable = 5.6874       
Standard Error of Dependent Variable = 0.46096      
 
R-Square = 0.99463      R-Square Adjusted = 0.99433      
Standard Error of the Estimate = 0.034714     
Log-Likelihood = 77.286       
Log Ammemiya Prediction Criterion (APC) =  -6.6471      
Log Akaike Information Criterion (AIC) =  -6.6474      
Log Schwarz Bayesian Information Criterion (BIC) =  -6.5195      
 
Sum of Squares         SS           DF          MSS            F       Prob>F 
Explained          8.0310            2       4.0155       3332.2  1.3921E-041 
Residual         0.043382           36    0.0012051  
Total              8.0744           38      0.21248  
 
Variable        Estimated     Standard      t-Ratio         Prob      Partial 
Name          Coefficient        Error        36 DF         >|t|   Regression 
L                  1.4508     0.083228       17.431  3.9260E-019      0.89407  
K                 0.38381     0.048018       7.9930  1.7130E-009      0.63960  
CONSTANT          -3.9377      0.23700      -16.615  1.8332E-018      0.88464  

 
The estimated model is: 
 
ln(X) = - 3.94 + 1.45 ln(L) + 0.38 ln(K) 
s.e.   (0.24)  (0.083)  (0.048) 
t-ratio  - 16.62  17.43  7.99 
 
Interpreting the estimation result of the log model takes into account that estimated 
slope coefficients translate directly into elasticities. In other words, the influence of 
labor L and capital K on output GNP (X) is expressed in terms of “percentage 
change.” For every one percent increase in labor input L, GNP increases by 1.45 
percent. When capital input K is increased by one percent, GNP increases 0.38 
percent. 
 
An adjusted R2 of .994 reveals a very good fit of the regression equation. Large t-
ratios and small P-values for all variables show that the chance of the elasticity 
coefficients being zero is also small. Moreover, partial regression coefficients are 
strong enough for both ln(L) and ln(K). The resulting model is the basis for many 
lessons to come. 
 
Now, let’s consider the theory of constant returns to scale often assumed in many 
classical productivity studies. Restricted least squares is the technique used to 
estimate models with linear restrictions. GPE’s estimate procedure can be 
modified to perform restricted least squares with the use of the input control variable 
_restr (see Appendix A for details). 
 
The last part of the program (lines 11 and 12) demonstrates a simple example of 
restricting β1 + β2 = 1, in order to test for CRS. To understand what line 11 is doing, 
we need to describe a little matrix algebra. Linear restrictions on least squares 
coefficients can be expressed by the equation 
 
R β = q 
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where R is the restriction matrix specifying a set of linear relationships among 
estimated coefficients. It tells which coefficients are to be restricted. β is the column 
vector of estimated coefficients, and q is the column vector of values that the linear 
combination of β’s are restricted to. In most cases, restrictions are imposed on slope 
coefficients. Separating the intercept term from the slope coefficients, the matrix 
representation of linear restrictions is rewritten as:  
 

[ Rs  R0 ] 



βs

β0
 = q 

 
where βs is the vector of slope coefficients and Rs is the restriction matrix 
corresponding to βs. Similarly, β0 is the intercept coefficient and R0 corresponds to 
β0. The input control variable _restr in GPE is implemented according to the 
restrictions on slope coefficients defined below: 
 
_restr = [ Rs  q ] 
 
Linear restrictions involving the intercept term will necessitate the explicit inclusion 
of a constant column as part of the data matrix of independent variables and will 
estimate the model without an intercept. This is done by setting the input control 
variable _const = 0 before calling the estimate procedure. 
 
Back to our CRS example, line 11: 
 
_restr = {1 1 1}; 
 
Now let’s look at the matrix to the right of the equal sign, {1 1 1}. Each row of 
_restr specifies a single restriction. Therefore, only one restriction is called out 
(i.e. β1 + β2 = 1) in this example. The number of columns of _restr comes from 
the number of slope coefficients βs plus the one column of the restricted value q. The 
first two columns of 1’s in _restr(βs) select β1 and β2. When multiplied with 
corresponding slope coefficients, it is the sum of β1 and β2. The last column of 1’s in 
_restr(q) specifies that the resulting sum of β1 and β2 equals 1. In other words, 
the _restr matrix calculates: 
 

[ 1  1 ] 



β1

β2
  = 1*β1 + 1*β2 = 1. 

 

 

Restricting β1 = β2 is the same as β1 - β2 = 0. Using the information from the 
program lesson3.4, the GPE command for the restriction β1 - β2 = 0 is: 
 
_restr = {1 -1 0}; 
 

That is, [ 1  -1 ] 



β1

β2
  = 1*β1 -1*β2 = 0. 

 

 

More complicated cases may have several restrictions. To demonstrate such a 
situation, assume a model with four slope coefficients β1, β2, β3, β4. Imposing the 
restrictions β2 = 0 and  β3 + β4 = 1 would use: 
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_restr ={0 1 0 0 0, 
         0 0 1 1 1}; 
 

That is, 



0 1 0 0

0 0 1 1  







β1

β2

β3

β4

  =  



0*β1 + 1*β2 + 0*β3 + 0*β4

 0*β1 + 0*β2 + 1*β3 + 1*β4
  = 



0

1   

 
Look at the output produced by restricted least squares estimation (line 12): 
 

Least Squares Estimation 
------------------------ 
Dependent Variable = X        
Estimation Range =  1          39         
Number of Observations = 39           
Mean of Dependent Variable = 5.6874       
Standard Error of Dependent Variable = 0.46096      
 
WARNING: Linear Restrictions Imposed. 
R-Square, AOV, SE, and t may not be reliable! 
Wald F-Test for Linear Restrictions 
F(   1,  36)       Prob>F 
      427.66  1.4430E-021 
Asymptotic Hypothesis Testing for Linear Restrictions 
                                Chi-Sq     DF  Prob>Chi-Sq 
Wald Chi-Square Test            427.66      1  5.2567e-095  
Lagrange Multiplier Test        35.972      1  2.0018e-009  
Likelihood Ratio Test           99.669      1  1.8008e-023  
 
R-Square = 0.93080      R-Square Adjusted = 0.92893      
Standard Error of the Estimate = 0.12289      
Log-Likelihood = 27.451       
Log Ammemiya Prediction Criterion (APC) =  -4.1189      
Log Akaike Information Criterion (AIC) =  -4.0918      
Log Schwarz Bayesian Information Criterion (BIC) =  -3.9638      
 
Sum of Squares         SS           DF          MSS            F       Prob>F 
Explained          6.2806            1       6.2806       415.91  1.0185E-021 
Residual          0.55874           37     0.015101  
Total              8.0744           38      0.21248  
 
Variable        Estimated     Standard      t-Ratio         Prob      Partial 
Name          Coefficient        Error        37 DF         >|t|   Regression 
L                -0.15051      0.10802      -1.3933      0.17183     0.049854  
K                  1.1505      0.10802       10.651  8.0037E-013      0.75405  
CONSTANT          0.95015     0.061657       15.410  1.1067E-017      0.86520  

 
Before testing for CRS, let’s look at the format of the output. Notice the warning 
near the top. Due to the imposed restrictions, standard statistics based on residuals 
are reliable only when the restrictions are correct. The Wald test statistic of linear 
restrictions is given along with its P-value, directly under the warning near the top of 
the output. The Wald test statistic uses residual sum-of-squares (RSS) from both 
unrestricted and restricted models to check if the stated restrictions yield a model that 
is statistically different from the model without the restrictions.  
 
The Wald test statistic is:  
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RSS* - RSS
 J  

 
RSS
 N-K  

  ∼  F(J, N-K) 

 
where RSS* is the restricted residual sum-of-squares with β1 + β2 = 1; RSS is the 
unrestricted residual sum-of-squares; J is the number of restrictions; K is the number 
of variables, including the constant (do not confuse K with the variable name for 
capital input in this program); and N is the number of total observations. That is, 
 
0.55874 - 0.04338

 1  

 
0.04338

 39-3   
  = 427.66  ~  F(1, 39-3) 

 
At a 5% level of significance, the F critical value of 4.17 places our computed value, 
427.66, in the right-tail rejection region of the F distribution. Together with a near 
zero P-value for the Wald statistic, this result leads us to reject the linear restriction 
β1 + β2 = 1. 
 
In addition to Wald test for linear restrictions, large sample test statistics such as 
Lagrange Multiplier test and Likelihood Ratio test are reported in the output. Refer 
to econometrics textbooks about the derivation and application of these tests. All the 
corresponding P-value of these statistics are very small pointing to the same 
conclusion to reject the linear restriction of constant returns to scale. Based on this 
simple two-input Cobb-Douglas specification of the production technology, the data 
series from cjx.txt does not support the theory of constant returns to scale. As a 
matter of fact, the U.S. production technology exhibited the pattern of increasing 
returns to scale (i.e., β1 + β2 > 1) at least from 1929 to 1967. 
 
Having thrown away the hypothesis of constant returns to scale, the next interesting 
issue about the production function is presented. Is there any difference in factor 
productivity between pre-war and post-war periods? 
 

Lesson 3.5: Testing for Structural Change 

The goal of this lesson is to determine if real output, measured by GNP from cjx.txt, 
underwent structural change over the time period between 1929 to 1967, starting in 
1948. That is, is there a difference between the estimated coefficients when one 
regression spans the entire time period versus when two separate regressions are 
estimated? One way to determine if there is a difference is to use the Chow test. The 
Chow test compares the results of the regression of the entire time period (1929-
1967) against the regression data from 1929-1948 and then 1949-1967. If a 
statistically significant difference is found, we can assume that there was a structural 
change in productivity after 1948. 
 
 
 
 

1 
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3 
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/* 
** Lesson 3.5: Testing for Structural Change 
*/ 
use gpe2; 
output file = gpe\output3.5 reset; 
load data[40,6] = gpe\cjx.txt; 
 
year = data[2:40,1]; 
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X = ln(data[2:40,2]); 
L = ln(data[2:40,3]); 
K = ln(data[2:40,5]); 
call reset; 
_names = {"X", "L", "K"}; 
call estimate(X,L~K);     @ whole sample @ 
 
_begin = 1;      @ sub-sample: 1929-1948 @ 
_end = 20; 
call estimate(X,L~K); 
 
_begin = 21;     @ sub-sample: 1949-1967 @ 
_end = 39; 
call estimate(X,L~K); 
end; 

 
Run the above program to analyze the output. It calls estimate three times. The 
first time it estimates the entire sample (the default case):  
 

Least Squares Estimation 
------------------------ 
Dependent Variable = X        
Estimation Range =  1          39         
Number of Observations = 39           
Mean of Dependent Variable = 5.6874       
Standard Error of Dependent Variable = 0.46096      
 
R-Square = 0.99463      R-Square Adjusted = 0.99433      
Standard Error of the Estimate = 0.034714     
Log-Likelihood = 77.286       
Log Ammemiya Prediction Criterion (APC) =  -6.6471      
Log Akaike Information Criterion (AIC) =  -6.6474      
Log Schwarz Bayesian Information Criterion (BIC) =  -6.5195      
 
Sum of Squares         SS           DF          MSS            F       Prob>F 
Explained          8.0310            2       4.0155       3332.2  1.3921E-041 
Residual         0.043382           36    0.0012051  
Total              8.0744           38      0.21248  
 
Variable        Estimated     Standard      t-Ratio         Prob      Partial 
Name          Coefficient        Error        36 DF         >|t|   Regression 
L                  1.4508     0.083228       17.431  3.9260E-019      0.89407  
K                 0.38381     0.048018       7.9930  1.7130E-009      0.63960  
CONSTANT          -3.9377      0.23700      -16.615  1.8332E-018      0.88464  

  
The first regression is named the restricted model because it restricts the entire time 
period to having the same structure. The estimated restricted model is: 
 
ln(X) = - 3.94 + 1.45 ln(L) + 0.38 ln(K) 
s.e.   (0.24)  (0.083)  (0.048) 
t-ratio  - 16.62  17.43  7.99 

 
Sub-samples for the second and for the third regression estimations are controlled by 
_begin and _end, set to the desired observation numbers, respectively. _begin 
and _end allow regressions of varying sizes to be estimated from a single data 
series. Since the default value of _begin is 1, it really is not necessary in line 11. 
The next line _end = 20 tells GPE to use up to, and including, the 20th row of 
data for estimate. Here is the output of the second regression equation: 
 

Least Squares Estimation 
------------------------ 
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Dependent Variable = X        
Estimation Range =  1          20         
Number of Observations = 20           
Mean of Dependent Variable = 5.3115       
Standard Error of Dependent Variable = 0.27867      
 
R-Square = 0.97590      R-Square Adjusted = 0.97307      
Standard Error of the Estimate = 0.045732     
Log-Likelihood = 34.945       
Log Ammemiya Prediction Criterion (APC) =  -6.0301      
Log Akaike Information Criterion (AIC) =  -6.0324      
Log Schwarz Bayesian Information Criterion (BIC) =  -5.8831      
 
Sum of Squares         SS           DF          MSS            F       Prob>F 
Explained          1.4399            2      0.71996       344.24  1.7649E-014 
Residual         0.035555           17    0.0020915  
Total              1.4755           19     0.077656  
 
Variable        Estimated     Standard      t-Ratio         Prob      Partial 
Name          Coefficient        Error        17 DF         >|t|   Regression 
L                  1.6167      0.20897       7.7367  5.7391E-007      0.77881  
K                 0.21967      0.22995      0.95530      0.35281     0.050947  
CONSTANT          -4.0576      0.35722      -11.359  2.3202E-009      0.88358  

 
Notice that the estimation range is from 1 to 20, using 20 observations. Running the 
regression using only the time period from 1929 to 1948 returns the following 
model: 
 
ln(X) = - 4.06 + 1.62 ln(L) + 0.22 ln(K) 
s.e.  (0.36)  (0.21)  (0.23) 
t-ratio  - 11.36  7.74  0.96 

 
The third regression with _begin = 21 (line 14) and _end = 39 (line 15) tells 
GPE to estimate the model from the 21st row of the data series up to, and including, 
the last or the 39th row. Let’s look at the regression result: 
 

Least Squares Estimation 
------------------------ 
Dependent Variable = X        
Estimation Range =  21         39         
Number of Observations = 19           
Mean of Dependent Variable = 6.0832       
Standard Error of Dependent Variable = 0.21025      
 
R-Square = 0.99578      R-Square Adjusted = 0.99525      
Standard Error of the Estimate = 0.014484     
Log-Likelihood = 55.132       
Log Ammemiya Prediction Criterion (APC) =  -8.3228      
Log Akaike Information Criterion (AIC) =  -8.3255      
Log Schwarz Bayesian Information Criterion (BIC) =  -8.1763      
 
Sum of Squares         SS           DF          MSS            F       Prob>F 
Explained         0.79237            2      0.39618       1888.5  1.0026E-019 
Residual        0.0033566           16   0.00020979  
Total             0.79572           18     0.044207  
 
Variable        Estimated     Standard      t-Ratio         Prob      Partial 
Name          Coefficient        Error        16 DF         >|t|   Regression 
L                  1.0090      0.14403       7.0054  2.9675E-006      0.75413  
K                 0.57909     0.055248       10.482  1.4222E-008      0.87288  
CONSTANT          -2.4981      0.53122      -4.7025   0.00023960      0.58021  
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Now, notice that the estimation range is from 21 to 39, using 19 observations. 
Regressing only the time period from 1949 to 1967 returns the following model:  
    
ln(X) = - 2.50 + 1.01 ln(L) + 0.58 ln(K) 
s.e.  (0.53)  (0.14)  (0.055) 
t-ratio  - 4.70  7.01  10.48 

 
Back to the question at hand, was there a structural change in productivity between 
the years of 1929 and 1967? We have processed our raw data using 1948 as the 
break point, and only need to apply the formal Chow test on the results. Computing 
the Chow test statistic as follows: 
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+−*
 ∼   F(K, N-2K) 

 
where RSS* is the restricted residual sum-of-squares for the whole sample (1929-
1967); RSS1 is the residual sum-of-squares for the first sub-sample (1929-1948); 
RSS2 is the residual sum-of-squares for the second sub-sample (1949-1967); K is the 
number of variables, including constant, in each regression (again, do not confuse K 
with the variable name for capital input in this program); and N is the number of 
observations for the whole sample. 
 
Plugging in the numbers yields: 
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 =  1.27 ~ F(3, 39-6) 

 
At a 5% level of significance, comparing the Chow test statistic (1.27) against the F 
critical value of 2.92 leads us to conclude that, based on the Cobb-Douglas 
specification, there was no structural change in productivity between 1929 and 1967. 
 

Lesson 3.6: Residual Diagnostics 

From the previous two lessons on the study of the Cobb-Douglas production function 
using U.S. input and output data series from cjx.txt, we concluded that production 
technology did not exhibit constant returns to scale. As a matter of fact, from 1929 to 
1967, there was a pattern of increasing returns to scale (see Lesson 3.4). By dividing 
the sample into pre-war (1929-1948) and post-war (1949-1967) periods, we did not 
find any structural differences in these two periods (see Lesson 3.5). It is better to 
estimate the production function using the whole sample. 
 
This returns us to our original least squares estimation of the model: 
 
ln(X) = -3.94 + 1.45 ln(L) + 0.38 ln(K) 

 
or in exponential form: 
 
X = 0.02 L1.45 K0.38 
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For the purpose of statistical inference, the log-model is assumed to be normally 
distributed. In other words, X is log-normally distributed. Do the estimated errors, or 
residuals, in fact follow a normal distribution? Are there any dominant observations 
of residuals that distort the distribution of the remaining residuals? The former is a 
question about the underlying normality assumption of the model, while the latter 
relates to issues of influential observations and outliers. 
 
Besides examining standard residual statistics and plotting residual series, GPE 
offers a set of diagnostic information to check the characteristics of residuals in 
depth. 
 
The first half of the program below is the same as that of lesson3.4. After removing 
_rplot and setting _rstat to typical values, we add the following two lines: 
 
_bjtest = 1; 
_rlist = 2; 
 

Setting _bjtest = 1 (meaning yes or true) will carry out the Bera-Jarque 
normality test on the residuals. 
 
We have seen the use of _rlist = 1 which lists each observation of the residuals 
and their standard errors, in addition to observed (actual) and predicted (fitted) data 
series. With _rlist = 2, in addition to residuals and their standard errors, useful 
information on influential observations and outliers is available.  
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/* 
** Lesson 3.6: Residual Diagnostics 
*/ 
use gpe2; 
output file = gpe\output3.6; 
load data[40,6] = gpe\cjx.txt; 
 
year = data[2:40,1]; 
X = ln(data[2:40,2]); 
L = ln(data[2:40,3]); 
K = ln(data[2:40,5]); 
names = {"X", "L", "K"}; 
 
call reset; 
_rstat = 1;  
_rlist = 2; @ check influential obs. @ 
_bjtest = 1; @ normality test @ 
 
call estimate(X,L~K); 
end; 
 
Running the above program, the output file output3.6 is generated. For model 
evaluation, we now refer to output3.6. After reporting basic residual statistics, 
the Bera-Jarque Wald test for normality computes the statistic based on the 
measurements of skewness and kurtosis for the residuals as follows: 
 

Bera-Jarque Wald Test for Normality 
Asymptotic Standard Error of Residuals = 0.033352     
Skewness of Residuals = 0.84226      
Kurtosis of Residuals = 4.7072       
Chi-Sq(   2)  Prob>Chi-Sq 
0.0093379 
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The resulting test statistic follows the Chi-squared probability distribution with 2 
degrees of freedom. The computed value of 9.35 for the Bera-Jarque test statistic is 
far greater than the critical value for either a 5 or 10 percent level of significance (or, 
less than 1% in its P-value). The null hypothesis of residual normality is rejected! 
For a perfect normal distribution, residual skewness should be 0 and residual kurtosis 
should be 3. The rejection of normality is not a surprise. However, non-normal 
residuals render potential problems for statistical inference. 
 
The last part of the output reports the regression diagnostics for influential 
observations and outliers: 
 

Residual Diagnostics for Influential Observations and Outliers 
(Valid for Checking Ordinary Least Squares Residuals Only) 
                          Standardized  Studentized 
         Obs     Leverage     Residual     Residual       DFFITS 
           1     0.048570     -0.37556     -0.37103    -0.083832  
           2     0.069668      -1.2819      -1.2938     -0.35406  
           3     0.092468      -1.2069      -1.2149     -0.38779  
           4      0.20093     -0.41784     -0.41300     -0.20710  
           5      0.18527     -0.97098     -0.97019     -0.46265  
           6      0.12035     -0.61196     -0.60656     -0.22435  
           7     0.088917     -0.23985     -0.23669    -0.073941  
           8     0.063757      0.30955      0.30563     0.079757  
           9     0.064645    -0.076541    -0.075477    -0.019842  
          10     0.067310       1.3562       1.3727      0.36876  
          11     0.057612       1.4644       1.4889      0.36815  
          12     0.048564       1.2914       1.3039      0.29458  
          13     0.045681      0.54239      0.53701      0.11749  
          14     0.049876     -0.51380     -0.50848     -0.11650  
          15     0.044225     0.036933     0.036417    0.0078335  
          16     0.048269       1.9447       2.0269      0.45646  
          17     0.049727       3.2828       3.8671      0.88462  
          18      0.14309      0.41797      0.41313      0.16882  
          19      0.13632      -2.0428      -2.1422     -0.85110  
          20      0.11090      -1.8036      -1.8646     -0.65853  
          21     0.064225     -0.61213     -0.60673     -0.15895  
          22     0.055357     0.035430     0.034935    0.0084570  
          23     0.056146     -0.79457     -0.79042     -0.19278  
          24     0.050215     -0.95665     -0.95549     -0.21970  
          25     0.043698     -0.69982     -0.69478     -0.14852  
          26     0.032275      0.32336      0.31930     0.058311  
          27     0.037287      0.43459      0.42964     0.084554  
          28     0.042054     -0.44591     -0.44089    -0.092378  
          29     0.046087     -0.29348     -0.28972    -0.063681  
          30     0.056159      0.42446      0.41957      0.10235  
          31     0.058795     0.010363     0.010218    0.0025538  
          32     0.064299     -0.41384     -0.40902     -0.10722  
          33     0.078586      0.11346      0.11190     0.032679  
          34     0.084366      0.36577      0.36132      0.10968  
          35     0.083668      0.75412      0.74951      0.22648  
          36     0.094336      0.69948      0.69443      0.22412  
          37     0.097121      0.56208      0.55667      0.18257  
          38      0.10356     0.017775     0.017526    0.0059569  
          39      0.11562     -0.91018     -0.90796     -0.32830  
        Mean     0.076923   -0.0072089    0.0067883    -0.024796  

 
To check for influential observations and outliers, we first take a look at the column 
“Leverage,” which measures the influence of each observation on the regressors. We 
check for leverage which is greater than 2×(K/N) where K is the number of 
estimated coefficients and N is the number of observations. In this case, 2×(K/N) = 
2×(3/39) = 0.154. Observations 4 and 5 (leverage 0.201 and 0.185, respectively) are 
quite influential. 
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Standardized (or normalized) residuals should follow a standardized normal 
distribution, provided that the Bera-Jarque test statistic confirms the distribution 
assumption. Unfortunately, this is not the case as shown by the test results above. 
Observations 17 and 19 (3.283 and –2.043, respectively) are greater than 2 standard 
errors from the mean. 
 
A more robust measure of outliers uses the studentized residuals (or standardized 
predicted residuals) which follows the Student’s t distribution with N-K-1 degrees of 
freedom. Given the critical value of 1.69 at a 5% level of significance, observations 
16, 17, 19, and 20 are candidates for outliers. 
 
The last column, “DFFITS,” measures the contribution of each observation to the 
prediction of the model. The cutoff value 2×(K/N)0.5 is suggested (that is, 0.555 in 
the case of this Cobb-Douglas production model). The contribution of observations 
17, 19, and 20 are rather large. 
 
Materials of this lesson on influential observations and outliers can be found in Judge 
et al. (1988) and Maddala (1988). In summary, for our study of the Cobb-Douglas 
production function, the model is sensitive to the use of data near the end of World 
War II (i.e., observations 17, 19, and 20). The model may be better explained 
without them. 

 





 

 

IV 
Dummy Variables 
 

Dummy variables are widely used in econometrics to isolate sub-group effects in a 
given sample. These sub-groups may be geographical regions, yearly quarters, 
gender, or periods in time. How dummy variables are used in regression estimation 
determines in which way the sub-groups differ. The so-called dummy variables 
themselves remain vectors of ones and zeros. A one indicates the presence of a given 
characteristic, while a zero indicates its absence. In most cases, one less dummy 
variable is used than there are sub-groups. Estimated regressions from these sub-
groups may have an additive difference, a multiplicative difference, or a combined 
additive and multiplicative difference. An additive difference refers to a parallel shift 
in the level of an estimated regression. This shift is reflected in a change of the 
intercept term, while the other coefficients remain unchanged. The slope coefficients 
will vary with their associated multiplicative dummy variables. The estimated 
changes in slope coefficients among sub-groups are measured by the coefficients of 
multiplicative dummy variables. A combined additive and multiplicative difference 
in sub-groups is achieved by a change in all coefficients, both intercept and slope 
terms. 
 
Since entire chapters on dummy variables are written in excellent academic 
references detailing the interpretation of the results from using dummy variables, we 
will only give brief interpretations of our results. Instead, we explore in detail the 
generation of dummy variables using GAUSS. 
 

Seasonality 

Determining seasonal patterns in time series data is one application of dummy 
variables. A new text data file named almon.txt will be used to study quarterly 
seasonality. It has three variables. The first column is the date, in years and quarters 
(YEARQT). The second column is capital expenditures in millions of dollars 
(CEXP). The last column holds capital appropriations in millions of dollars (CAPP). 
The basic Almon model describes the simple relationship between capital 
expenditures and appropriations as follows: 
 
CEXP = β0 + β1 CAPP + ε 
 
There are 60 observations in total, although Almon’s original study used the first 36 
observations from 1953 to 1961. Lesson 4.1 is devoted to the study of seasonal 
differences with Almon’s quarterly time series on capital appropriations and 
expenditures.  
 
Does the use of dummy variables matter? Lesson 4.1 continues the hypothesis testing 
procedure for significant differences in quarterly seasonality. It is achieved by 
comparing regression results from restricted (without seasonal dummy variables) and 
unrestricted (with seasonal dummy variables) least squares. 
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In Lesson 4.2, the notorious problem of the “dummy variable trap” is discussed with 
an alternative use and interpretation of dummy variables in conjunction with the 
regression without intercept. 
 

Lesson 4.1: Seasonal Dummy Variables 

In this lesson, we introduce the use of additive dummy variables to remove 
seasonality in Almon’s quarterly time series data.  
 
First of all, seasonality implies that the best-fitting regression for each season 
(quarter) may be different. In other words, the intercept and slope terms that provide 
the best fit for one quarter may not provide the best fit for different quarters. Before 
generating the seasonal dummy variable matrix, you need to have some idea of what 
it should look like. It has a repeating set pattern of four columns, one for each 
quarter. Consider all 60 observations of time series data in almon.txt; a pattern of 
0’s and 1’s is created to represent one cycle of seasonality (that is, one year). The 
pattern is reshaped into a 4-column matrix with the desired 60 rows: 
 
pattern = {1 0 0 0, 
           0 1 0 0, 
           0 0 1 0, 
           0 0 0 1}; 
D = reshape(pattern,60,4); 
q1 = D[.,1]; 
q2 = D[.,2]; 
q3 = D[.,3]; 
 
To avoid perfect collinearity with the constant column associated with the intercept, 
only three columns of the dummy variable matrix D will be used. That is, four 
quarters are indicated with only three dummies: q1, q2, and q3. Lesson 4.2 on the 
dummy variable trap explains why we must do this. 
 
Now the model with three quarterly dummy variables is: 
 
CEXP = β0 + β1CAPP + δ1 Q1 + δ2 Q2 + δ3 Q3 + ε 
 
Or, in four equations (one for each quarter) as follows: 
 
Quarter 1: CEXP = (β0 + δ1) + β1CAPP + ε 
Quarter 2: CEXP = (β0 + δ2) + β1CAPP + ε 
Quarter 3: CEXP = (β0 + δ3) + β1CAPP + ε 
Quarter 4: CEXP =  β0 + β1CAPP + ε 
 
We also will address the significance of seasonal differences in the model by testing 
when the three coefficients δ1, δ2, and δ3 are jointly equal to zero. This is a test 
procedure for the presence of seasonality in the model we will examine later. 
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/* 
** Lesson 4.1: Seasonal Dummy Variables 
*/ 
use gpe2; 
output file = gpe\output4.1 reset; 
load almon[61,3] = gpe\almon.txt; 
 
cexp = almon[2:61,2]; 
capp = almon[2:61,3]; 
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qt = almon[2:61,1]; 
 
pattern = {1 0 0 0, 
           0 1 0 0, 
           0 0 1 0, 
           0 0 0 1}; 
D = reshape(pattern,60,4); 
q1 = D[.,1]; @ quarterly seasonal dummies @ 
q2 = D[.,2]; 
q3 = D[.,3]; 
 
call reset; 
_names = {"cexp", "capp", "q1", "q2", "q3"}; 
call estimate(cexp,capp~q1~q2~q3); 
_restr = {0 1 0 0 0, 
          0 0 1 0 0, 
          0 0 0 1 0}; 
call estimate(cexp,capp~q1~q2~q3); 
end;  
 
The estimation is carried out with three quarter dummy variables named q1, q2, and 
q3. The fourth quarter is the base case, and the coefficients of three dummy 
variables identify the additive differences from that of the fourth quarter, or the 
intercept term.  
 

 

There are many ways to generate the dummy variables other than the suggested use 
of the reshape command. A simple alternative is to rely on the quarter indicator 
qt, appearing in the first column of the data file almon.txt. Lines 7 through 11 of 
the above program can be replaced by the following three lines: 
 
q1 = (qt%10) .== 1; 
q2 = (qt%10) .== 2; 
q3 = (qt%10) .== 3; 
 

The modulo division “%” returns the remainder of the integer division, and the 
notation “.==” in GAUSS performs element-by-element equality comparison. In 
other words, each line compares the last digit of qt to a given quarter, placing a one 
in the dummy variable if the comparison turns out to be true. 

 

 

GAUSS has its own commands for creating dummy variables: dummy, dummybr, 
dummydn. The command dummy creates a matrix of dummy variables by breaking 
a vector of data into multiple groups. To make sense of this example, lines 7 and 8 
of the above program may be replaced by the following: 
 
seasons = {1,2,3,4}; 
D = dummy(qt%10, seasons); 
 

where the column vector seasons containing four quarter indicators is used to 
compare with the last digit of the variable qt. The GAUSS command dummy 
creates a matrix of four columns of dummy variables, D. It compares each data 
observation of qt%10 to the breakpoints designated in the vector seasons. If the 
data are in the range designated, a one is placed in the corresponding element of 
matrix D, if not, a zero is placed. 
 
Running the program lesson4.1 will produce two sets of regression results in the 
output file output4.1. The first estimated model looks like this: 
 
CEXP  = 670.93  + 0.737 CAPP - 13.69 Q1 - 50.60 Q2 - 31.53 Q3 
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s.e.         (230.9)     (0.053)            (204.5)       (204.3)      (204.2) 
t-ratio      2.91         13.95            - 0.067       - 0.248       - 0.154 
 
We can also write the estimated model as four separate equations, one for each 
quarter: 
 
Quarter 1: CEXP  = (670.93 - 13.69) + 0.737 CAPP  
Quarter 2: CEXP  = (670.93 - 50.60) + 0.737 CAPP  
Quarter 3: CEXP  = (670.93 - 31.53) + 0.737 CAPP  
Quarter 4: CEXP  =  670.93 + 0.737 CAPP  
 
We have estimated the linear relationship between capital expenditures (CEXP) and 
appropriations (CAPP) with varying intercept terms to represent the seasonal 
differences in the model. Is there a real or significant difference among the four 
estimated regression equations? Analyzing both the t-ratios and the P-values reveals 
that the coefficients of dummy variables are not statistically significantly different 
from zero. Furthermore, the partial regression values are very small for the dummy 
variables. A more formal procedure is to test the hypothesis that all of the 
coefficients of dummy variables are jointly equal to zero. The hypothesis is that δ1 = 
0, δ2 = 0, and δ3 = 0 hold simultaneously. The GPE input control variable _restr 
(line 15) defines Almon’s equation with the three quarterly dummy variables jointly 
equaling zero. 
 
_restr = {0 1 0 0 0, 
          0 0 1 0 0, 
          0 0 0 1 0}; 
 
Then, restricted least squares estimation is carried out in line 16. Here is the second 
set of estimation results in which the coefficients of three quarterly dummy variables 
are restricted to zero: 
 

Least Squares Estimation 
------------------------ 
Dependent Variable = CEXP     
Estimation Range =  1          60         
Number of Observations = 60           
Mean of Dependent Variable = 3092.4       
Standard Error of Dependent Variable = 1151.9       
 
WARNING: Linear Restrictions Imposed. 
R-Square, AOV, SE, and t may not be reliable! 
Wald F-Test for Linear Restrictions 
F(   3,  55)       Prob>F 
    0.023130      0.99518 
Asymptotic Hypothesis Testing for Linear Restrictions 
                                Chi-Sq     DF  Prob>Chi-Sq 
Wald Chi-Square Test          0.069391      3      0.99524  
Lagrange Multiplier Test      0.075604      3      0.99459  
Likelihood Ratio Test         0.075652      3      0.99459  
 
R-Square = 0.78006      R-Square Adjusted = 0.77626      
Standard Error of the Estimate = 544.88       
Log-Likelihood = -462.15      
Log Ammemiya Prediction Criterion (APC) =  12.681       
Log Akaike Information Criterion (AIC) =  12.734       
Log Schwarz Bayesian Information Criterion (BIC) =  12.908       
 
Sum of Squares         SS           DF          MSS            F       Prob>F 
Explained     6.1072E+007            1  6.1072E+007       205.70  9.9398E-021 
Residual      1.7220E+007           58  2.9689E+005  
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Total         7.8291E+007           59  1.3270E+006  
 
Variable        Estimated     Standard      t-Ratio         Prob      Partial 
Name          Coefficient        Error        58 DF         >|t|   Regression 
CAPP              0.73684     0.051375       14.342  9.9398E-021      0.78006  
Q1           -6.1284E-014      0.00000      0.00000      0.00000      0.00000  
Q2            2.6290E-013      0.00000      0.00000      0.00000      0.00000  
Q3           -1.2079E-013      0.00000      0.00000      0.00000      0.00000  
CONSTANT           646.48       184.48       3.5044   0.00088917      0.17474  

 
By comparing regression results from restricted (without seasonal dummy variables) 
and unrestricted (with seasonal dummy variables) least squares, the computed Wald 
test statistic for the above three linear restrictions is a negligible 0.02, implying 
insignificant seasonal variation in the model. It is further confirmed with an 
extremely large P-value 0.99 for all the test statistics of linear restrictions. We can 
conclude safely that there is no difference in the estimated Almon equations for the 
different quarters. 
 

Lesson 4.2: Dummy Variable Trap 

Here comes a technical question. When we estimated Almon’s model in Lesson 4.1, 
we only explicitly included three quarterly dummy variables in the regression 
equation. Why would we drop the fourth dummy variable? If you keep the constant 
term and use a dummy variable for each group, your program will generate an error 
message similar to the following: 
 

C:\GAUSS\SRC\GPE2.SRC(1383) : error G0121 : Matrix not positive definite 
Currently active call: _lsqest [1383] 

 
This condition is called the “dummy variable trap.” The dummy variable trap gets 
just about everyone at some time. Understanding how the dummy variable trap 
happens will make avoiding it easier. Remember that a typical regression equation 
contains a constant vector of ones associated with the intercept coefficient. Now, if 
there is a dummy variable for each group, summing all the dummy variables together 
equals one. The problem of perfect collinearity exists! Dropping one dummy 
variable is not the only solution to stay out of the “trap.” The alternative is to include 
all dummy variables but to estimate the regression without the intercept term. In 
GPE, regression estimation without intercept is carried out by setting the input 
control variable: 
 
_const = 0; 
 
The following program is a slightly modified version of the previous program. It 
includes all four quarterly dummy variables, but the model is estimated without the 
intercept term. 
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/* 
** Lesson 4.2: Dummy Variable Trap 
*/ 
use gpe2; 
output file = gpe\output4.2 reset; 
load almon[61,3] = gpe\almon.txt; 
 
cexp = almon[2:61,2]; 
capp = almon[2:61,3]; 
qt = almon[2:61,1]; 
 
pattern = {1 0 0 0, 
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           0 1 0 0, 
           0 0 1 0, 
           0 0 0 1}; 
D = reshape(pattern,60,4); 
 
call reset; 
_const = 0; @ regression without intercept @ 
_names = {"cexp","capp","q1","q2","q3","q4"}; 
call estimate(cexp,capp~D); 
end; 
 
Run this program, and refer to the output file output4.2 for details. The important 
catch is the statement of line 10: 
 
_const = 0; 
 
Without it, you will fall into the “dummy variable trap”! The estimated model can be 
summarized as follows: 
 
CEXP  =  0.737 CAPP + 657.23 Q1 + 620.32 Q2 + 639.40 Q3 + 670.93 Q4 
s.e.          (0.053)             (222.4)          (222.7)          (222.4)         (230.9) 
t-ratio       13.95               2.95               2.74               2.80             2.91 
 
The interpretation of the coefficients associated with four quarter dummy variables is 
directly reflected as the intercept values of each equation: 
 
Quarter 1: CEXP  =  657.23 + 0.737 CAPP  
Quarter 2: CEXP  =  620.32 + 0.737 CAPP  
Quarter 3: CEXP  =  639.40 + 0.737 CAPP  
Quarter 4: CEXP  =  670.93 + 0.737 CAPP  
 
A careful eye will see that these results are the same as those of the first regression 
equation in Lesson 4.1 using three dummies and a constant term. 
 

Structural Change 

In the next lesson, we will use a dummy variable approach to estimate and test for 
structural change previously studied in the production function of Lesson 3.5. Recall 
that a simple Cobb-Douglas production function was estimated using time series of 
U.S. real output (X), labor (L) and capital (K) inputs obtained from the data file 
cjx.txt. The question was, is there a change in both intercept and slope terms during 
post-war expansion after 1948? In Lesson 3.5, a Chow test was formulated and 
performed with two separate samples: 1929-1948 and 1949-1967. The alternative 
approach is to use a dummy variable for sample separation, and check for the 
difference in intercept and slope terms of the regression for each sub-sample. To 
check for the intercept difference, the use of an additive dummy variable would 
suffice. To check for the slope difference, a multiplicative dummy variable 
associated with each explanatory variable should be used. 
 

Lesson 4.3: Testing for Structural Change: Dummy Variable Approach 

When breaking the time series data in cjx.txt into two sub-groups, only one dummy 
variable named D is created (one less than the number of sub-groups). D is a vector 
whose entries are equal to zero for all observations in the first time period (1929-
1948), and one for all observations in the second period (1949-1967). One way to 
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create D is to compare a given vector available in the original time series to a set 
value. In this lesson we create a dummy variable D by comparing each observation 
in the vector YEAR to the value 1948. For every observation greater than 1948, D is 
set to one, otherwise D is set to zero. Notice that the dot (.) before the “>” means 
element-by-element greater-than comparison: 
 
D = year.>1948; 
 

 

If the number of continuing observations designed for the base and alternative 
situations are known, concatenating a vector of zeros vertically to a vector of ones is 
a simple method of creating the dummy variable D. In this case, 
 
D = zeros(20,1)|ones(19,1); 
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/* 
**  Lesson 4.3: Testing for Structural Change 
**  Dummy Variable Approach 
*/ 
use gpe2; 
output file = gpe\output4.3 reset; 
load data[40,6] = gpe\cjx.txt; 
 
year = data[2:40,1]; 
X = ln(data[2:40,2]); 
L = ln(data[2:40,3]); 
K = ln(data[2:40,5]); 
 
D = year.>1948;  
DL = D.*L;   
DK = D.*K; 
            
call reset;  
_names = {"X","L","K","DL","DK","D"};                
call estimate(X,L~K~DL~DK~D);  
_restr = {0 0 1 0 0 0, 
          0 0 0 1 0 0, 
          0 0 0 0 1 0}; 
call estimate(X,L~K~DL~DK~D);  
end; 
 
Line 8 creates the additive dummy variable named D. Lines 9 and 10 use D to set up 
multiplicative dummy variables in association with the other two explanatory 
variables L and K, respectively. Thus, for entries of D equal to one, the corresponding 
entry in DL equals L and the corresponding entry in DK equals K. Otherwise, the 
entries of DL and DK are zeros. The three dummy variables, one additive and two 
multiplicative, are added to estimate in line 13. In this example, our model can be 
written in two ways. It may be written with two separate regressions, one for years 
before 1948, and one for the years after. This example demonstrates how to construct 
both situations into one combined regression as follows: 
 
X = β0 + β1 L + β2 K + δ0 D + δ1 DL + δ2 DK + ε 
 
When D equals zero (that is, for the period 1929-1948), we have what is called the 
base case. When D equals one (that is, 1949-1967), the estimated coefficients of the 
dummy variables are added to the estimated coefficients of the independent variables 
including the constant vector. In other words,  
 
For 1929-1948, X = β0 + β1 L + β2 K + ε; 
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For 1949-1967, X = (β0 + δ0) + (β1 + δ1) L + (β2 + δ2)K + ε 
 
Run the program so that we can check out the first estimated regression from the 
output:  
 

Least Squares Estimation 
------------------------ 
Dependent Variable = X        
Estimation Range =  1          39         
Number of Observations = 39           
Mean of Dependent Variable = 5.6874       
Standard Error of Dependent Variable = 0.46096      
 
R-Square = 0.99518      R-Square Adjusted = 0.99445      
Standard Error of the Estimate = 0.034338     
Log-Likelihood = 79.407       
Log Ammemiya Prediction Criterion (APC) =  -6.5999      
Log Akaike Information Criterion (AIC) =  -6.6023      
Log Schwarz Bayesian Information Criterion (BIC) =  -6.3464      
 
Sum of Squares         SS           DF          MSS            F       Prob>F 
Explained          8.0355            5       1.6071       1362.9  3.2814E-037 
Residual         0.038911           33    0.0011791  
Total              8.0744           38      0.21248  
 
Variable        Estimated     Standard      t-Ratio         Prob      Partial 
Name          Coefficient        Error        33 DF         >|t|   Regression 
L                  1.6167      0.15690       10.304  7.6101E-012      0.76288  
K                 0.21967      0.17266       1.2723      0.21217     0.046758  
DL               -0.60772      0.37578      -1.6172      0.11535     0.073433  
DK                0.35942      0.21672       1.6584      0.10670     0.076935  
D                  1.5595       1.2876       1.2111      0.23444     0.042559  
CONSTANT          -4.0576      0.26822      -15.128  2.1113E-016      0.87397  

 
Interpreting the output gives us the estimated model; 
 
X    =   - 4.06 + 1.62 L + 0.22 K - 0.61 DL + 0.36 DK + 1.56 D 
s.e.       (0.27)    (0.16)    (0.17)     (0.38)        (0.22)        (1.29) 
t-ratio  - 15.1     10.3        1.27    - 1.62           1.66           1.21 
 
In terms of two separate samples: 
 
For 1929 - 1948, X = -4.06  + 1.62 L + 0.22 K (base case)                                
For 1949 - 1967, X = (-4.06 + 1.56) + (1.62 -0.61) L + (0.22 + 0.36) K  
                       or, X = -2.50 + 1.01 L + 0.58 K          
 
One look at t-ratios and P-values tells us that the dummy variables are not 
statistically significant. To test for the structural change, we need to verify that the 
coefficients of both additive and multiplicative dummy variables are all zero. In 
other words, we must show that δ0 = 0, δ1 = 0, and δ2 = 0 jointly. The GPE input 
control variable _restr, defines these three dummy variables in a 3 by 6 matrix as 
shown in line 14: 
 
_restr = {0 0 1 0 0 0, 
          0 0 0 1 0 0, 
          0 0 0 0 1 0}; 
 
Line 15 estimates the restricted model (restricting all coefficients associated with 
dummy variables to zeros) in which no structural change is assumed. Here is the 
result of the restricted least squares estimation: 
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Least Squares Estimation 
------------------------ 
Dependent Variable = X        
Estimation Range =  1          39         
Number of Observations = 39           
Mean of Dependent Variable = 5.6874       
Standard Error of Dependent Variable = 0.46096      
 
WARNING: Linear Restrictions Imposed. 
R-Square, AOV, SE, and t may not be reliable! 
Wald F-Test for Linear Restrictions 
F(   3,  33)       Prob>F 
      1.2639      0.30275 
Asymptotic Hypothesis Testing for Linear Restrictions 
                                Chi-Sq     DF  Prob>Chi-Sq 
Wald Chi-Square Test            3.7918      3      0.28485  
Lagrange Multiplier Test        4.0193      3      0.25938  
Likelihood Ratio Test           4.2419      3      0.23650  
 
R-Square = 0.99463      R-Square Adjusted = 0.99433      
Standard Error of the Estimate = 0.034714     
Log-Likelihood = 77.286       
Log Ammemiya Prediction Criterion (APC) =  -6.5781      
Log Akaike Information Criterion (AIC) =  -6.4936      
Log Schwarz Bayesian Information Criterion (BIC) =  -6.2376      
 
Sum of Squares         SS           DF          MSS            F       Prob>F 
Explained          8.0310            2       4.0155       3332.2  1.3921E-041 
Residual         0.043382           36    0.0012051  
Total              8.0744           38      0.21248  
 
Variable        Estimated     Standard      t-Ratio         Prob      Partial 
Name          Coefficient        Error        36 DF         >|t|   Regression 
L                  1.4508     0.083228       17.431  3.9260E-019      0.89407  
K                 0.38381     0.048018       7.9930  1.7130E-009      0.63960  
DL           -5.1890E-012      0.00000      0.00000      0.00000      0.00000  
DK            2.3426E-012      0.00000      0.00000      0.00000      0.00000  
D             1.6888E-011  1.7378E-007  9.7182E-005      0.99992  2.6234E-010  
CONSTANT          -3.9377      0.23700      -16.615  1.8332E-018      0.88464  

 
Comparing the result of Chow test presented in Lesson 3.5 to the above output shows 
an identical computed Wald F-test statistic of 1.27 for three linear restrictions on 
dummy variables. In other words, based on the Cobb-Douglas log specification of 
the production function, there is no reason to believe that there was a structural 
change in output productivity between the years of 1929 and 1967. Both Lesson 3.5 
(sample separation approach) and Lesson 4.3 (dummy variable approach) reach the 
same conclusion. However, to a careful eye, there are subtle differences in the 
estimated standard errors and t-ratios for the regression coefficients obtained from 
these two approaches. Why? 
 





 

 

V 
Multicollinearity 

 
Multicollinearity is a data problem due to a group of highly correlated explanatory 
variables used in the regression equation. The consequence of multicollinearity is 
large standard errors of the coefficient estimates. The size of these errors suggest that 
there are too many explanatory variables and some of them may not be needed. Then 
the question is how to identify and treat the irrelevant explanatory variables in the 
regression. 
 
The famous Longley data are known for the problem of multicollinearity. Instead of 
constructing a meaningful model, we will demonstrate a hypothetical relationship 
with the dependent variable (EM), regressed against a set of four other variables 
(YEAR, PGNP, GNP, and AF). 
 

Detecting Multicollinearity 

Given the regression equation: 
 
EM = β0 + β1 YEAR + β2 PGNP + β3 GNP + β4 AF + ε 
 
the focus of this chapter is to examine how closely the four explanatory variables 
(YEAR, PGNP, GNP, and AF) are related. Lessons 5.1, 5.2, and 5.3 address the 
techniques of detecting multicollinearity. These include: condition number and 
correlation matrix (Lesson 5.1), Theil’s measure of multicollinearity (Lesson 5.2), 
and Variance Inflation Factors (Lesson 5.3). 
 

Lesson 5.1: Condition Number and Correlation Matrix 

We have seen the regression outputs from previous lessons, which include a column 
of partial correlation coefficients. Technically, it is computed using the formula: 
 

 
t2

 t2+DF  

 
where t is the vector of t-ratios of coefficient estimates, and DF is the degrees of 
freedom of the estimated regression. The partial correlation coefficient, as its name 
suggests, measures the marginal or partial contribution of the designated variable 
when the influence of other variables is already considered. The smaller the partial 
correlation coefficient, the less important the variable would be in the regression 
equation. It is a useful approach to identify the irrelevant variable as a candidate for 
deletion. 
 
Another useful tool to check for the problem of multicollinearity is the data 
correlation matrix, which describes the simple pair-wise correlation among all the 
variables used in the regression. The built-in GAUSS command corrx can do 
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exactly that, but the GPE package offers the convenience of a data correlation matrix 
by setting the following input control variable: 
 
_corr = 1; 
 
The condition number of a normalized data matrix of explanatory variables is 
computed as well. The normalization is necessary so that the condition number is 
independent of the unit of measurement for each variable. A large condition number 
indicates multicollinearity. Large values of pair-wise correlation coefficients may 
hint at the source of the problem.  
 
Using the Longley data, the following program estimates the model with the 
dependent variable (EM) regressed against a set of four other variables (YEAR, 
PGNP, GNP, and AF). The problem of multicollinearity is detected by examining the 
partial regression coefficients, as well as the condition number and correlation matrix 
of the explanatory variables. 
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/* 
** Lesson 5.1: Condition Number and Correlation Matrix 
*/ 
use gpe2; 
output file = gpe\output5.1 reset; 
load data[17,7] = gpe\longley.txt; 
data = data[2:17,.]; 
 
year = data[.,1]; 
pgnp = data[.,2]; 
gnp = data[.,3]; 
af = data[.,5]; 
em = data[.,7]; 
 
call reset; 
_corr = 1;  @ cond# and correlation matrix @ 
_names = {"em","year","pgnp","gnp","af"}; 
call estimate(em,year~pgnp~gnp~af); 
end; 
 
Running the above program returns the following output: 
 

Least Squares Estimation 
------------------------ 
Dependent Variable = EM       
Estimation Range =  1          16         
Number of Observations = 16           
Mean of Dependent Variable = 65317.       
Standard Error of Dependent Variable = 3512.0       
 
R-Square = 0.97352      R-Square Adjusted = 0.96389      
Standard Error of the Estimate = 667.34       
Log-Likelihood = -123.76      
Log Ammemiya Prediction Criterion (APC) =  13.279       
Log Akaike Information Criterion (AIC) =  13.257       
Log Schwarz Bayesian Information Criterion (BIC) =  13.498       
 
Sum of Squares         SS           DF          MSS            F       Prob>F 
Explained     1.8011E+008            4  4.5028E+007       101.11  1.3458E-008 
Residual      4.8987E+006           11  4.4534E+005  
Total         1.8501E+008           15  1.2334E+007  
 
Variable        Estimated     Standard      t-Ratio         Prob      Partial 
Name          Coefficient        Error        11 DF         >|t|   Regression 
YEAR              -576.46       433.49      -1.3298      0.21049      0.13850  



MULTICOLLINEARITY 

 

 

75 

PGNP              -19.768       138.89     -0.14233      0.88940    0.0018381  
GNP              0.064394     0.019952       3.2275    0.0080515      0.48638  
AF              -0.010145      0.30857    -0.032878      0.97436  9.8262E-005  
CONSTANT      1.1691E+006  8.3590E+005       1.3986      0.18949      0.15098  
 
Condition Number of Explanatory Variables = 15824.       
Correlation Matrix of Dependent and Explanatory Variables 
EM                 1.0000  
YEAR              0.97133       1.0000  
PGNP              0.97090      0.99115       1.0000  
GNP               0.98355      0.99527      0.99159       1.0000  
AF                0.45731      0.41725      0.46474      0.44644       1.0000  
                       EM         YEAR         PGNP          GNP           AF  

 
With the exception of the variable GNP, small partial regression coefficients are 
strong indications of irrelevant explanatory variables. The added information from 
the use of the input control variable _corr = 1 (line 11) includes the condition 
number and correlation matrix of the explanatory variables. The correlation 
coefficients between the dependent variable and each independent variable are given 
in the first column of the correlation matrix. These measure the individual effect of 
each independent variable on the dependent variable. With the exception of the 
variable AF, the explanatory variables have a rather high correlation with the 
dependent variable. However, these variables are also highly correlated among 
themselves, as seen from the rest of the correlation matrix. In addition, the condition 
number of explanatory variables is extremely large, suggesting severe 
multicollinearity for this set of variables. 
 

Lesson 5.2: Theil’s Measure of Multicollinearity 

Similar to the concept of partial regression coefficients, Theil’s measure of 
multicollinearity uses the R-square from multiple partial regressions to determine if 
multicollinearity is present in a regression equation.  
 
Theil’s measure of multicollinearity is a formula derived from  
 
R2 – ∑j=2,…,K (R2 – R-j

2) 
 
where R2 is the R-square (that is, coefficient of determination) of the full model, 
including all explanatory variables. R-j

2 is the R-square of the same regression model 
excluding the j-th explanatory variable. Therefore, the difference R2 - R-j

2 measures 
the net contribution of the j-th explanatory variable in terms of R-square. K is the 
number of explanatory variables of the full regression, in which the first one is the 
constant term. Notice that the index j for summation does not count the constant 
term. In the ideal case of no multicollinearity, Theil’s measure equals or is close to 
zero.  
 
The first regression in the following program (lines 10-13) estimates the full model 
with dependent variable (EM) on a set of four independent variables (YEAR, PGNP, 
GNP, and AF). The rest of the program (lines 14-33) estimates four regression 
equations; each corresponds to the partial model with one of the independent 
variables removed. The R-squares from the full model and from the four partial 
models are then used to compute the Theil’s measure of multicollinearity. 
 
Instead of showing the lengthy results of each regression estimation, we explain the 
use of output control variables in GPE for keeping track of the information from 
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each of the regression runs. The use of an output control variable is first introduced 
in line 13. In GPE, output control variables take on new values each time 
estimate or forecast is called. An output control variable is identified with a 
name beginning with a double underscore ( __ ). For example, __r2 is the value of 
R-square computed in the previous estimation. Therefore, in line 13, assigning __r2 
to a variable named r2 allows us to use that value later in the program. See 
Appendix A for a complete list of output control variables available in GPE. 
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/* 
** Lesson 5.2: Theil’s Measure of Multicollinearity  
*/ 
use gpe2; 
output file = gpe\output5.2 reset; 
load data[17,7] = gpe\longley.txt; 
data = data[2:17,.]; 
year = data[.,1]; 
pgnp = data[.,2]; 
gnp = data[.,3]; 
af = data[.,5];                
em = data[.,7]; 
call reset; 
_names = {"em","year","pgnp","gnp","af"}; 
call estimate(em,year~pgnp~gnp~af); 
r2 =__r2; 
call reset; 
print"Partial Regression 1: EM = PGNP GNP AF"; 
_names = {"em","pgnp","gnp","af"}; 
call estimate(em,pgnp~gnp~af); 
r2x1 = __r2; 
print"Partial Regression 2: EM = YEAR GNP AF"; 
_names = {"em","year","gnp","af"}; 
call estimate(em,year~gnp~af); 
r2x2 = __r2; 
print"Partial Regression 3: EM = YEAR PGNP AF"; 
_names = {"em","year","pgnp","af"}; 
call estimate(em,year~pgnp~af); 
r2x3 = __r2; 
print"Partial Regression 4: EM = YEAR GNP PGNP"; 
_names = {"em","year","gnp","pgnp"}; 
call estimate(em,year~gnp~pgnp); 
r2x4 = __r2; 
print "Theil’s Measure of Multicollinearity =";; 
print r2-sumc(r2-(r2x1|r2x2|r2x3|r2x4)); 
end; 
 
From four partial regressions, we repeat the use of output variable __r2, to keep 
track of the R-square of each regression. By renaming each __r2 and subtracting it 
from the R-square of the full model, these net differences are concatenated and then 
summed using a GAUSS command sumc (see line 32). Running the program, the 
output displays the results of all the regressions before the line: 
 

Theil’s Measure of Multicollinearity =      0.94414  
 
In summary, the near unity of the Theil’s measure confirms the problem of 
multicollinearity. 
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Lesson 5.3: Variance Inflation Factors (VIF) 

Relating to the correlation matrix of explanatory variables, Variance Inflation 
Factors (VIF) indicate the ratio of a variable’s actual variance to the perfect variance 
of zero collinearity. VIF is defined as: 
 

1
 1- Rj

2  

 
It can be used to detect multicollinearity, where Rj

2 is the R-square from regressing 
the j-th explanatory variable on all the other explanatory variables. A near unity Rj

2 
and hence a high value of VIF indicates a potential problem of multicollinearity with 
the j-th variable. 
 
The following program computes VIF for each explanatory variable through a set of 
four auxiliary regressions similar to the procedure used in computing Theil’s 
measure of multicollinearity. 
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/* 
** Lesson 5.3: Variance Inflation Factors (VIF) 
*/ 
use gpe2; 
output file = gpe\output5.3 reset; 
load data[17,7] = gpe\longley.txt; 
data = data[2:17,.]; 
year = data[.,1]; 
pgnp = data[.,2]; 
gnp = data[.,3]; 
af = data[.,5];                
em = data[.,7]; 
call reset; 
print "Aux Regression 1: YEAR = PGNP GNP AF"; 
y = year; 
x = pgnp~gnp~af; 
_names = {"year","pgnp","gnp","af"}; 
call estimate(y,x); 
r2x1 = __r2; 
print "Aux Regression 2: PGNP = YEAR GNP AF"; 
y = pgnp; 
x = year~gnp~af; 
_names = {"pgnp","year","gnp","af"}; 
call estimate(y,x); 
r2x2 = __r2; 
print "Aux Regression 3: GNP = YEAR PGNP AF"; 
y = gnp; 
x = year~pgnp~af; 
_names = {"gnp","year","pgnp","af"}; 
call estimate(y,x); 
r2x3 = __r2; 
print "Aux Regression 4: AF = YEAR GNP PGNP"; 
y = af; 
x = year~gnp~pgnp; 
_names = {"af","year","gnp","pgnp"}; 
call estimate(y,x); 
r2x4 = __r2; 
r2=r2x1|r2x2|r2x3|r2x4; 
print "Variance Inflation Factors:"; 
print "       Model     R-Square          VIF";; 
print seqa(1,1,4)~r2~(1/(1-r2)); 
end; 
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The first part of the program performs four auxiliary regression estimations. Each 
corresponds to the regression of one selected explanatory variable against the rest of 
the others. Only the R-squares from the four estimated regressions are of interest in 
computing the VIF. First, these values are retained using the output variable __r2, 
then they are concatenated into a vector (line 35) for calculating the VIF of each 
variable (line 38). Based on the R-square measure of each auxiliary regression, VIF 
for each explanatory variable is reported as follows: 
 

Variance Inflation Factors: 
       Model     R-Square          VIF 
      1.0000      0.99303       143.46  
      2.0000      0.98678       75.671  
      3.0000      0.99245       132.46  
      4.0000      0.35616       1.5532 

 
Again, all explanatory variables except variable AF (Model 4) have higher than 
normal values of VIF, indicating a severe problem of multicollinearity. 
 

Correction for Multicollinearity 

What to do with the problem of multicollinearity? Besides tweaking the appropriate 
explanatory variables and data transformation, techniques such as ridge regression 
and principal components are suggested in the literature. The ridge regression 
approach seeks to find a set of “stable” coefficient estimates with a “shrinkage 
parameter,” while the principal components approach is to extract a smaller number 
of independent variables (principal components) that explain most of the variation of 
regressors. The resulting coefficient estimates from these methods are biased and 
difficult to interpret, even though they may be more precise (efficient) than their 
ordinary least squares counterparts. Since multicollinearity is a data problem, data 
adjustment and variable transformation should be considered in favor of mechanical 
correction methods for estimation. Nevertheless, the following lesson illustrates the 
correction mechanics of ridge regression and principal components. 
 

Lesson 5.4: Ridge Regression and Principal Components 

GPE’s estimate procedure does not offer either ridge regression or principal 
components. Given the estimates obtained from ordinary least squares, however, it is 
rather straightforward to implement the computation of ridge regression and 
principal components. Many standard econometrics textbooks outline the formula. 
For examples, see Judge, et al. (1988, Chap. 21) and Greene (1999, Chap. 6). 
 
Given a shrinkage parameter of r>0, the coefficient estimates br of ridge regression 
are related to the ordinary least squares estimate b of β in the regression equation Y 
= Xβ + ε as follows: 
 
br = (I + r(X'X)-1)-1b 
 
Therefore, the corresponding estimated variance-covariance matrix Var(br) is: 

 
Var(br) =  (I + r(X'X)-1)-1Var(b) (I + r(X'X)-1)-1 

=  s2(I + r(X'X)-1)-1X'X (I + r(X'X)-1)-1 
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Where Var(b)is the estimated variance-covariance matrix and s2 is the regression 
variance of the ordinary least squares estimates. By varying the shrinkage parameter 
r, we can find the most “stable” coefficient estimates. 
 
The method of principal components is to extract sufficient variation of independent 
variables to explain the dependent variable of a regression equation. Let X be the 
data matrix of the explanatory variables, including the constant term. Principal 
components of X are derived from linear combinations of characteristic vectors of 
X'X. We will use only the principal components which satisfy a minimum size 
requirement of the characteristic roots of X'X. Let V be the matrix of such 
characteristic vectors. Then, the coefficient estimates of principal components bpc are 
related to the least squares estimates b as follows 
 
bpc = VV'b 
 
and the corresponding estimated variance-covariance matrix Var(bpc) is: 
 
Var(bpc) = (VV')Var(b)(VV') 
 
lesson5.4 is a GAUSS program which implements the ridge regression and principal 
components based on the hypothetical regression equation with the Longley data as 
described in the previous lessons 5.1 to 5.3. After obtaining the ordinary least 
squares result, we introduce several GAUSS commands to perform ridge regression 
and principal components estimation. For detailed explanations of the GAUSS 
commands used therein, refer to the GAUSS Command References or consult the 
on-line help menu. 
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/* 
** Lesson 5.4: Ridge Regression and Principal Components 
*/ 
use gpe2; 
output file = gpe\output5.4 reset; 
load data[17,7] = gpe\longley.txt; 
data = data[2:17,.];            
year = data[.,1]; 
pgnp = data[.,2]; 
gnp = data[.,3]; 
af = data[.,5];                
em = data[.,7]; 
call reset; 
_names = {"em","year","pgnp","gnp","af"}; 
call estimate(em,year~pgnp~gnp~af); 
 
/* explanatory variables including constant */ 
x = year~pgnp~gnp~af~ones(rows(year),1); 
/* ridge regression */ 
r=0.3; 
a = invpd(eye(cols(x))+r*invpd(x'x)); 
br = a*__b; 
vbr = a*__vb*a'; 
print "Ridge Regression Model:"; 
print " Coefficient    Std Error";; 
print br~sqrt(diag(vbr)); 
 
/* Principal Components */  
@ compute char. roots and vectors of X'X @  
{r,v}=eigrs2(x'x);  
v = selif(v',r.>0.1)'; 
bpc = v*v'__b; 
vbpc = v*v'__vb*v*v'; 
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25 
26 
27 
28 
29 

print; 
print "Principal Components Model:"; 
print " Coefficient    Std Error";; 
print bpc~sqrt(diag(vbpc)); 
end; 
 
First we estimate the equation using ordinary least squares (lines 10-12), then from 
line 13 on we focus on the data matrix of explanatory variables including the 
constant term, to perform ridge regression and principal components. Ridge 
regression is obtained for a shrinkage parameter of 0.3 (lines 14-20). We could try 
several small positive values for a shrinkage parameter to find the most “stable” 
coefficient estimates. The following output is the result of ridge regression: 
 

Ridge Regression Model: 
 Coefficient    Std Error 
      29.750       3.8485  
     -99.844       124.85  
    0.043571     0.013233  
     0.16452      0.28191  
      2.5061       1.7759 

 
We continue on to perform the principal components method (lines 21-28). To 
compute the principal components of the data matrix X of regressors, we pick only 
the characteristic vectors which correspond to the characteristic roots of X'X with 
values greater than 0.1 (line 22). We notice that the computation of characteristic 
roots and vectors and therefore the result of principal components are sensitive to the 
scale of measurement used in the data matrix. 
 
The resulting estimates of principal components are: 
 

Principal Components Model: 
 Coefficient    Std Error 
      29.784       3.8893  
     -100.92       126.19  
    0.043684     0.013372  
     0.16499      0.28202  
    0.022451     0.010768  

 
As we can see from the above example, the computation of ridge regression and 
principal components is easy, but the interpretation of the resulting coefficient 
estimates will be difficult. 
 



 

 

VI 
 Nonlinear Optimization  

 
To find an optimal (maximal or minimal) solution of a scalar-valued function is at 
the core of econometric methodology. The technique of least squares estimation is an 
example of solving the nonlinear “sum-of-squares” objective function. For a linear 
regression model, the exact solution is derived using the analytical formula of matrix 
algebra. However, the problem may be more complicated if the regression equation 
is nonlinear in the parameters. In this case, approximation or iterative methods of 
nonlinear optimization will be necessary. We will consider only the case of 
unconstrained optimization. In most cases, simple equality constraints can be 
substituted into the objective function so that the problem is essentially the 
unconstrained one. Nonlinear optimization with inequality constraints is difficult, 
though not impossible. 
 
From elementary differential calculus, an optimal solution can be found by setting 
the first derivatives (gradient) of the objective function with respect to the function’s 
variables equal to zero and solving for the variables. Then to verify a minimum 
(maximum), the second derivative’s matrix (hessian) must be positive (negative) 
definite. When the functional form is simple, the analytical approach of working out 
the derivatives is useful. The techniques of numerical approximation and iteration 
are more practical for solving large and complex optimization problems. GPE offers 
practical techniques for finding numeric solutions of a general nonlinear objective 
function. 
 
Although the nonlinear optimization of GPE is designed with statistical or 
econometric problems in mind, it can be used for solving mathematical functions as 
well. The first step is to define the objective function as mathematical or statistical. 
The next step is to solve the function through numerical optimization by calling the 
procedure estimate. 
 

Solving Mathematical Functions 

Without going into the details of optimization theory, we first describe how to define 
and write an objective function suitable for solving its optimum (or optima). Recall 
that a simple function can be defined with a single-line fn statement in GAUSS (see 
Chapter II). Since GPE is designed for econometric or statistical problem-solving, an 
objective function is defined with a set of sample data and a vector of unknown 
parameters. Typically a one-line fn or multi-line proc statement is declared as:  
 
fn FunctionName(Data,Parameters) = …; 
 
or 
 
proc FunctionName(Data,Parameters); 
… 
endp; 
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where FunctionName is the name of the function, Data are the sample 
observations of data series, and Parameters are the parameters or coefficients of 
the function. For a statistical model, both Data and Parameters are used to 
define the function FunctionName. For a mathematical function, only the 
Parameters matter, therefore Data can be set to 0 (or a dummy value) in this 
case.  
 
The actual computation of solving the function FunctionName is carried out by 
calling the procedure estimate, as follows: 
 
call estimate(&FunctionName,Data); 
 

Here, &FunctionName denotes the code address (holding place) of the function 
FunctionName we declared earlier, which itself is defined with Data (a set of 
sample data) and Parameters (a vector of initial values of parameters). 
 
Using GPE for nonlinear functional optimization (or estimation), the following input 
control variables are required: 
 
• _nlopt  
• _b 
• _iter  
 
The GPE input control variable _nlopt defines the type of optimization problem 
involved. _nlopt=0 indicates a minimization problem, while _nlopt=1 indicates 
a maximization problem. Since numerical iteration is used for solving a nonlinear 
model, the solution found can be at best a local one. The input variable _b provides 
the initial guess of parameters as the starting point of iterations. Different starting 
values of _b may lead to different (local) solutions. In an effort to find a global 
solution for the function, several different values of _b should be tried. The variable 
_iter sets the maximal number of iterations allowed for a particular problem. 
Usually we keep _iter low for testing the function. When the function is debugged 
and ready for solving, _iter should be set large enough to ensure the convergence 
of an iterative solution. 
 
Calling the procedure estimate for nonlinear model estimation (or optimization) 
is similar to the case of the linear regression model. The differences are that under 
nonlinear estimation or optimization, the first argument of estimate is now an 
address for the objective function and the second argument (for the data matrix) is 
more forgiving in its structure. Remember that the objective function must be 
defined with both data and parameters before calling the estimate procedure. 
 

Lesson 6.1: One-Variable Scalar-Valued Function 

Consider a scalar-valued function of one variable, 
 
f(x) = ln(x) – x2 
 
The single maximum of f(x) is found at x = ½ . First we translate the mathematical 
function f(x) into a GAUSS fn statement as in line 3 of the following program: 
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/* 
** Lesson 6.1: One-Variable Scalar-Valued Function 
** f(x) = ln(x) – x^2 
*/ 
use gpe2; 
output file=output6.1 reset; 
 
fn f(data,x)=ln(x)-x^2; 
 
call reset; 
_nlopt=1; 
_iter=100; 
_b=0.5; 
 
call estimate(&f,0); 
end; 
 
Line 5 indicates the maximization problem involved, and line 6 sets the iteration 
limit for finding the solution. The estimation (maximization, in particular) of 
function f starts with the initial value of x at 0.5 as shown in line 7. The GPE input 
variable _b controls the starting value of iteration. Notice that here we do not use 
sample data or parameter names in defining the function and its maximization. 
Running the above lesson program, we obtain the following result: 
 

Non-Linear Optimization: Maximization Problem 
--------------------------------------------- 
Number of Parameters = 1            
 
Maximum Number of Iterations = 100          
Step Size Search Method = 0            
Convergence Criterion = 0            
Tolerance = 0.001 
 
Initial Result: 
Function Value =     -0.94315  
Parameters =      0.50000  
 
Using Steepest-Ascent Algorithm 
Iteration =  1   Step Size =  0.2500  Value =     -0.85018  
Parameters =      0.75000  
Iteration =  2   Step Size =  0.5000  Value =     -0.84991  
Parameters =      0.66667  
Iteration =  3   Step Size =  0.2500  Value =     -0.84658  
Parameters =      0.70833  
Iteration =  4   Step Size =  0.5000  Value =     -0.84658  
Parameters =      0.70588  
Iteration =  5   Step Size =  0.2500  Value =     -0.84657  
Parameters =      0.70711  
Iteration =  6   Step Size =  0.2500  Value =     -0.84657  
Parameters =      0.70711  
 
Final Result: 
Iterations = 6           Evaluations = 38           
Function Value =     -0.84657  
Parameters =      0.70711  
Gradient Vector = -4.2549e-006  
Hessian Matrix =      -4.0000 

 
Starting at x = 0.5 with function value – 0.94315, it takes six iterations to reach the 
convergence of a solution. The solution 0.70711 is indeed a maximum with function 
value – 0.84657, where the gradient is almost zero at – 4.2549e-06 and the hessian is 
negative at – 4.0. 
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You may want to define the function’s analytical derivatives and use them for 
solving the function. For this example, they are: 
 
fn f1(data,x) = 1/x – 2*x; 
fn f2(data,x) = -1/(x^2) – 2; 
 

The functions f1 and f2 are the first and second derivatives of f, respectively. It 
may be necessary to write a multi-line procedure for the derivatives of a more 
complicated function. To solve the function with analytical derivatives, just 
concatenate the first and second derivatives together and set it to the input control 
variable _derviv before calling the procedure estimate as below: 
 
_deriv = &f1|&f2;  
call estimate(&f,0); 

 

 

There is no need to use both first and second derivatives. Using only the first 
derivative will work. That is, 
 
_deriv = &f1; 
 
The use of analytical derivatives will speed up the computation and increase the 
numerical precision of the solution. However, for a complicated function, it is often 
a difficult task to write and code the analytical formulas of derivatives. 
 
The bare-bones program of Lesson 6.1 does not take advantage of the many options 
available in GPE to fine tune the optimization process. For a simple problem, as the 
one shown above, the default settings of the optimization method (i.e., steepest-
ascent method) and convergence criteria (i.e., convergence in function value and 
solution relative to the tolerance level of 0.001) may be acceptable. 
 
We now explain some of the GPE input control variables, which provide the option 
to select one of many optimization methods and control its behavior in order to find 
the optimal solution for a more complicated and difficult function. These control 
variables are: 
 
• _method 
• _step 
• _conv 
• _tol 
• _restart 
 
By default, _method is set to 0 if we do not specify any method of optimization in 
the program. For a mathematical problem, the default method is the steepest descent 
or ascent method. For a statistical model, it is the Gauss-Newton method for 
nonlinear least squares, or the steepest descent method for maximum likelihood 
(ML) estimation. The following lists the more sophisticated optimization methods 
available : 
 
_method=1 Broyden-Fletcher-Goldfarb-Shanno (BFGS) quasi-Newton method. 
_method=2 Davidon-Fletcher-Powell (DFP) quasi-Newton method. 
_method=3 Greenstadt method. 
_method=4 Newton-Raphson method. 
_method=5 Quadratic hill-climbing (QHC) method. 
_method=6 Modified quadratic hill-climbing method. 
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All the optimization or estimation methods should be combined with a line search to 
determine the step size of optimization for each iteration. The default line search 
method is a simple cutback method (_step=0). Setting _step=1 causes the 
quadratic step size to be used in the search. Readers interested in a more detailed 
discussion and comparison of different optimization methods should check the 
references (e.g., Quandt, 1983; Judge, et al., 1985, Appendix B; Greene, 1999, 
Chapter 5) for details. 
 
The other optional input variables control the accuracy and convergence of the 
solution. The variable _tol sets the tolerance level of convergence. Typically _tol 
is a small number (default value 0.001). The variable _conv checks for two 
consecutive iterations to reach convergence, relative to the tolerance level. When 
_conv=0 (default), only the function values and solutions are checked for 
convergence with _tol; when _conv=1, the convergence of function values, 
solutions, and zero gradients are checked with _tol. Finally, the variable 
_restart sets the number of times to restart the computation when the function 
value fails to improve. A maximum of 10 restarts is allowed, with no restart as the 
default (_restart=0). 
 
As will be demonstrated in many example lessons below, we use all sorts of different 
optimization methods or algorithms for different types of problems. It is not unusual 
that a different (local) solution may be found due to the particular algorithm in use. 
Although there is no clear indication which method should be used for what type of 
problem, we recommend a mixed bag of optimization methods in conjunction with a 
variety of options controlling the numerical optimization. It is a matter of 
experimentation to find the best suite of solution tools for a particular problem. 
 

Lesson 6.2: Two-Variable Scalar-Valued Function 

This example demonstrates the use of GPE input control variables. We now consider 
a two-variable scalar-valued function: 
 
g(x) = g(x1,x2) = (x1

2 + x2 – 11)2 + (x1 + x2
2 –7)2.  

 
There are four minima, (3,2), (3.5844, -1.8481), (-3.7793, -3.2832), and                       
(-2.8051, 3.1313) with the same function value 0, although we can only find one 
minimum at a time. With various initial starting values of the variables, we are able 
to find all of the four solutions. Also, the maximal function value 181.62 is found at 
the solution (-0.27084, -0.92304). Be warned that sometimes the solutions are 
difficult to find because there are several saddle points, (0.08668, 2.88430), 
(3.38520, 0.07358), and (-3.07300, -0.08135), in the way. Here is the program: 
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/* 
** Lesson 6.2: Two-Variable Scalar-Valued Function 
** g(x) = (x[1]^2+x[2]-11)^2 + (x[1]+x[2]^2-7)^2 
*/ 
use gpe2; 
output file=output6.2 reset; 
 
fn g(data,x)=(x[1]^2+x[2]-11)^2+(x[1]+x[2]^2-7)^2; 
 
call reset; 
_nlopt=0; 
_method=1; 
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_iter=100; 
_step=1; 
_conv=1; 
_b={3,-2}; 
 
call estimate(&g,0); 
end; 

 
 
Line 3 defines the one-line objective function g. Again, data is not used for 
defining such a function, in which only the vector of parameters x matters. In this 
example, a version of the quasi-Newton method (BFGS, i.e., _method=1) is used 
(line 6) for optimization. It takes seven iterations to find one of the four minima 
(3.58, -1.85) from the initial starting point _b=(3, -2) given in line 10. Run this 
program, and refer to the output file output6.2 for more details.  
 

 
For pedagogical purposes, we write out the procedures for analytical first and second 
derivatives g1 and g2, although we do not use them in the above lesson. We note 
that g1 is a row-vector gradient and g2 is a hessian matrix: 
 
proc g1(data,x); @ 1st derivative of g(x) @ 
    local f1,f2; 
    f1=4*x[1]*(x[1]^2+x[2]-11)+2*(x[1]+x[2]^2-7); 
    f2=2*(x[1]^2+x[2]-11)+4*x[2]*(x[1]+x[2]^2-7); 
    retp(f1~f2); 
endp; 
 
proc g2(data,x); @ 2nd derivative of g(x) @ 
    local f11,f22,f12; 
    f11=12*x[1]^2+4*x[2]-42; 
    f22=4*x[1]+12*x[2]^2-26; 
    f12=4*(x[1]+x[2]); 
    retp((f11~f12)|(f12~f22)); 
endp; 
 
If both derivatives g1 and g2 were used in the optimization, we need only to set  
 
_deriv = &g1|&g2; 
 

before calling the procedure estimate(&g,0). 
 
By changing the initial values of the parameters in line 10 of lesson6.2, all solutions 
may be found. We suggest the following values and the corresponding minima to 
which they converge. Try them out: 
 

Initial Value 
(Line 10) 

 
Minimum 

Function  
Value 

(3, -2) (3.58, -1.85) 0 
(-3, 2) (-2.81, 3.13) 0 
(-3, -2) (-3.78, -3.28) 0 
(2, 2) (3, 2) 0 

 
Unfortunately, without knowing the solution ahead of time, the search is rather a 
blind process. The general rule of thumb is to try as many different initial values as 
possible. As an exercise, modify the program of Lesson 6.2 to find the maximum 
(-0.27, -0.92) with function value 181.62. Hint: Try _nlopt=1 (line 5) and 
_b={0,0} (line 10). 
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Estimating Probability Distributions 

The main use of nonlinear optimization in GPE is statistical model estimation, in 
which the underlying probability distribution of the random variables is estimated. 
The characteristics of a random variable (e.g., mean and variance, etc.) may be 
evaluated through the joint probability density of a finite sample. This joint density 
function, or the likelihood function, is defined as the product of N independent 
density functions f(Xi,θ) of sample observations Xi (i=1,2,…,N) and an unknown 
parameter vector θ. That is, ∏i=1,2,…,N f(Xi,θ), or equivalently in log form: 
 
ll(θ) = ∑i=1,2,…,N ln f(Xi,θ) 
 
The problem is to maximize the log-likelihood function ll(θ) so that the solution θ 
characterizes the probability distribution of the random variable X under 
consideration. To find the θ that maximizes ll(θ) is the essence of maximum 
likelihood estimation. The corresponding variance-covariance matrix of θ is derived 
from the information matrix (negatives of the expected values of the second 
derivatives) of the log-likelihood function as follows: 
 

Var(θ) = 



-E



∂2ll

∂θ∂θ'   
-1

  

 
The familiar example is the likelihood function derived from a normal probability 
distribution: 
 

( )







 −
= 2
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2 σ2
µX

πσ2
1)θ,X(f exp   

 
where θ = (µ,σ2) represents the distribution parameters. It is straightforward to show 

that the maximum likelihood solution is µ = E(X) = 
1
N ∑i=1,…,N Xi (the sample mean), 

and σ2 = Var(X) = 
1
N ∑i=1,…,N (Xi- µ)2 (the sample variance). 

 
Another example is based the log-normal distribution of X (or equivalently, normal 
distribution of ln(X)) defined as: 
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with the solution µ = 
1
N ∑i=1,…,N ln(Xi) and σ2 = 

1
N ∑i=1,…,N (ln(Xi)- µ)2, the 

corresponding mean and variance of X are E(X) = exp(µ+σ2/2) and Var(X) = 
exp(2µ+σ2) [exp(σ2)-1], respectively. Many economic variables are described with a 
log-normal instead of a normal probability distribution. If µ is re-parameterized in 
terms of a set of non-random variables Z and additional parameters β, µ = Zβ for 
example, we get the statistical regression model, to be discussed in the next section. 
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Of course, maximum likelihood estimation is not limited to models with normal or 
log-normal probability distribution. In many situations, the probability distribution of 
a random variable may be non-normal. For example, to estimate the gamma 
distribution of a nonnegative random variable X ≥ 0, the distribution function is 
 

 
( )

1XX),X(f −ρλ−
ρ

ρΓ
λ

=θ exp  

 
where θ = (λ, ρ) is the parameter vector with λ > 0 and ρ > 0. The mean of X is ρ/λ, 
and the variance is ρ/λ2. Many familiar distributions, such as the exponential and 
Chi-square distributions, are special cases of the gamma distribution. 
 
As with the normal distribution, the technique of maximum likelihood can be used to 
estimate the parameters of the gamma distribution. Sampling from N independent 
observations from the gamma distribution, the log-likelihood function is: 
 
ll(θ) = N [ρ ln(λ) – lnΓ(ρ)] – λ ∑i=1,2,…,N Xi + (ρ-1) ∑i=1,2,…,N ln(Xi) 
 
With the normal, log-normal, and gamma probability distributions, the 
characteristics of the random variable X may be described in terms of the estimated 
mean and variance for each probability distribution as follows: 
 
 Normal  

Distribution 
Log-Normal  
Distribution 

Gamma  
Distribution 

Mean 
E(X) 

µ exp(µ+σ2/2) ρ/λ 

Variance 
Var(X) 

σ2 exp(2µ+σ2)[exp(σ2)-1] ρ/λ2 

 
Where: µ =

1
N ∑i=1,…,N Xi 

σ2=
1
N ∑i=1,…,N (Xi- µ)2

 

µ =
1
N ∑i=1,…,N ln(Xi) 

σ2=
1
N ∑i=1,…,N (ln(Xi)- µ)2 

 

 

Lesson 6.3: Estimating Probability Distributions 

In the following we use the hypothetical income data series of Greene (1999, 
Chapter 4, Table 4.1), and estimate its mean and variance under the assumption of 
three probability distributions. The data are replicated in the text file yed20.txt. In 
lesson6.3 below, these 20 observations of two variables INCOME and 
EDUCATION are loaded first. Only the variable INCOME scaled by a factor 10 
(here it is called x) will be analyzed. Data scaling is useful for nonlinear model 
estimation. We estimate the parameters of three probability distributions (normal, 
log-normal, and gamma) by maximizing the corresponding log-likelihood function. 
 

 
 
 
 

1 
2 
3 
4 
 

/* 
** Lesson 6.3: Estimating Probability Distributions 
** See Greene (1999), Chapter 4 
*/ 
use gpe2; 
output file=output6.3 reset; 
load data[21,2]=gpe\yed20.txt; 
x=data[2:21,1]/10; @ income data: scaling may be helpful @ 
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/* normal probability distribution: b[1]=mu, b[2]=sigma */ 
fn llfn(x,b)=sumc(ln(pdfn((x-b[1])/b[2])./b[2])); 
fn llfln(x,b)=sumc(ln(pdfn((ln(x)-b[1])/b[2])./(b[2].*x))); 
 
/* gamma probability distribution: b[1]=rho, b[2]=lambda */ 
fn pdfg(x,b)=((b[2]^b[1])./gamma(b[1])).*exp(-b[2]*x).*x^(b[1]-1); 
fn llfg(x,b)=sumc(ln(pdfg(x,b))); 
 
call reset; 
_nlopt=1; 
_method=4; 
_iter=100; 
_b={3.0,2.0}; 
call estimate(&llfn,x); 
_b={1.0,0.5}; 
call estimate(&llfln,x); 
_b={2.0,0.5}; 
call estimate(&llfg,x); 
end; 
 
By definition, the log-likelihood function is just the summation of the logarithmic 
probability distribution function over the sample observations. Based on a normal 
probability distribution, line 5 defines the corresponding log-likelihood function in 
which the unknown parameters are µ and σ. Similarly, line 6 is the log-likelihood 
function of the underlying log-normal distribution. We note that the GAUSS built-in 
normal probability density function, pdfn, is used to compute the log-likelihood 
functions of normal and log-normal distributions. For the case of the gamma 
distribution, the definition of probability distribution function is given in line 7, 
which uses the built-in gamma function of GAUSS.  
 
For all cases of maximum likelihood estimation of probability distributions, we use 
the Newton-Raphson optimization method (_method=4), for up to 100 iterations 
(_iter=100) as shown in lines 10 through 12. To estimate the parameters µ and σ 
of the underlying normal distribution, we maximize the corresponding log-likelihood 
function as carried out in line 14, with initial values 3.0 and 2.0 for µ and σ (line 13). 
The estimation result below shows that final solution of (µ, σ) is obtained at (3.1278, 
2.1809) with the log-likelihood function value – 43.974. 
 

Non-Linear Optimization: Maximization Problem 
--------------------------------------------- 
Assuming Maximum Likelihood Function 
Number of Observations = 20           
Number of Parameters = 2            
 
Maximum Number of Iterations = 100          
Step Size Search Method = 0            
Convergence Criterion = 0            
Tolerance = 0.001        
 
Initial Result: 
Function Value =      -44.174  
Parameters =       3.0000       2.0000  
 
Using Newton-Raphson Algorithm 
Iteration =  1   Step Size =  1.2100  Value =      -43.974  
Parameters =       3.1323       2.1747  
Iteration =  2   Step Size =  1.0000  Value =      -43.974  
Parameters =       3.1278       2.1809  
Iteration =  3   Step Size =  1.0000  Value =      -43.974  
Parameters =       3.1278       2.1809  
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Final Result: 
Iterations = 3           Evaluations = 39           
Function Value =      -43.974  
Parameters =       3.1278       2.1809  
Gradient Vector =  -0.00010836   0.00040791  
 
                            Asymptotic   Asymptotic 
                Parameter   Std. Error      t-Ratio 
X1                 3.1278      0.48766       6.4139  
X2                 2.1809      0.34483       6.3247  

 
For the case of log-normal distribution, starting from the initial values of (µ, σ) at 
(1.0, 0.5) in line 15, the maximum likelihood solution is found at (0.9188, 0.6735) as 
shown in line 16. The maximal value of log-likelihood function is –38.849. Here is 
the output: 
 

Non-Linear Optimization: Maximization Problem 
--------------------------------------------- 
Assuming Maximum Likelihood Function 
Number of Observations = 20           
Number of Parameters = 2            
 
Maximum Number of Iterations = 100          
Step Size Search Method = 0            
Convergence Criterion = 0            
Tolerance = 0.001        
 
Initial Result: 
Function Value =      -41.299  
Parameters =       1.0000      0.50000  
 
Using Newton-Raphson Algorithm 
Iteration =  1   Step Size =  1.9487  Value =      -38.858  
Parameters =      0.89823      0.67385  
Iteration =  2   Step Size =  1.0000  Value =      -38.849  
Parameters =      0.91884      0.67317  
Iteration =  3   Step Size =  1.0000  Value =      -38.849  
Parameters =      0.91880      0.67349  
 
Final Result: 
Iterations = 3           Evaluations = 44           
Function Value =      -38.849  
Parameters =      0.91880      0.67349  
Gradient Vector =   -0.0018227     0.027819  
 
                            Asymptotic   Asymptotic 
                Parameter   Std. Error      t-Ratio 
X1                0.91880      0.15053       6.1039  
X2                0.67349      0.10637       6.3317  

 
For the gamma distribution, the estimation of parameters λ and ρ is implemented in 
line 18 starting with the initial values 0.5 and 2.0 for λ and ρ, respectively (line 17). 
The maximum likelihood estimator of (λ, ρ) is obtained at (0.7707, 2.4106) where 
the log-likelihood function value is –39.324. The output looks like this: 
 

Non-Linear Optimization: Maximization Problem 
--------------------------------------------- 
Assuming Maximum Likelihood Function 
Number of Observations = 20           
Number of Parameters = 2            
 
Maximum Number of Iterations = 100          
Step Size Search Method = 0            
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Convergence Criterion = 0            
Tolerance = 0.001        
 
Initial Result: 
Function Value =      -40.628  
Parameters =       2.0000      0.50000  
 
Using Newton-Raphson Algorithm 
Iteration =  1   Step Size =  1.4641  Value =      -39.366  
Parameters =       2.2115      0.71252  
Iteration =  2   Step Size =  1.1000  Value =      -39.324  
Parameters =       2.4112      0.77079  
Iteration =  3   Step Size =  1.0000  Value =      -39.324  
Parameters =       2.4106      0.77070  
 
Final Result: 
Iterations = 3           Evaluations = 42           
Function Value =      -39.324  
Parameters =       2.4106      0.77070  
Gradient Vector =   -0.0036550    0.0078771  
 
                            Asymptotic   Asymptotic 
                Parameter   Std. Error      t-Ratio 
X1                 2.4106      0.71610       3.3663  
X2                0.77070      0.25442       3.0293  
 

To summarize the statistical characteristics of the random variable INCOME 
(divided by 10) under consideration, we compute the estimated mean and variance of 
the maximum likelihood estimates of parameters from the normal, log-normal, and 
gamma probability distributions. We also compare the maximal values of the log-
likelihood functions associated with these probability distributions. It is interesting to 
note that the variable INCOME is more likely drawn from log-normal or gamma 
distributions, as their log-likelihood function values are greater than that of the 
normal distribution. 
 
 Normal  

Distribution 
Log-Normal  
Distribution 

Gamma  
Distribution 

Mean 3.1278  3.1443  3.1278 
Variance 4.7563  5.6745  4.0584 
Log-likelihood -43.974 -38.849 -39.324 
 

Lesson 6.4: Mixture of Probability Distributions 

It is possible that a random variable is drawn from a mixture of probability 
distributions (two or more, same or different types of distributions). For simple 
exploration, consider X distributed with a mixture of two normal distributions:  
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Then the likelihood function is  
 
f(X,θ) = λ f1(X,µ1,σ1) + (1-λ) f2(X,µ2,σ2)  
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where λ is the probability that an observation is drawn from the first distribution 
f1(X,µ1,σ1), and 1-λ is the probability of that drawn from the second distribution. θ = 
(µ1,µ2,σ1,σ2,λ) is the unknown parameter vector that must be estimated.  
 
Continuing from the previous example, suppose each observation of the variable 
INCOME is drawn from one of two different normal distributions. There are five 
parameters, the first two are the mean and standard error of the first normal 
distribution, while the second pair of parameters corresponds to the second 
distribution. The last parameter is the probability that the data are drawn from the 
first distribution. Lines 12 to 17 of lesson6.4 below define the log-likelihood 
function for the mixture of two normal distributions. 
 

 
 
 
 

1 
2 
3 
4 
 

5 
6 
7 
8 
9 

10 
 

11 
 
 
 
 
 
 

12 
13 
14 
15 
16 
17 

/* 
** Lesson 6.4: Mixture of Two Normal Distributions 
** See Greene (1999), Chapter 4 
*/ 
use gpe2; 
output file=output6.4 reset; 
load data[21,2]=gpe\yed20.txt; 
x=data[2:21,1]/10; @ income data: scaling may help @ 
 
call reset; 
_nlopt=1; 
_method=5; 
_iter=100; 
_b={3,3,2,2,0.5}; 
call estimate(&llf,x); 
 
end; 
/* 
mixture of two normal distributions 
mu1=b[1], mu2=b[2] 
se1=b[3], se2=b[4] 
prob.(drawn from the 1st distribution)=b[5] 
*/ 
proc llf(x,b); 
    local pdf1,pdf2; 
    pdf1=pdfn((x-b[1])/b[3])/b[3]; 
    pdf2=pdfn((x-b[2])/b[4])/b[4]; 
    retp(sumc(ln(b[5]*pdf1+(1-b[5])*pdf2))); 
endp; 

 
The problem is to maximize the log-likelihood function (_nlopt=1 in line 6) using 
the QHC algorithm (_method=5 in line 7) with the initial estimates of the 
parameters given in line 9. After 11 iterations, we obtain the following result (to save 
space, we print only the first and last iterations): 
 

Non-Linear Optimization: Maximization Problem 
--------------------------------------------- 
Assuming Maximum Likelihood Function 
Number of Observations = 20           
Number of Parameters = 5            
 
Maximum Number of Iterations = 100          
Step Size Search Method = 0            
Convergence Criterion = 0            
Tolerance = 0.001        
 
Initial Result: 
Function Value =      -44.174  
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Parameters =       3.0000       3.0000       2.0000       2.0000      0.50000  
 
Using Quadratic Hill-Climbing Algorithm 
Iteration =  1   Step Size =  2.3579  Value =      -43.996  
Parameters =       3.0542       3.0542       2.1325       2.1325      0.50000  
… 
Iteration =  11  Step Size =  1.0000  Value =      -38.309  
Parameters =       2.0495       5.7942      0.81222       2.2139      0.71204  
 
Final Result: 
Iterations = 11          Evaluations = 406          
Function Value =      -38.309  
Parameters =       2.0495       5.7942      0.81222       2.2139      0.71204  
Gradient Vector =  1.1441e-005      0.00000  2.1870e-005  5.1351e-006 -
4.7899e-005  
 
                            Asymptotic   Asymptotic 
                Parameter   Std. Error      t-Ratio 
X1                 2.0495      0.24421       8.3922  
X2                 5.7942       1.4988       3.8659  
X3                0.81222      0.19424       4.1816  
X4                 2.2139      0.90617       2.4431  
X5                0.71204      0.14456       4.9254  

 
With the maximum log-likelihood function value of –38.309, the variable INCOME 
when drawn from the mixtures of two different normal probability distributions is as 
convincing as when that variable is drawn from a single non-normal distribution 
(log-normal or gamma) as demonstrated in Lesson 6.3. 
 

Statistical Regression Models 

Estimating probability distributions of a random variable is interesting, but 
econometric modeling focuses on statistical causal relationships within a group of 
variables. The GPE package is designed specifically for statistical model estimation. 
If the sample data, in addition to the parameters, are used to define the scalar-valued 
objective function, estimate assumes nonlinear least squares for a minimization 
problem and maximum likelihood for a maximization problem. In addition to 
reporting the optimization process and outcome, the estimated results are interpreted 
according to these two types of statistical regression models. If your problem is 
neither a least squares nor a maximum likelihood, your own scrutiny into the 
classical statistical interpretation of the model is necessary. 
 
For a statistical model, the estimated variance-covariance matrix of the parameters 
may be requested by setting a positive value to the input control variable _vcov. 
Typically, the estimated variance-covariance matrix is derived from the 
approximated hessian (_vcov=1). A recalculated exact hessian matrix is used 
instead if we set _vcov=2. Nevertheless, the estimated variance-covariance matrix 
may only be meaningful in the contexts of nonlinear least squares and maximum 
likelihood problems. 
 
As with the linear regression model, values of several output control variables are 
available after nonlinear least squares or maximum likelihood estimation: 
 
• __b Estimated parameters or solution 

 
• __vb Estimated variance of the parameters 
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• __e Estimated regression residuals 
 

• __rss Sum-of-squares function value at minimum 
 

• __ll Log-likelihood function value at maximum 
 

• __g Gradient vector of objective function at optimum 
 

• __h Hessian matrix of objective function at optimum 
 
Appendix A, GPE Control Variables, lists and explains the usage of these input and 
output control variables.  

 

Lesson 6.5: Minimizing Sum-of-Squares Function 

The following example is taken from Judge, et al., (1988, Chapter 12, p.512). 
Consider a CES production function of a single output (Q) using two factors, labor 
(L) and capital (K), as follows: 
 
ln(Q) = β1 + β4 ln (β2Lβ3 + (1-β2)K β3) + ε 
 
where ε is the error term and β’s are the unknown parameters. The data matrix X = 
(L, K, Q) is available in the text file judge.txt. The method of least squares 
estimation is to find the vector β = (β1,β2,β3,β4) so that the sum-of-squared errors 
S(β) = ε'ε is minimized. 
 
Here is the program: 
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12 

 
 

13 
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/* 
** Lesson 6.5: Minimizing Sum-of-Squares Function 
** Estimating a CES Production Function 
** See Judge, et al. (1988), Chapter 12 
*/ 
use gpe2; 
output file=output6.5 reset; 
load x[30,3]=gpe\judge.txt; 
 
call reset; 
_nlopt=0; 
_method=5; 
_iter=100; 
_tol=1.0e-5; 
_vcov=1; 
_b={1.0,0.5,-1.0,-1.0}; 
call estimate(&cessse,x); 
 
end; 
 
/* Objective Function */ 
proc cessse(data,b); @ sum-of-squares function @ 
    local l,k,q,e; 
    l=data[.,1]; 
    k=data[.,2]; 
    q=data[.,3]; 
    e=ln(q)-b[1]-b[4]*ln(b[2]*l^b[3]+(1-b[2])*k^b[3]); 
    retp(sumc(e^2)); 
endp; 
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The objective function cessse, sum-of-squared errors, is defined as a procedure in 
lines 13 through 20. It is evident that both data matrix data and parameter vector b 
are used to specify the functional form. The address of function &cessse is used in 
calling estimate in line 11, where x is the data matrix (see also line 3). Line 5 
indicates that the problem is to minimize the objective function cessse, and line 6 
requests the quadratic hill-climbing (QHC, i.e., _method=5) optimization method. 
In line 8, the convergence of function value and solutions are checked relative to a 
smaller tolerance level of 0.00001. The vector of initial parameter values _b is given 
in line 10, which is rather a random guess. Finally, at the end of optimization, the 
variance-covariance matrix of estimated parameters will be computed because 
_vcov=1, as shown in line 9.  
 

 

We keep the definition of objective function cessse outside (beyond the end 
statement) of the main program. There is no strict rule dictating where to place the 
functions you define. Putting the function or procedure outside of the main program 
makes the function accessible to other procedures you write for other purposes.  
 
The final solution is found after 36 iterations. To save space, we report only the final 
result of the iterations. The output file output6.5 contains the details of all the 
iterations for reference.  
 

 
In your program, setting _print=0 will suppress the printing of iteration outputs 
to the file and the screen. 
 

Non-Linear Optimization: Minimization Problem 
--------------------------------------------- 
Assuming Nonlinear Least Squares Function 
Number of Observations = 30           
Number of Parameters = 4            
 
Maximum Number of Iterations = 100          
Step Size Search Method = 0            
Convergence Criterion = 0            
Tolerance = 1e-005       
 
Initial Result: 
Function Value =       37.097  
Parameters =       1.0000      0.50000      -1.0000      -1.0000  
 
Using Quadratic Hill-Climbing Algorithm 
 
Final Result: 
Iterations = 36          Evaluations = 1012         
Function Value =       1.7611  
Parameters =      0.12449      0.33668      -3.0109     -0.33631  
Gradient Vector =  2.6755e-006  4.6166e-007  2.5664e-006  1.7166e-006  
Hessian Matrix =  
      60.000      -5.7563       35.531       295.65  
     -5.7563       19.377      -3.4569      -23.595  
      35.531      -3.4569       35.461       298.10  
      295.65      -23.595       298.10       2509.4  
 
                            Asymptotic 
                Parameter   Std. Error      t-Ratio 
X1                0.12449     0.074644       1.6678  
X2                0.33668      0.10809       3.1147  
X3                -3.0109       2.2904      -1.3145  
X4               -0.33631      0.26823      -1.2538  
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Asymptotic Variance-Covariance Matrix 
X1              0.0055717  
X2             -0.0013729     0.011684  
X3              -0.065566      0.16893       5.2462  
X4              0.0071194    -0.019797     -0.61389     0.071948  
                       X1           X2           X3           X4 

 
Both the gradient and hessian of the solution confirm that the solution indeed 
minimizes the sum-of-squares objective function at the value 1.761. The estimated 
model is presented as follows: 
 
ln(Q)   =  0.125  -   0.336  ln (0.337 L –3.01 + 0.663 K –3.01) 
s.e.  (0.075)   (0.268)    (0.108)  (2.29) 
 

Lesson 6.6: Maximizing Log-Likelihood Function 

The same problem can be estimated by maximizing the likelihood objective function. 
Assuming the model error ε follows a normal probability distribution with zero mean 
and constant variance σ2, the log output ln(Q) is normally distributed with the 
following distribution function: 
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where N is the sample size, and ε(X, β) = ln(Q) - β1 - β4 ln (β2L β3 + (1-β2)K β3). The 
corresponding log-likelihood function of the unknown parameters θ = (β,σ) is 
written as 
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The program below follows the same basic structure as in the previous lesson. The 
relevant modifications of lesson6.6 include changing the objective function in the 
call estimate to cesll (line 11) and setting the variable _nlopt=1 (line 5). 
The objective log-likelihood function cesll is defined from lines 13 to 21. In 
addition to β, the standard error of the model σ must be estimated simultaneously. 
Line 10 sets out the initial values of θ = (β,σ). 
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/* 
** Lesson 6.6: Maximizing Log-Likelihood Function 
** Estimating a CES Production Function 
** See Judge, et al. (1988), Chapter 12 
*/ 
use gpe2; 
output file=output6.6 reset; 
load x[30,3]=gpe\judge.txt; 
 
call reset; 
_nlopt=1; 
_method=5; 
_iter=100; 
_tol=1.0e-5; 
_vcov=1; 
_b={1.0,0.5,-1.0,-1.0,1.0}; 
call estimate(&cesll,x); 
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12 

 
 

13 
14 
15 
16 
17 
18 
19 
20 
21 

 
end; 
 
/* Objective Function */ 
proc cesll(data,b); @ log-likelihood function @ 
    local l,k,q,e,n; 
    l=data[.,1]; 
    k=data[.,2]; 
    q=data[.,3]; 
    e=ln(q)-b[1]-b[4]*ln(b[2]*l^b[3]+(1-b[2])*k^b[3]); 
    n=rows(e); 
    retp(-0.5*n*(ln(2*pi)+ln(b[5]^2))-0.5*sumc((e./b[5])^2)); 
endp; 
 

 

 

Solving the maximization problem of a classical log-likelihood function, the 
standard error parameter σ is shown to be dependent on β. That is, if β is known, σ2 
is solved as: 
 
σ2(β) =  ε(X,β)'ε(X,β)/Ν 
 
Therefore, the same maximum log-likelihood may be expressed with the 
concentrated log-likelihood function instead: 
 
ll*(β) = -N/2 (1+ ln(2π) – ln(N)) –N/2 ln(ε(X,β)'ε(X,β)) 
 
The advantage of using the concentrated log-likelihood function is that there is one 
less parameter (that is, σ) to estimate directly. 
 
Running the program lesson6.6, we obtain the following result (again, the details of 
interim iterations can be found in the output file output6.6): 
 

Non-Linear Optimization: Maximization Problem 
--------------------------------------------- 
Assuming Maximum Likelihood Function 
Number of Observations = 30           
Number of Parameters = 5            
 
Maximum Number of Iterations = 100          
Step Size Search Method = 0            
Convergence Criterion = 0            
Tolerance = 1e-005       
 
Initial Result: 
Function Value =      -46.117  
Parameters =       1.0000      0.50000      -1.0000      -1.0000       1.0000  
 
Using Quadratic Hill-Climbing Algorithm 
Final Result: 
Iterations = 41          Evaluations = 1419         
Function Value =    -0.039074  
Parameters =      0.12449      0.33667      -3.0109     -0.33630      0.24229 
Gradient Vector =  8.5614e-006  1.0552e-006 -8.2596e-007  7.3948e-006 -
3.6658e-006  
Hessian Matrix =  
     -511.05       49.030      -302.63      -2518.3     0.063432  
      49.030      -165.04       29.444       200.98     0.020503  
     -302.63       29.444      -302.02      -2539.1    -0.037482  
     -2518.3       200.98      -2539.1      -21375.      -2.6556  
    0.063432     0.020503    -0.037482      -2.6556      -1021.5  
 
                            Asymptotic 
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                Parameter   Std. Error      t-Ratio 
 
X1                0.12449     0.074646       1.6677  
X2                0.33667      0.10811       3.1142  
X3                -3.0109       2.2911      -1.3142  
X4               -0.33630      0.26830      -1.2535  
X5                0.24229     0.031295       7.7421  
 
Asymptotic Variance-Covariance Matrix 
X1              0.0055721  
X2             -0.0013740     0.011687  
X3              -0.065602      0.16904       5.2493  
X4              0.0071233    -0.019807     -0.61423     0.071984  
X5           -1.5793E-005  4.5442E-005    0.0014036  -0.00016456   0.00097936  
                       X1           X2           X3           X4           X5 

 
It is no surprise that the solution is identical to the one obtained from minimizing the 
sum-of-squares function in Lesson 6.5. In addition, the estimated standard error of 
the normal distribution is found to be 0.2423, or σ2 = 0.0587. This also confirms the 
minimal sum-of-squares S(β) = Nσ2 = 1.761. 
 
Minimizing sum-of-squares and maximizing log-likelihood are popular techniques 
for econometric model estimation. In the next chapter on nonlinear regression 
models, for the convenience of classical econometric analysis, it is only the 
functional form of model error ε(X,β) that we will need to specify. The objective of 
either minimizing a sum-of-squares or maximizing a log-likelihood is readily 
available once the specific error structure is given. Nevertheless, as we have learned 
from this chapter, being able to work on the scalar-valued objective function directly 
is useful when dealing with difficult optimization problems.  
 



 

 

VII 
Nonlinear Regression Models 
 

Many economic and econometric problems can be formulated as optimization 
(minimization or maximization) problems. In econometrics, sum-of-squares 
minimization and log-likelihood maximization are standard in empirical model 
estimation. In the previous chapter, we defined a scalar-valued objective function to 
minimize (maximize) and interpreted the parameter estimates in accordance with the 
classical least squares (maximum likelihood) model. This approach is flexible 
enough to encompass many different econometric models. In many situations, 
however, it becomes troublesome to write out the objective function in detail. It is 
more desirable to present only the functional form which defines the model directly, 
such as 
 
F(Z,β) = ε 
 
where Z is the data matrix, β is the parameter vector, and ε is the error term. Both Z 
and β are used to define the functional form of the model (that is, the error structure). 
The data matrix Z can be further decomposed as Z = [Y, X] where Y consists of 
endogenous (dependent) variables and X is a list of predetermined (independent) 
variables. For a classical single regression equation, Y = f(X,β) + ε or ε = Y - f(X,β). 
The special case of linear model is simply ε = Y - Xβ. 
 

Nonlinear Least Squares 

The functional form F(Z,β) = ε is of interest in econometric modeling. Consider the 
sum-of-squares objective function: 
 
S(β) = ε'ε 
 
A nonlinear least squares estimator b of β is computed from the first-order condition 
for minimization (or the zero gradient condition) as follows: 
 

( ) ( ) 0β2βbS =∂ε∂ε′=∂∂  
 
In addition, the hessian matrix of second derivatives evaluated at b, 
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must be positive definite to guarantee the minimum solution. The estimated 
variance-covariance matrix of the parameters is derived from the expected values of 
the hessian: 
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where s2 = e'e/N is the estimated regression variance σ2, e = F(Z,b) is the estimated 
error, and N is the sample size used for estimation. It becomes clear that only the 
information concerning the functional form F(Z,β) and its first and second 
derivatives is needed to carry out the nonlinear least squares estimation of b, e, s2, 
and Var(b). 
 
It is straightforward to generalize the technique of nonlinear least squares to consider 
weighted model errors. Denote the weighting scheme w = w(Z,β). The variable w is 
a scalar or a vector, which in turn may depend on part or all of the data and 
parameters. Define the weighted error terms as ε* = w ε. Then the model is estimated 
by minimizing the sum-of-squared weighted errors: S*(β) = ε*’ε*.  
 

Lesson 7.1: CES Production Function 

Let’s return to the example of Lesson 6.5 estimating a nonlinear CES production 
function. Instead of defining and minimizing the sum-of-squares objective function, 
this example demonstrates the use of the error or residual function for model 
estimation. A residual function is usually more intuitive and easier to write than a 
sum-of-squares function. Since the computation of least squares relies on the 
residuals and their derivatives, the advantage of increased numerical precision is 
another reason of working with the residuals directly. 
 
The setup of input control variables is the same as in Lesson 6.5. The difference is 
the use of the residual function (instead of the sum-of-squares objective function) in 
calling the estimate procedure (line 12). The residual function ces is defined in 
the block from line 14 to line 20.  
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/* 
** Lesson 7.1: CES Production Function Revisited 
** Judge, et al. (1988), Chapter 12 
*/ 
use gpe2; 
output file=gpe\output7.1 reset; 
load x[30,3]=gpe\judge.txt; 
 
call reset; 
 
_nlopt=0;    @ NLSQ: SSE minimization @ 
_method=5;   @ optimization method @ 
_iter=100; 
_tol=1.0e-5; 
_conv=1; 
_vcov=1; 
 
_b={1.0,0.5,-1.0,-1.0}; 
 
call estimate(&ces,x); 
 
end; 
 
proc ces(data,b); @ residual function @ 
    local l,k,q; 
    l=data[.,1]; 
    k=data[.,2]; 
    q=data[.,3]; 
    retp(ln(q)-b[1]-b[4]*ln(b[2]*l^b[3]+(1-b[2])*k^b[3])); 
endp; 
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The regression output duplicates that of Lesson 6.5, and it is available in the output 
file output7.1. 
 

Maximum Likelihood Estimation 

To explore the idea of maximum likelihood estimation in the econometric context, 
we assume a classical normal probability distribution for the independent model 
error ε = F(Z,β). That is, ε is normally independently distributed with zero mean and 
constant variance σ2. Then the probability density function of Y (recall that Z = [Y, 
X]) is written as: 
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where J(Z,β) = ∂ε/∂Y is the Jacobian of the transformation from ε to Y. Sampling 
over N independent observations, the log-likelihood function of the unknown 
parameter vector θ = (β,σ) is: 
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The technique of maximum likelihood estimation is to find the θ that maximizes the 
log-likelihood function ll(θ). Usually the computation is performed by substituting 
out the variance estimate σ2 = ε'ε/N = F(Z,β)'F(Z,β)/N. Then the following 
concentrated log-likelihood function is maximized with respect to the parameter 
vector β: 
 

( ) ( ) ( )[ ] ( ) ( ) ( )∑ =
+



 ′−−π+−=

Ni ilnlnlnlnll
,...,2,1

|β,ZJ|β,ZFβ,ZF2NN212Nβ*  

 
Define ε* = ε/[(∏i=1,2,…,N|Ji|)1/N] or equivalently F*(Z,β) = F(Z,β)/[(∏i=1,2,…,N|Ji|)1/N], 
where Ji = J(Zi,β). Then the last two terms of the above concentrated log-likelihood 
function can be combined and the function is rewritten as: 
 

( ) ( ) ( )[ ] ( ) ( )



 ′−−π+−= β,Z*Fβ,Z*F2NN212Nβ* lnlnlnll  

 
where F*(Z,β) = ε* is the weighted error, with the weight being the inverse of the 
geometric mean of Jacobians (that is, 1/[(∏i=1,2,…,N|Ji|)1/N]). Therefore, maximizing 
the concentrated log-likelihood function ll*(β) is equivalent to minimizing the 
corresponding sum-of-squared weighted errors S*(β) = ε*'ε*.  
 
The maximum likelihood estimator b of β is obtained from solving from the first-
order condition (recall that S* = ε*'ε* and ε* = F*(Z,β)): 
 

( ) ( )( ) ( ) ( )[ ] 0β***SNβ*S*SN21βb* =∂ε∂′ε−=∂∂−=∂∂ll  
 
We must also check that the hessian matrix is negative definite (the second-order 
condition for maximization) at b: 
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Since ∂S*/∂β = 0, at the maximum the corresponding negative definite hessian 
matrix is simply: 
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Thus the estimated variance-covariance matrix of maximum likelihood estimator b, 
defined as the inverse of negative expected hessian, is: 
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1

2
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where s2* = e*'e*/N and e* = F*(Z,b) = F(Z,b)/[(∏i=1,2,…,N|Ji|)1/N]. Therefore, if the 
objective is to maximize the log-likelihood function under the assumption of 
normally independently distributed model error, then we need only to be concerned 
with the residual function ε = F(Z,β) and its associated Jacobian transformations 
J(Z,β). 
 
We now introduce the GPE input variable _jacob, we have not yet introduced, 
which controls the use of Jacobians in deriving the objective function (log-likelihood 
or sum-of-squares) from the residuals. Notice that a Jacobian transformation is 
nothing but a function of data and parameters. If you define a Jacobian function of 
your own, then _jacob should be set to the location (address) of the function. An 
example of a Jacobian function is given later in Lesson 7.2 on Box-Cox variable 
transformation. If you do not wish to write out the Jacobian analytically, you may set  
 
_jacob = 1; 
 
Then the numerical Jacobian is computed for each sample observation, which is 
usually a time consuming process. In case of requesting numerical Jacobians, the 
first column of the data matrix used to define the residuals must be the dependent 
variable Y (recall that J(Z,β) = ∂ε/∂Y and Z = [Y,X]). 
 
Here, based on Lesson 7.1 above, we insert the following statement before calling 
the estimate procedure in line 12: 
 
_jacob = 0; 
 

Although it is not necessary (_jacob=0 by default), _jacob=0 is used here to 
make sure that you understand the implication of Jacobian terms in the log-
likelihood function. As a matter of fact, for the classical model of the CES 
production function, there is no need to consider the vanishing Jacobian terms in the 
log-likelihood function.  



NONLINEAR REGRESSION MODELS 

 

 

103 

 
Lesson7.1 may be modified to carry out maximum likelihood estimation instead. 
Change the type of problem from minimization to maximization in line 5: 
 
_nlopt = 1; 
 
It is no surprise that the empirical results are identical for both techniques of 
nonlinear least squares and maximum likelihood. 

 

 

If you ask for the numerical Jacobians to be computed in this example: 
 
_jacob = 1; 
 

You must be sure that the first column of the data matrix data used to define the 
residual function ces(data,b) corresponds to the dependent variable of the 
model, ln(Q) in this case. As it was presented in Lesson 7.1, this rule is not 
followed. You may want to correct the data matrix and rewrite the procedure 
ces(data,b) so that you can use the numerical Jacobians which are all ones. The 
estimation result should not be affected. 

 

Box-Cox Variable Transformation 

A nonlinear regression equation may involve nonlinearity in both parameters and 
variables. The Box-Cox variable transformation is a classic example of a nonlinear 
model in econometrics. The so-called Box-Cox transformation of a data variable X is 
defined by 
 
X(λ) = (Xλ-1)/λ 
 
Although the range of λ can cover the whole set of real numbers, -2 ≤ λ ≤ 2 is the 
area of interest in many econometric applications. λ = 2 corresponds to a quadratic 
transformation, while λ = ½ is a square-root transformation. A linear model 
corresponds to λ =1, and the logarithmic transformation is the limiting case where λ 
approaches 0 (by L’Hôspital’s rule, limλ−>0 (Xλ-1)/λ = ln(X)). 
 
The value of the power transformation parameter λ may not have to be the same for 
each variable in the model. In particular, the dependent variable and independent 
variables as a group may need different Box-Cox transformations. Let β = (α,λ,θ) be 
the vector of unknown parameters for a regression model: 
 
ε = F(Z,β) = F(Y,X,β) = Y(θ) – X(λ)α 
 
or, equivalently, 
 
Y(θ) = X(λ)α + ε 
 
To estimate the parameters, we assume the error ε is normally independently 
distributed with zero mean and constant variance σ2. The log-likelihood function of 
the random variable Y is 
 

( ) ( ) ( )[ ] ( ) ( ) ( ) ( )∑ =
−+′−+π−=

Ni ilnlnlnll
,...,2,1

22 |Y|1θσ/β,ZFβ,ZF21σ22Nβ  
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Z = [Y,X], β = (α,λ,θ), and for each data observation i, the Jacobian term of the 
function is derived as J(Yi,θ) = ∂εi/∂Yi = Yi

(θ-1). By substituting out the variance σ2 = 
ε'ε/N, the concentrated log-likelihood function is 
 

( )β*ll ( ) ( )[ ] ( ) ( ) ( ) ( )∑ =
−θ+





 ′−−π+−=

Ni ilnlnlnln
,...,2,1

|Y|1β,ZFβ,ZF2NN212N  

( ) ( )[ ] ( ) ( )




 ′−−π+−= β,Z*Fβ,Z*F2NN212N lnlnln  

 
where F*(Z,β) = ε* = ε/[(∏i=1,2,…,N |Yi|)(θ−1)/N]. Given the values of Box-Cox 
transformation parameters θ and λ, a wide range of model specifications are 
possible. Of course, θ and λ must be estimated jointly with α. An efficient estimator 
of the parameter vector β = (α,λ,θ) is obtained by maximizing the above 
concentrated log-likelihood function. It is equivalent to minimizing the sum-of-
squared weighted errors S(β) = ε*'ε*, where ε* = w ε and w = w(Y,θ) = 1/[(∏i=1,2,…,N 
|Yi|)(θ−1)/N]. 
 

Lesson 7.2: Box-Cox Variable Transformation 

The following example of U.S. money demand equation is taken from Greene (1999, 
Chapter 10): 
 
M(θ) = α0 + α1 R(λ) + α2 Y(λ) + ε 
 
As described in Greene’s Example 10.9, M is the real money stock M2, R is the 
discount interest rate, and Y is real GNP. money.txt is the data text file consisting of 
these variables. Several variations of the Box-Cox transformation may be estimated 
and tested for selecting the most appropriate functional form of the money demand 
equation: 
 
1. θ −> 0 ln(M) = α0 + α1 R(λ) + α2 Y(λ) + ε 
2. θ = 1 M = α0 + α1 R(λ) + α2 Y(λ) + ε 
3. λ −> 0 M(θ) = α0 + α1 ln(R) + α2 ln(Y) + ε 
4. λ = 1 M(θ) = α0 + α1 R + α2 Y + ε 
5. θ = λ M(λ) = α0 + α1 R(λ) + α2 Y(λ) + ε 
6. θ, λ −> 0 ln(M) = α0 + α1 ln(R) + α2 ln(Y) + ε 
7. θ, λ = 1 M = α0 + α1 R + α2 Y + ε 

 
The following program considers a general case of Box-Cox variable transformation. 
In addition to the regression parameters α, there are two power transformation 
parameters: θ for the left-hand side variable and λ for the right-hand side. All these 
parameters (α,λ,θ) are estimated jointly. For model estimation, it is typical to scale 
the variables so that their power transformations do not under- or over-flow in 
arithmetic computation. This will make the interpretation of the estimated parameters 
more difficult. The sensible approach is to convert the estimated values of the 
parameters to unit-free measurements of elasticity. Therefore, for the general model, 
the estimated elasticity of the interest rate is 
 

( )
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M
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Similarly, the elasticity of GNP is ( )
( ) θ

λ

α=
∂
∂

M
Y

Y
M

2ln
ln . The elasticity at the means (of 

data variables) should be reported for model interpretation. 
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/* 
** Lesson 7.2: Box-Cox Transformation 
** U.S. Money Demand Equation 
** Greene (1999), Chapter 10 
*/ 
use gpe2; 
output file=gpe\output7.2 reset; 
load x[21,4]=gpe\money.txt; 
@ scale and re-arrange data: m,r,y @ 
x=(x[2:21,3]/1000)~(x[2:21,2])~(x[2:21,4]/1000);  
 
call reset; 
_method=0; 
_iter=200; 
_step=1; 
_conv=1; 
_jacob=&jf; 
 
@ starting linear model @ 
b=x[.,1]/(ones(rows(x),1)~x[.,2:3]); 
_b=b|1.0|1.0; 
/* 
@ starting log model @ 
b=ln(x[.,1])/(ones(rows(x),1)~ln(x[.,2:3])); 
_b=b|-0.01|0.01; 
*/ 
_nlopt=1; @ MAXLIK @ 
call estimate(&rf,x); 
end; 
 
proc jf(data,b); @ jacobian @ 
    local k; 
    k=rows(b); @ the last parameter @ 
    retp(data[.,1]^(b[k]-1)); 
endp; 
 
proc rf(data,b); @ residual: general model @ 
    local r,m,y,e; 
    @ box-cox transformation @    
    m=(data[.,1]^b[5]-1)/b[5]; 
    r=(data[.,2]^b[4]-1)/b[4]; 
    y=(data[.,3]^b[4]-1)/b[4]; 
    e=m-b[1]-b[2]*r-b[3]*y; 
    retp(e); 
endp; 
 
The residual function for the general model rf is defined in lines 21 through 28. 
Notice that the residual function is written in such a way that the first column of the 
data matrix is the dependent variable. The procedure jf, given in the block from 
lines 16 to 20, defines the Jacobian terms for the likelihood function. Recall that the 
Jacobian term is just Yθ-1 for the Box-Cox model, where Y is the left-hand side 
dependent variable. As we have mentioned earlier in Lesson 7.1, the GPE input 
variable _jacob controls the use of Jacobian transformation in defining the log-
likelihood and sum-of-squares functions. In the case of Box-Cox variable 
transformation, the residuals are weighted with the inverse of geometric mean of 
Jacobians: 1/[(∏i=1,2,…,N |Ji|)1/N] and Ji = Yi

θ-1. When _jacob=0, the Jacobians are 
not used (vanishing log-Jacobians is assumed). When _jacob=1, the numerical 
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Jacobians are computed from the residual function with the assumption that the first 
column of the data matrix is the dependent variable under consideration. When 
_jacob is set to the location (address) of a procedure defining the analytical 
Jacobians, the result of the procedure called is used. Here, in line 10: 
 
_jacob = &jf; 
 

the input control variable _jacob is assigned the result of the procedure 
jf(data,b). Therefore, the analytical Jacobian transformation is used for log-
likelihood maximization and sum-of-squares (weighted) minimization. By defining 
and applying the Jacobian transformation, as we have done here, we guarantee that 
our parameters will be efficiently estimated.  

 

 

Although numerical Jacobians may be requested instead, by setting _jacob=1 in 
line 10, we recommend against using it. The numerical approximation of Jacobian 
transformation is typically slower and results in less accurate parameter estimates 
than explicitly defining the analytical formula. As in the case of defining the residual 
function, the Jacobian function is problem-dependent and it involves differentiation 
of the residual function with respect to the dependent variable. For optimization, 
another round of differentiation of the residual and Jacobian functions is needed. 
Rounding errors due to excess numerical approximation may be too severe to yield 
an accurate solution. 
 
Two sets of starting values of the parameters may be tried: one from the linear model 
estimates and the other from log model. In the program, we start with the linear 
model estimates (lines 11 and 12). The alternative is to start with the log model 
estimates as given in the comment block immediately below line 12. Just to make 
sure that you achieve the same solution starting from several different initial values 
of the parameters, run program lesson7.2, and check the following result: 
 

Maximum Likelihood Estimation 
----------------------------- 
Number of Observations = 20           
Number of Parameters = 5            
 
Maximum Number of Iterations = 200         
Step Size Search Method = 1            
Convergence Criterion = 1            
Tolerance = 0.001        
 
Initial Result: 
Sum of Squares =       7.0963  
Log Likelihood =      -18.017  
Parameters =      -3.1694    -0.014921       1.5881       1.0000       1.0000  
 
Using Berndt-Hall-Hall-Hausman (BHHH) Algorithm 
 
Final Result: 
Iterations = 165         Evaluations = 29500        
Sum of Squares =      0.11766  
Log Likelihood =       22.978  
Gradient of Log Likelihood = -8.2374e-005 -3.0382e-005 -2.8533e-005  -
0.00032734 -6.0704e-005  
 
                                   Asymptotic 
                Parameter   Std. Error      t-Ratio 
X1                -14.503       12.127      -1.1959  
X2                -14.067       50.134     -0.28058  
X3                 56.399       106.75      0.52831  
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X4                -2.6723       1.8562      -1.4396  
X5               -0.96447      0.54949      -1.7552 

 
Model interpretation of Box-Cox variable transformation is more difficult than that 
of linear models. However, the elasticity at the mean of each variable is computed 
and interpreted as below: 
 
M (-0.96) = -14.5 -  14.07 R (−2.67) +  56.4 Y (-2.67) 
s.e. (0.55)  (12.13)  (50.13) (1.86)  (106.75) (1.86) 
Elasticity   -  0.087   4.252 

 

 

The same model may be estimated with the technique of weighted least squares. As 
long as the Jacobian is used, the sum-of-squares function is derived from the 
residuals, weighted by the inverse of the geometric mean of the Jacobians. Just 
replace line 13 with: 
 
_nlopt=0; 
 
This should produce the same result as that from the maximum likelihood 
estimation. However, if we attempt to minimize the sum-of-squared unweighted 
residuals, then the estimation result will not be efficient. It can even be biased. 
Check it out by deleting line 10 or changing it to: 
 
_jacob=0; 
 
The program of Lesson 7.2 is readily modifiable to accommodate all of the special 
cases of Box-Cox transformations. For example, for the case θ = λ, let’s define the 
residual function rf1 as follows: 
 
proc rf1(data,b); 
    local r,m,y,e; 
    @ box-cox transformation @    
    m=(data[.,1]^b[4]-1)/b[4]; 
    r=(data[.,2]^b[4]-1)/b[4]; 
    y=(data[.,3]^b[4]-1)/b[4]; 
    e=m-b[1]-b[2]*r-b[3]*y; 
    retp(e); 
endp; 
 
To run this special case, modify the starting values for the parameters (note that the 
number of parameters is changed as well) and call estimate with &rf1. That is, 
the lines from 12 to 14 should read like this: 
 
_b=b|1.0; 
_nlopt=1; 
call estimate(&rf1,x); 
 
Other cases such as linear or log transformation on one side of the equation can be 
estimated as long as the respective residual function is defined and used correctly. 
You may have to experiment with different combinations of optimization options 
and starting values to find all the solutions. Also, the last two cases of linear and log 
models may be more conveniently estimated with linear least squares. We leave the 
remainder of these special cases to you as exercises. 
 
From Lesson 7.2, we have estimated the general Box-Cox transformation model, 
together with many special cases. It is useful to tabulate and compare the estimation 
results of all these models. Based on the sample data series in money.txt, what is the 
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most appropriate functional form for the U.S. money demand equation? To answer 
this question, some knowledge of statistical inference will be necessary. 
 

Statistical Inference in Nonlinear Models 

A fundamental assumption of statistical inference is the normality of the model error: 
ε = F(Z,β). In particular, ε is assumed to be identically independently normally 
distributed with zero mean and constant variance σ2, or ε ~ nii(0,σ2). Thus the 
estimated least squares or maximum likelihood parameter b of β is normally 
distributed with the mean as β and the estimated variance-covariance matrix as: 
 

( )bVar ( )( )[ ] 12 ββ/bE −
∂′∂∂−= ll  

( )( )[ ] 122 ββ/bS½Es −
∂′∂∂=  

 
where s2 = S(b)/N is the estimated asymptotic variance of the model. Note that S(b) 
= e'e and e = F(Z,b).  
 
In many situations, it is of interest to test the validity of a set of J non-sample 
restrictions of the parameters, linear or nonlinear (continuous and differentiable), 
expressed as the following vector-valued equation: 
 
c(β) = 0 
 
If there are J active parameter restrictions, let the restricted parameter estimator and 
its variance-covariance matrix be b* and Var(b*), respectively. For example, the 
simplest case of a linear restriction c(β) = β - β0 (possibly a vector) confines the 
parameter vector β to be near β0. The following three tests are useful for inference 
about the model restrictions. 
 

Wald Test 

Without estimating the constrained model, the unconstrained parameter estimator b 
is expected to satisfy the constraint equation closely, if the hypothesis is true. That is, 
c(b) = 0. The Wald test statistic: 
 

( ) ( )[ ]{ } ( )bcbcVar bcW 1−′=  
 
has a Chi-square distribution with J degrees of freedom (remember that J is the 
number of restrictions). With the first-order linear approximation of the constraint 
function c(β) at b,  
 

( ) ( )[ ] ( )[ ] ( )[ ]{ } ( )bcβbcbVarβbcbcW
1−′∂∂∂∂′=  

 
Note that this test statistic does not require the computation of the constrained 
parameters.  
 

Lagrangian Multiplier (LM) Test 

Given the J-element constraint equation c(β) = 0, let b* denote the maximum 
likelihood estimator of the parameter vector β with the constraint in place. The 



NONLINEAR REGRESSION MODELS 

 

 

109 

Lagrangian multiplier test is based on the score vector ∂ll(b*)/∂β of the original 
parameterization of the log-likelihood function. If the constraints hold, then 
∂ll(b*)/∂β should be close to ∂ll(b)/∂β for the unconstrained parameter estimator b, 
which is of course zero. The Lagrangian multiplier test statistic is written as:  
 
LM = (∂ll(b*)/∂β) [Var(b*)] (∂ll(b*)/∂β)'  
 
The estimated variance-covariance matrix of the constrained estimator b* is 
computed as follows:  
 
Var(b*) = H-1 [I - G'(G H-1G')-1H-1]  
 
where H = [-∂ll(b*)2/∂β'∂β] and G = [∂c(b*)/∂β]. In practice, the LM test statistic is 
easily approximated with the following formula:  
 

( )[ ] ( ) ( ) ( )[ ] ( )/N*e*e/β*e*eβ*eβ*eβ*e*eLM
1

′






 ′∂∂′



 ∂∂′∂∂∂∂′=

−
 

 
where e* = F(Z,b*) is the vector of residuals evaluated at the constrained maximum 
likelihood solution, and ∂e*/∂β = ∂F(Z,b*)/∂β. Note that this test statistic is based on 
the constrained parameters alone.  
 

Likelihood Ratio (LR) Test 

If both the constrained and unconstrained maximum likelihood solutions are 
available, then the Likelihood Ratio (LR) test statistic defined by  
 
LR = -2(ll(b*)-ll(b))  
 
follows a Chi-square distribution with J degrees of freedom, in which there are J 
constraints in the equation c(β) = 0. In terms of sum-of-squares, it is equivalent to 
 
LR = N ln(S(b*)/S(b)) 
 

Lesson 7.3: Hypothesis Testing for Nonlinear Models 

Returning to Lesson 7.1 (see also Lesson 6.5) on CES production function,  
 
ln(Q) = β1 + β4 ln(β2Lβ3 + (1-β2)K β3) + ε  
 
let’s verify the nonlinear equality constraint: β4 = 1/β3. The following program 
implements the Wald, Lagrangian multiplier, and Likelihood Ratio tests, based on 
constrained and unconstrained maximum likelihood estimates of the parameters. The 
unconstrained model is the same as in Lesson 7.1 except that we are working with 
maximum likelihood estimation (instead of sum-of-squares). The constrained 
residual function rfc is defined in lines 38 through 45 in which the constraint β4 = 
1/β3 is substituted into the function, eliminating the parameter β4. The single 
constraint, expressed as β4β3 – 1 = 0, is given in lines 46 through 48 and is named as 
the eqc procedure. In line 11 and 12, the constrained model is estimated, and the 
estimated parameters and log-likelihood function value are saved for later use.  
 



GAUSS PROGRAMMING FOR ECONOMETRICIANS AND FINANCIAL ANALYSTS 

 

 

110 

 
 
 
 
 
 

1 
2 
3 
 

4 
5 
6 
7 
8 
9 

10 
 
 
 

11 
12 
13 
14 
15 
16 
17 
18 

 
 
 

19 
20 
21 
22 
23 
24 

 
 

25 
 

26 
27 
28 
29 

 
30 
31 
32 
33 
34 
35 
36 
37 

 
38 
39 
40 
41 
42 
43 
44 
45 

 
46 
47 
48 

/* 
** Lesson 7.3: Hypothesis Testing for Nonlinear Models 
** CES Production Function: b[4]=1/b[3] 
** Judge, et al. (1988), Chapter 12 
*/ 
use gpe2; 
output file=gpe\output7.3 reset; 
load x[30,3]=gpe\judge.txt; 
 
call reset; 
_nlopt=1; @ MAXLIK: log-likelihood maximization @ 
_method=5; 
_iter=100; 
_tol=1.0e-5; 
_conv=1; 
_jacob=0;           @ vanishing log-jacobians @ 
 
/* Lagrangian Multiplier Test */ 
@ based on constrained estimation @ 
_b={1.0,0.5,-1.0}; 
call estimate(&rfc,x); 
b1=__b|(1/__b[3]);  @ original parameterization, b[4]=1/b[3] @ 
ll1=__ll;           @ log-likelihood @ 
e=rf(x,b1);         @ estimated errors @ 
s2=meanc(e^2);      @ estimated error variance @ 
g=gradp2(&rf,x,b1); @ gradient of error function @ 
lm=(e'g)*invpd(g'g)*(g'e)/s2; 
 
/* Wald Test */ 
@ based on unconstrained estimation @ 
_b={1.0,0.25,-1.0,-1.0}; 
call estimate(&rf,x); 
b2=__b;             @ estimated parameters @ 
vb2=__vb;           @ estimated var-cov. of parameters @ 
ll2=__ll;           @ log-likelihood @ 
w=eqc(b2)'*invpd(gradp(&eqc,b2)*vb2*gradp(&eqc,b2)')*eqc(b2); 
 
/* Likelihood Ratio Test */ 
lr=-2*(ll1-ll2); 
 
print "Wald Test = " w; 
print "Lagrangian Multiplier Test = " lm; 
print "Likelihood Ratio Test = " lr; 
end; 
 
proc rf(data,b); @ unconstrained residual function @ 
    local l,k,q,e; 
    l=data[.,1]; 
    k=data[.,2]; 
    q=data[.,3]; 
    e=ln(q)-b[1]-b[4]*ln(b[2]*l^b[3]+(1-b[2])*k^b[3]); 
    retp(e); 
endp; 
 
proc rfc(data,b); @ constrained residual function @ 
    local l,k,q,n,e; 
    l=data[.,1]; 
    k=data[.,2]; 
    q=data[.,3]; 
    e=ln(q)-b[1]-(1/b[3])*ln(b[2]*l^b[3]+(1-b[2])*k^b[3]); 
    retp(e); 
endp; 
 
proc eqc(b);  @ constraint function @ 
    retp(b[3]*b[4]-1); 
endp; 
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Here is the estimation result of the constrained model as of line 12 (see also 
output7.3 for more details): 
 

Maximum Likelihood Estimation 
----------------------------- 
Number of Observations = 30           
Number of Parameters = 3            
 
Maximum Number of Iterations = 100          
Step Size Search Method = 0            
Convergence Criterion = 1            
Tolerance = 1e-005       
 
Initial Result: 
Sum of Squares =       37.097  
Log Likelihood =      -45.753  
Parameters =       1.0000      0.50000      -1.0000  
 
Using Quadratic Hill-Climbing Algorithm 
 
Final Result: 
Iterations = 11          Evaluations = 7050         
Sum of Squares =       1.7659  
Log Likelihood =    -0.080162  
Gradient of Log Likelihood = -6.2600e-006  3.4304e-006 -5.5635e-007  
 
                                   Asymptotic 
                Parameter   Std. Error      t-Ratio 
X1                0.11849     0.070742       1.6749  
X2                0.32238      0.10324       3.1225  
X3                -3.4403       1.7791      -1.9338  

 
We now return to the program of Lesson 7.3. To compute the Lagrangian multiplier 
test statistic, the estimated errors are recalculated from the residual function rf (line 
15). In addition, the variance (line 16) and the derivatives (line 17) of estimated 
errors are needed for implementing the LM formula in line 18. Note that the gradient 
computation of line 17 is for a function with two arguments, the data matrix as the 
first and parameter vector as the second. The procedure gradp2 is built into GPE 
with the consideration that user-defined functions are constructed from the 
combination of a data matrix and a parameter vector. It serves the same purpose as 
the GAUSS built-in procedure gradp to compute the gradient vector of a 
continuous differentiable function with respect to the parameters. The result of 
gradp2(&rf,x,b1)of line 17 is a 30 by 4 matrix of derivatives of the residual 
function rf with respect to 4 parameters of b1 over a sample of 30 observations of 
x. 
 
The Wald test is based on the unconstrained model. The unrestricted regression 
model is the same as reported in Lesson 7.1. Based on the maximum likelihood 
estimation using the unconstrained residual function rf (lines 30-37), the Wald test 
statistic is computed from the constraint function eqc (and its first derivatives 
gradp(&eqc,b2)) evaluated at the estimated parameter b2 (lines 19-24). Finally, 
log-likelihood function values of both constrained and unconstrained estimations are 
used to compute the Likelihood Ratio test statistic in line 25. The following output 
summarizes the result: 
 
 

Wald Test =     0.078241  
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Lagrangian Multiplier Test =     0.092612  
Likelihood Ratio Test =     0.082175 

 
All three test statistics are small and close to 0. Comparing with the critical value of 
the Chi-square distribution for 1 degree of freedom, we conclude that the restriction 
β4 = 1/β3 should not be rejected. Therefore the CES production function should be 
represented as follows: 
 
ln(Q) =  0.12  - 1/3.44 ln (0.32 L-3.44 + 0.68 K-3.44) 
s.e.  (0.07)       (0.10) (1.78) 
 

Lesson 7.4: Likelihood Ratio Tests of Money Demand Equation 

Now back to the question at the end of Lesson 7.2: what is the most appropriate 
functional form for the U.S. money demand equation? If we have successfully 
estimated all the models resulting from Box-Cox variable transformations, it is easy 
to compute the LR test statistics from each pair of nested models. Note that the log 
transformation is a limiting case where the power coefficient approaches zero, which 
is not exactly the same as setting the relevant power coefficient to zero. 
Nevertheless, LR tests are valid asymptotically. The critical value 3.84 is based on 
the Chi-square distribution of 1 degree of freedom at the 5% level of significance. By 
applying the general model to this specific example, we demonstrate the strategy for 
hypothesis testing: 

 
From the general model λ ≠ θ, does λ = 1? 

does λ -> 0? 
does θ = 1? 
does θ -> 0? 
does λ = θ? 
 

No (LR = 5.92) 
Yes (LR = 3.37) 
No (LR = 7.09) 
Yes (LR = 2.44) 
Yes (LR = 2.70) 
 

From the model λ = θ, does λ = θ = 1? 
does λ = θ -> 0? 

No 
Yes 

 
The conclusion is obvious that the linear equation of a log model (θ, λ −> 0) will be 
the choice for this set of data. The model is linear in the parameters and can be 
estimated more accurately using linear least squares. The log model is the limiting 
case of Box-Cox transformation, and the estimates obtained from linear regression 
are close to those of nonlinear method. The above calculation is based on the 
following estimation result, which you should be able to duplicate: 

 
 Money Demand Equation Log-Likelihood 

θ ≠ λ M (-0.96) = -14.5 – 14.07 R (−2.67) + 56.4 Y (-2.67) 22.978 
1. θ −> 0 ln(M) = -2.23 + 0.0005 R (1.04) + 1.22 Y (1.04) 21.760 
2. θ = 1 M = -3.03 + 0.0000007 R (4.91) + 0.023 Y (4.91) 19.433 
3. λ −> 0 M (-0.23) = -3.62 – 0.022 ln(R) + 3.58 ln(Y) 21.289 
4. λ = 1 M (-0.021) = -3.54 – 0.0002 R + 1.27 Y 20.019 
5. θ = λ M (-0.35) = -4.34 –0.065 R (-0.35) + 5.17 Y (-0.35) 21.648 
6. θ, λ −> 0 ln(M) = -3.64 – 0.03 ln(R) + 3.66 ln(Y) 21.833 
7. θ, λ = 1 M = -3.17 – 0.015 R + 1.59 Y 8.022 
 



 

 

VIII 
Discrete and Limited Dependent Variables 
 

There are many situations in which the dependent variable of a regression equation is 
discrete or limited (truncated) rather than continuous. As we have seen in the  
discussion of dummy variables in Chapter IV, some or all of the explanatory 
variables in a regression model are qualitative in nature, and therefore only take on a 
limited number of values. In the case of dummy variables, those values are 0 and 1. 
In this chapter we will consider only the simplest form of qualitative choice models: 
binary choice and tobit (censored regression) models. The binary choice (or the “yes 
or no” decision) will take on one of two discrete values, 1 or 0. The censored 
regression model allows for the dependent variable to follow a mix of discrete and 
continuous distributions. Here we learn how to implement and estimate the binary 
choice and tobit limited dependent variable models as applications of nonlinear 
regression.  
 

Binary Choice Models 

Consider a linear regression model Y = Xβ + ε, where  
 
Yi = 1 with probability Pi  
 0 with probability 1-Pi  
 
It should be clear that Xi explains the probability of Yi equaling 1 or 0. If we let Pi = 
Prob(Yi=1|Xi) = F(Xiβ), then 1-Pi = Prob(Yi=0|Xi) = 1-F(Xiβ). 
 
Since E(Yi|Xi) = (1)F(Xiβ) + (0)(1-F(Xiβ)) = F(Xiβ), we may interpret the estimated 
model using the following marginal effects: 
 

( ) ( )
( ) ( )ββXfβ

βX
βXF

X
X|YE

i
i

i

i

ii =
∂

∂
=

∂
∂  

 
where ( ) ( )

( )βX
βXFβXf

i

i
i ∂

∂
= . Given a sample of N independent observations, the 

likelihood function is  
 
L(β) = ∏i=1,2,...,N Pi

Yi (1-Pi)1-Yi = ∏i=1,2,...,N F(Xiβ)Yi (1-F(Xiβ))1-Yi  
 
The log-likelihood function is then: 
 
ll(β) = ln(L(β)) = ∑i=1,2,...,N [Yi lnF(Xiβ) + (1-Yi) ln(1-F(Xiβ))] 
 
To maximize ll(β) with respect to β, we solve from the following first-order 
condition:  
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to write the estimated variance-covariance matrix of β as ( ) ( ) 12

ββ
βEβVar

−

















′∂∂

∂
−=

ll .  

 

Linear Probability Model 

Let Pi = F(Xiβ) = Xiβ. It is immediately clear that E(Yi|Xi) = Xiβ. In addition, with 
the linear probability model, we are assured of a heterogeneous error structure:  
 
E(εi)  =  (1-Xiβ)Pi + (-Xiβ)(1-Pi) = Pi - Xiβ  
Var(εi)  =  E(εi

2) = Pi(1-Xiβ)2 + (1-Pi)(-Xiβ)2  
 =  Pi(1-Pi)2 + (1-Pi)(-Pi)2 = (1-Pi)Pi = (1-Xiβ)(Xiβ)  
 
The range of Var(εi) is between 0 and 0.25. Furthermore, since E(Yi|Xi) = F(Xiβ) = 
Xiβ, a linear function, there is no guarantee that the estimated probability Pi or 1-Pi 
will lie within the unit interval. We can get around the problem of Pi taking values 
outside the unit interval by considering a specific probability distribution or 
functional transformation for Pi. A commonly used probability distribution is the 
normal distribution giving rise to the probit model, while a commonly used 
functional transformation is the logistic curve function giving rise to the logit model. 
 

Probit Model 

Let Pi = F(Xiβ) = ∫−∞
Xiβ 1/(2π)1/2 exp(-z2/2) dz. Then we call Pi (based on the 

cumulative normal distribution), the probit for the i-th observation. The model Yi = 
F-1(Pi) + εi is called the probit model, where F-1(Pi) = Xiβ is the inverse of the 
cumulative normal distribution F(Xiβ). For those concerned that we chosen the 
above specification seemingly out of thin air, the probit model can be derived from a 
model involving a continuous, unobserved, or latent, variable Yi* such that Yi* = 
Xiβ + εi, where εi follows a standard normal density.6 Suppose the value of the 
observed binary variable Yi depends on the sign of Yi* as follows:  
 
Yi = 1 if Yi* > 0 
 0 if Yi* ≤ 0 

                                                           
6 If εi is a normal random variable with zero mean and standard error σ, then the probability of 
Yi = 1 is written as Pi = F(Xiβ/σ). Since β/σ appears in the density function as a ratio, they are 
not separately identified. Therefore, it is convenient to normalize σ to be one. The standard 
normal distribution is sometimes referred to as the z-distribution, where the random variable 
is zi = εi/σ = εi, given σ =1. 
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Therefore,  
 
Pi = Prob(Yi=1|Xi) = Prob(Yi*>0|Xi) = Prob(εi > -Xiβ) 
 = ∫ -Xiβ

∞ 1/(2π)1/2 exp(-z2/2) dz 
= ∫−∞

Xiβ 1/(2π)1/2 exp(-z2/2) dz 
 
For maximum likelihood estimation, we solve the following first-order condition:  
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where fi and Fi are, respectively, the probability density and cumulative density 
functions of a standard normal random variable evaluated at Xiβ. That is,  
 

( ) ( )dz2/z21βXFF 2X

ii
i −== ∫ ∞−

exp
β

π  

 
and, 
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Furthermore, it can be shown that for the maximum likelihood estimates of β the 
expected value of the (negative definite) hessian is 
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The estimated variance-covariance matrix of β is computed as the inverse of 
negative expected hessian.  
 
In interpreting the model, the probability E(Yi|Xi) = F(Xiβ) = Pi will be of interest. 
The marginal effects of the j-th explanatory variable Xij are written as: 
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Lesson 8.1: Probit Model of Economic Education 

This example (see Greene 1999, Example 19.1; Spector and Mazzeo, 1980) 
examines the effect of a new teaching method (known as PSI) on students’ grades. 
The following variables are used:  
 

GRADE An indicator of whether the student’s grade on an examination 
improved after exposure to the new teaching method. 

PSI An indicator of whether the student was exposed to the new teaching 
method. 

TUCE Score of a pretest that indicates entering knowledge of the material 
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prior to the introduction of PSI. 
GPA Grade point average. 

 
The qualitative model is formulated as follows:  
 
GRADE = β0 + β1GPA + β2TUCE + β3PSI + ε  
 
The data file grade.txt is used. The following program estimates the probit model 
specification of the above equation. The log-likelihood function for each data 
observation is defined in lines 20 through 26 with the procedure named probitf. 
Since the first derivatives of the log-likelihood function are rather straightforward 
analytically, we also write the procedure probitf1 to calculate these derivatives 
(lines 27 to 34). The analytical first derivatives may be used in optimization to 
improve the accuracy of the solution (see Chapter VI). 
 
If the residual function is defined and called when estimating a nonlinear regression 
model, the GPE default objective function is the log-likelihood function for 
maximization and sum-of-squares for minimization. Whether the problem is 
maximization or minimization is controlled by the value of the input variable 
_nlopt. Setting _nlopt=1 specifies a maximization problem. Setting _nlopt=0 
indicates a minimization problem. There are certain cases of maximum likelihood 
estimation in which the log-likelihood function may be defined instead of the 
residual function for each sample observation. All the qualitative choice models 
discussed in this chapter fall in this second category. Setting _nlopt=2 (see line 
11) informs GPE that the maximization is performed on the sum of the component 
(log-likelihood) functions. We could write the total log-likelihood function to 
estimate the model, but there may be a loss of numerical accuracy due to 
compounding running errors in evaluating the function and its derivatives. 
 

 
 
 
 
 

1 
2 
 

3 
4 
5 
6 
7 
8 
9 
 

10 
 
 

11 
12 
13 
14 
15 

 
 
 
 
 

16 

/* 
** Lesson 8.1: Probit Model of Economic Education 
** Greene (1999), Example 19.1 
** See also Spector and Mazzeo (1980) 
*/ 
use gpe2; 
output file=gpe\output8.1 reset; 
 
n=33; 
load data[n,4]=gpe\grade.txt; 
gpa=data[2:n,1]; 
tuce=data[2:n,2]; 
psi=data[2:n,3]; 
grade=data[2:n,4]; 
z=gpa~tuce~psi~ones(rows(grade),1); 
 
call reset; 
 
@ probit model: estimation @ 
_nlopt=2;  @ using component log-likelihood @ 
_method=4; 
_iter=50; 
_b={0.5,0.0,0.5,0}; 
call estimate(&probitf,grade~z); 
/* 
_derive=&probitf1; 
call estimate(&probitf,grade~z); 
*/ 
@ probit model: interpretation @ 
b=__b; 
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17 
18 

 
19 

 
 

20 
21 
22 
23 
24 
25 
26 

 
 

27 
28 
29 
30 
31 
32 
33 
34 

print " Probability                    Slopes";; 
print cdfn(z*b)~(pdfn(z*b).*b[1:rows(b)-1]'); 
 
end; 
 
/* log-likelihood function of probit model */ 
proc probitf(x,b); 
    local k,z,f; 
    k=rows(b); 
    z=x[.,2:k+1]*b; 
    f=cdfn(z);          @ normal cdf @ 
    retp(x[.,1].*ln(f)+(1-x[.,1]).*ln(1-f)); 
endp; 
 
/* 1st derivatives of log-likelihood function of probit model */ 
proc probitf1(x,b); 
    local z,k,f,g; 
    k=rows(b); 
    z=x[.,2:k+1]*b; 
    f=cdfn(z);          @ normal cdf @ 
    g=pdfn(z);          @ normal pdf @ 
    retp((x[.,1].*(g./f)-(1-x[.,1]).*(g./(1-f))).*x[.,2:k+1]); 
endp; 

 
Running the program, we obtain the estimated probit model as follows (see also 
output8.1 for the detailed results of interim iterations): 
 

Maximum Likelihood Estimation 
----------------------------- 
Number of Observations = 32           
Number of Parameters = 4            
 
Maximum Number of Iterations = 50           
Step Size Search Method = 0            
Convergence Criterion = 0            
Tolerance = 0.001        
 
Initial Result: 
Log Likelihood =      -62.697  
Parameters =      0.50000      0.00000      0.50000      0.00000  
 
Using Newton-Raphson Algorithm 
 
Final Result: 
Iterations = 5           Evaluations = 3808         
Log Likelihood =      -12.819  
Parameters =       1.6258     0.051729       1.4263      -7.4523  
Gradient Vector = -2.5489e-005  -0.00031045 -3.6749e-006 -5.7386e-006  
 
                            Asymptotic   Asymptotic 
                Parameter   Std. Error      t-Ratio 
X1                 1.6258      0.69373       2.3436  
X2               0.051729     0.083925      0.61637  
X3                 1.4263      0.59520       2.3964  
X4                -7.4523       2.5467      -2.9263 

 
Recall that, given the estimated parameters, we are mostly concerned with the 
probability or the conditional expected value E(Y|X). With respect to the three 
explanatory variables, GPA, TUCE, and PSI, the slopes (or marginal effects) are of 
interest. Lines 16 through 18 of lesson8.1 calculate and report the probability and the 
relevant marginal effects. The next part of the output shows these results for each 
observation: 
  

 Probability                    Slopes 
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    0.018171     0.072553    0.0023084     0.063651  
    0.053081      0.17584    0.0055949      0.15427  
     0.18993      0.44108     0.014034      0.38696  
    0.018571     0.073911    0.0023517     0.064843  
     0.55457      0.64253     0.020443      0.56369  
    0.027233      0.10207    0.0032476     0.089546  
    0.018503     0.073683    0.0023444     0.064642  
    0.044571      0.15292    0.0048656      0.13416  
     0.10881      0.30333    0.0096511      0.26611  
     0.66312      0.59360     0.018887      0.52077  
    0.016102     0.065434    0.0020819     0.057406  
     0.19356      0.44623     0.014198      0.39148  
     0.32333      0.58391     0.018579      0.51227  
     0.19518      0.44851     0.014270      0.39348  
     0.35634      0.60608     0.019284      0.53172  
    0.021965     0.085218    0.0027114     0.074762  
    0.045694      0.15601    0.0049640      0.13687  
    0.030851      0.11322    0.0036023     0.099327  
     0.59340      0.63075     0.020069      0.55336  
     0.65719      0.59758     0.019013      0.52426  
    0.061929      0.19852    0.0063164      0.17416  
     0.90454      0.27577    0.0087744      0.24194  
     0.27319      0.54072     0.017204      0.47438  
     0.84745      0.38335     0.012197      0.33631  
     0.83419      0.40485     0.012881      0.35518  
     0.48873      0.64834     0.020629      0.56880  
     0.64241      0.60683     0.019308      0.53237  
     0.32867      0.58783     0.018703      0.51571  
     0.84002      0.39555     0.012585      0.34702  
     0.95224      0.16164    0.0051428      0.14180  
     0.53996      0.64535     0.020533      0.56617  
     0.12354      0.33195     0.010562      0.29122 

 

 
If you do not want to see the long list of E(Y|X) (probability) and ∂E(Y|X)/∂X 
(marginal effects), they may be computed at the means of the explanatory variables. 
To see what happens, insert the following statement after line 16: 
 
z=meanc(z)'; 
 

Logit Model 

Let ( ) ( ) ,
βX1

1βXFP
i

ii −+
==

exp
 where Pi as defined is the logistic curve. The 

model Yi = Xiβ+ εi = F-1(Pi) + εi is called the logit model. We can easily derive the 
logit model from the odd ratio model, in which we assume that the log of the ratio of 

the probabilities (Pi and 1-Pi) is equal to Xiβ. Thus we assume ln 



Pi

 1-Pi
  = Xiβ. 

Solving for Pi yields:  
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For maximum likelihood estimation, we solve the first-order condition:  
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Because of the logistic functional form in use,  
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the first-order condition amounts to the following simpler expression:  
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The variance-covariance matrix of β is estimated with 
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where the hessian matrix ( )
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To interpret the model, we define the marginal effect of the j-th explanatory variable 
Xij as:  
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As you can see, the logit model is similar in construction to the probit model. Only 
the choice of transformation function is different. 
 

Lesson 8.2: Logit Model of Economic Education 

We will now rerun the model of Lesson 8.1, using the logit model instead of the 
probit model. We will need only to change the transformation function from the 
cumulative normal probability to the logistic curve. Specifically, lines 20-26 define 
the component log-likelihood function logitf for the logit model, while the 
corresponding first derivative function logitf1 is defined in lines 27-34. 
 

 
 
 
 
 

1 
2 
 

3 
4 
5 
6 
7 

/* 
** Lesson 8.2: Logit Model of Economic Education 
** Greene (1999), Example 19.1 
** See also Spector and Mazzeo (1980) 
*/ 
use gpe2; 
output file=gpe\output8.2 reset; 
 
n=33; 
load data[n,4]=gpe\grade.txt; 
gpa=data[2:n,1]; 
tuce=data[2:n,2]; 
psi=data[2:n,3]; 



GAUSS PROGRAMMING FOR ECONOMETRICIANS AND FINANCIAL ANALYSTS 

 

 

120 

8 
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10 
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16 
17 
18 

 
19 

 
 

20 
21 
22 
23 
24 

 
25 
26 

 
 

27 
28 
29 
30 
31 
32 
33 
34 

grade=data[2:n,4]; 
z=gpa~tuce~psi~ones(rows(grade),1); 
 
call reset; 
 
@ logit model: estimation @ 
_nlopt=2;  @ using component log-likelihood @ 
_method=4; 
_iter=50; 
_b={0.5,0.0,0.5,0}; 
 
call estimate(&logitf,grade~z); 
/* 
_deriv=&logitf1; 
call estimate(&logitf,grade~z); 
*/ 
@ logit model: interpretation @ 
p=1./(1+exp(-z*__b)); 
print " Probability                    Slopes";; 
print p~(p.*(1-p).*__b[1:rows(__b)-1]'); 
 
end; 
 
/* log-likelihood function of logit model */ 
proc logitf(x,b); 
    local k,z,f; 
    k=rows(b); 
    z=x[.,2:k+1]*b; 
    f=1./(1+exp(-z));    @ same as: f=exp(z)./(1+exp(z)); @ 
                         @ logistic distribution function @ 
    retp(x[.,1].*ln(f)+(1-x[.,1]).*ln(1-f)); 
endp; 
 
/* 1st derivatives of log-likelihood function of logit model */ 
proc logitf1(x,b); 
    local z,k,f; 
    k=rows(b); 
    z=x[.,2:k+1]*b; 
    f=1./(1+exp(-z));    @ same as: f=exp(z)./(1+exp(z)); @ 
                         @ logistic distribution function @ 
    retp((x[.,1]-f).*x[.,2:k+1]); 
endp; 
 
The estimated results are similar to those of the probit model. Instead of showing the 
detailed output for comparison, we present the estimated probabilities and marginal 
effects of the probit and logit models, evaluated at the means of three explanatory 
variables: 
 

  Probit Logit 
Probability  0.26581 0.25282 
Marginal Effects GPA 0.53335 0.53386 
 TUCE 0.01697 0.01798 
 PSI 0.04679 0.04493 

 
Extensions of binary choice models to the cases with more than two choices are 
interesting, though the derivations are tedious. Multiple choice models include 
unordered (independent or nested) and ordered (with a preference rank) choices. 
Both the probit and logit model specifications for multiple choice are possible, but 
they are beyond the scope of the current discussion. 
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Limited Dependent Variable Models 

If the random decision variable follows a mixture of discrete and continuous 
distributions, we have the limited dependent variable (or censored regression) model. 
Recall the latent variable interpretation of the probit model, 
 
Yi* = Xiβ + εi  
 
where εi follows a normal probability distribution, and  
 
Yi =  1 if Yi* > 0  
 0 if Yi* ≤ 0  
 
Suppose, however, that Yi is censored—that is, we restrict the number (or kinds) of 
values that Yi can take. As an example, consider the following:  
 
Yi =  Yi*  if Yi* > 0 
 0 if Yi* ≤ 0 
 
That is, 
 
Yi =  Xiβ + εi if Xiβ + εi > 0 
 0 otherwise 
 
This model is called the tobit (or Tobin’s probit) model. Define fi and Fi to be the 
probability density function and cumulative density function of a standard normal 
random variable evaluated at Xiβ/σ. That is, 
 

( ) ( )dz221σ/βXFF iX 2
ii ∫ ∞−

−==
σβ

π zexp  

( ) ( )[ ]2σβX21β/σXff 2
iii −== expπ  

 
For the observations such that Yi = 0 or Yi* = Xiβ + εi ≤ 0, the likelihood function is 
 
Prob(Yi = 0) = Prob(εi ≤ -Xiβ) = Prob(εi/σ ≤ -Xiβ/σ) = 1 – F(Xiβ/σ) = 1-Fi 
 
If Yi > 0, on the other hand, then the likelihood function is simply the normal density 
function: 
 
1/(2πσ2)1/2 exp [-(Yi-Xiβ)2/(2σ2)] 
 
Therefore the likelihood function for the tobit model is a mixture of the above 
discrete and continuous distributions depending on the values taken by the dependent 
variable (i.e., zero or positive): 
 
L = ∏{i |Yi = 0}(1-Fi) ∏{i |Yi > 0}1/(2πσ2)1/2 exp [-(Yi-Xiβ)2/(2σ2)] 
 
The corresponding log-likelihood function is 
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Then, for the maximum likelihood estimation, we solve from the following first-
order conditions: 
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To interpret the estimated coefficients of the model, we may use three conditional 
expected values: 
 
E(Yi*|Xi) =  Xiβ 

 
E(Yi |Xi,Yi>0) =  Xiβ + E(εi |Yi > 0)  

=  Xiβ + E(εi |εi > -Xiβ)  
=  Xiβ + σ fi/Fi > E(Yi*|Xi) 
 

E(Yi|Xi) =  Fi E(Yi |Xi,Yi > 0)  
=  Fi Xiβ + σ fi 

 
The first expected value (corresponding to the “uncensored” case) is easy to obtain. 
The last expected value will be of particular interest if our sample contains many 
censored observations. Accordingly, for the j-th explanatory variable, the 
corresponding marginal effects are: 
 
∂E(Yi*|Xi)/∂Xij =  βj 

 
∂E(Yi|Xi,Yi>0)/∂Xij =  βj [1- (Xiβ/σ)(fi/Fi) –(fi/Fi)2] 

 
∂E(Yi|Xi)/∂Xij =  Fi ∂E(Yi|Xi,Yi > 0)/∂Xij + E(Yi |Xi ,Yi > 0) ∂Fi/∂Xij 

=  Fi βj 
 

We note that the last censored marginal effect differs from the first uncensored one 
by a scale factor equal to the probability of that observation not being censored. In 
other words, the scale factor is equal to Fi (recall that Fi is 1-Prob(Yi = 0)). 
 
The tobit model is often estimated for comparison with the alternative probit or count 
model specifications. The model can be easily extended to consider more than one 
censoring point. For instance, we could censor both tails of the distribution. This is 
an example of a doubly censored regression. 
 

Lesson 8.3: Tobit Analysis of Extramarital Affairs 

This example is taken from Greene (1999, Example 20.12), which is based on Fair 
(1978). The study examines the qualitative responses to a question about extramarital 
affairs from a sample of 601 men and women married for the first time. The 
dependent variable is: 
 
Y Number of affairs in the past year: 0, 1, 2, 3, 4-10 (coded as 7), 11-365 (coded 

as 12). 
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The preponderance of zeros (no affairs) may not render the tobit model to be the best 
for the study. The complete data set used in the article is available from the text file 
fair.txt, but we present only the restricted model using a subset of five explanatory 
variables as follows: 
 
Z2 Age. 
Z3 Number of years married. 
Z5 Degree of religiousness: 1 (anti-religious), … , 5 (very religious). 
Z7 Hollingshead scale of occupation: 1, … , 7. 
Z8 Self-rating of marriage satisfaction: 1 (very unhappy), … , 5 (very happy). 
 
The regression equation is: 
 
Y = β0 + β2 Z2 + β3 Z3 + β5 Z5 + β7 Z7 + β8 Z8 + ε 
 
The conclusion and interpretation of the estimated model are left to the interested 
reader. Our emphasis here is  the implementation of tobit analysis using GPE and 
GAUSS. To do so, we need to briefly explain the maximum likelihood estimation 
procedure. Recall that the likelihood function of the tobit model is a mixture of 
discrete and continuous normal likelihoods, depending on the censored point (zero) 
of the dependent variable. Unlike in the probit model, the standard error is an explicit 
unknown parameter which must be estimated together with the regression 
parameters. In lines 22 to 28 of the following program, the procedure 
tobitf defines the log-likelihood function for each sample observation. For 
maximum likelihood estimation, we need to set _nlopt=2 (line 10), which 
instructs GPE to maximize the sum of the individual log-likelihood functions.7  
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/* 
** Lesson 8.3: Tobit Analysis of Extramarital Affairs 
** Greene (1999), Example 20.12  
** See also R. Fair, JPE, 86, 1978, 45-61 
*/ 
use gpe2; 
output file=gpe\output8.3 reset; 
n=602; 
load data[n,15]=gpe\fair.txt; 
y=data[2:n,13]; 
z=data[2:n,5 6 8 11 12]; @ use z2, z3, z5, z7, z8 @ 
 
call reset; 
 
@ Uncensored OLS estimation @ 
call estimate(y,z); 
 
@ Tobit model estimation @ 
z=z~ones(rows(z),1); @ RHS variables inc. constant @ 
_nlopt=2;    @ using component likelihood function @ 
_method=5; 
_iter=100; 
_b=__b|5.0; 
call estimate(&tobitf,y~z); 
 
@ Tobit model interpretation based on E(y) @ 
b=__b[1:6]; 
s=__b[7]; 
ey=cdfn(z*b/s).*(z*b)+s.*pdfn(z*b/s); 

                                                           
7 Because the size of this nonlinear optimization is beyond the limits of GAUSS Light, the 
professional version of GAUSS should be used for Lesson 8.3. 
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em=cdfn(z*b/s).*b'; 
print "Expected Value                    Marginal Effects";; 
print ey~em[.,1:5]; 
 
end; 
 
/* Log-likelihood function: tobit model */ 
proc tobitf(x,b); 
    local y,z,k; 
    k=rows(b); 
    y=x[.,1]; 
    z=(y-x[.,2:k]*b[1:k-1])/b[k]; 
    retp((y.==0).*ln(cdfn(z))+(y.>0).*ln(pdfn(z)/b[k])); 
endp; 

 
Remember that tobit is a nonlinear model. First, the uncensored model is estimated 
by ordinary least squares (line 8). The estimated parameters are then used as the 
initial values in the tobit model estimation (line 14). Here is the result of the 
estimated tobit model, which converges after 60 iterations: 
 
 

Maximum Likelihood Estimation 
----------------------------- 
Number of Observations = 601          
Number of Parameters = 7            
 
Maximum Number of Iterations = 100          
Step Size Search Method = 0            
Convergence Criterion = 0            
Tolerance = 0.001        
 
Initial Result: 
Log Likelihood =      -886.21  
Parameters =    -0.050347      0.16185     -0.47632      0.10601     -0.71224       
5.6082       5.0000  
 
Using Quadratic Hill-Climbing Algorithm 
 
Final Result: 
Iterations = 60          Evaluations = 1981497      
Log Likelihood =      -705.58  
Parameters =     -0.17933      0.55414      -1.6862      0.32605      -2.2850       
8.1742       8.2471  
Gradient Vector =  3.0579e-005  3.0303e-006  2.2826e-006  1.4280e-006  
2.3271e-006  4.5474e-007 -2.7294e-006  
 
                            Asymptotic   Asymptotic 
                Parameter   Std. Error      t-Ratio 
X1               -0.17933     0.079136      -2.2661  
X2                0.55414      0.13459       4.1174  
X3                -1.6862      0.40378      -4.1761  
X4                0.32605      0.25443       1.2815  
X5                -2.2850      0.40787      -5.6022  
X6                 8.1742       2.7419       2.9812  
X7                 8.2471      0.55363       14.896 

 
For interpretation of the estimated parameters, we compute the expected values of 
censored observations and the corresponding marginal effects of the explanatory 
variables (see lines 14-19). The computation is for each sample observation.  
 
 

 

To save space we do not list the 601 observations of expected values and marginal 
effects. One alternative is to calculate the average of the estimated expected values 
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and marginal effects: 
 
print meanc(ey~em[.,1:5])'; 
 
A second alternative is to evaluate the expected values and marginal effects at the 
means of the explanatory variables by inserting the following statement before line 
16: 
 
z=meanc(z)'; 
 
We conclude with an important remark. In Lesson 8.3, the dependent variable is 
actually more like count data than a continuous variable, for it records the number of 
occurrences of extramarital affairs within a year. As a matter of fact, this model is 
well-suited for probit analysis. If we define the dependent variable Y as a binary 
variable (0 for no affairs and 1 otherwise), then the same data set can be used for 
either probit or logit analysis. However, the estimated parameters, expected values, 
and marginal effects of the probit (or logit) model are not directly comparable to 
those of the tobit model. The dependent variable being “explained” or “predicted” is 
different under tobit estimation than under probit or logit estimation. With a tobit 
model, we are predicting the mean number of affairs. With a probit or logit model, 
we are predicting the probability of an affair occurring within a year. The probit 
analysis is not concerned with the actual number of affairs. We leave the model 
comparison to interested readers.  
 
 





 

 

IX 
 Heteroscedasticity  
 

Heteroscedasticity is a common problem with cross-sectional data, in which unequal 
model variance is observed. Ordinary least squares estimation with a 
heterogeneously distributed error structure leads to inefficient estimates of the 
regression parameters. In order to correct for this inefficiency, the source of 
heteroscedasticity in relation to one or more variables must be identified. 
 
To illustrate how to test and correct for the problem of heteroscedasticity, the 
following relationship of public school spending (SPENDING) and income 
(INCOME) across 50 states in the U.S. is considered: 
 
SPENDING = β0 + β1 INCOME + β2 INCOME2 + ε 
 
To estimate this equation, which is used for all the lessons in this chapter, a cross-
sectional data file greene.txt is used.8 It gives per capita public school expenditure 
and per capita income by state in 1979. Let’s take a look at the data file greene.txt 
we will be dealing with. The data file contains three columns. The first column is the 
state identifier (STATE), the second column is per capita expenditure on public 
schools (SPENDING), and the third column is per capita income (INCOME). 
Viewing greene.txt in the Edit window reveals a problem with the data. Notice that 
WI (Wisconsin) is missing a data observation. The row WI has “NA” for the 
corresponding value in the SPENDING column. GAUSS sees “NA” as a character 
string, not suitable for numerical computation. GAUSS has commands that convert 
character strings, such as “NA,” to a symbol that it can interpret as a missing value. 
The first part of each lesson in this chapter walks you through the process of 
converting greene.txt with its missing values to useable data. Several new GAUSS 
commands are introduced for this purpose. 
 

Heteroscedasticity-Consistent Covariance Matrix 

Assuming heteroscedasticity, the ordinary least squares estimator is unbiased but 
inefficient. We can keep the unbiased least squares estimator, but correct for 
inefficiency with an estimated heteroscedasticity-consistent covariance matrix. 
Lesson 9.1 below demonstrates the use of the input control variable _hacv to 
correct the covariance matrix.  
 

Lesson 9.1: Heteroscedasticity-Consistent Covariance Matrix 

In this lesson, we estimate the regression equation of public school spending 
(SPENDING) with regressors income (INCOME) and squared income (INCOME2) 
using the data file greene.txt. 
 

                                                           
8 This example was used in Greene (1997, Chapter 12), but it has been removed from the 
updated fourth edition (Greene, 1999). 
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For a heteroscedastic regression model, a consistent estimate of the variance-
covariance matrix is obtained by approximating the original heteroscedastic 
variances with the squares of estimated residuals from ordinary least squares 
estimation. That is, 
 

( ) ( ) ( )( ) 11 XXXΣ̂XXXβ̂Var −− ′′′=  
 
where X is the data matrix of regressors, β̂  is the ordinary least squares estimator of 

the parameters vector β, and Σ̂   is a diagonal variance-covariance matrix (i.e., the 
estimator of E(εε') with the elements being the squares of the estimated regression 
residuals.  
 
From two least squares estimations, one with the ordinary variance-covariance 
matrix and the other with the heteroscedasticity-consistent covariance matrix, we can 
directly compare the results of these regressions. In GPE, by setting the input 
variable _vcov=1 (see line 11 of Lesson 9.1), the details of the variance-covariance 
matrix are presented. The second regression estimation with the newly introduced 
input variable _hacv=1 (see line 13 of Lesson 9.1) computes the heteroscedasticity-
consistent estimates of the variance-covariance matrix instead of the inefficient one 
from the ordinary least squares. 
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/* 
** Lesson 9.1: Heteroscedasticity-Consistent 
** Variance-Covariance Matrix  
*/ 
use gpe2; 
output file = gpe\output9.1 reset; 
load greene[52,3]= gpe\greene.txt; 
 
data = greene[2:52,.]; 
data = miss(data,"NA"); @ NA to missing value @ 
data = packr(data); @ deletes row w/miss value@ 
spending = data[.,2]; 
income = data[.,3]/10000; 
 
call reset;  
 
/* Ordinary Least Squares */ 
_names = {"spending","income","income^2"}; 
_vcov = 1; 
call estimate(spending,income~income^2); 
 
/* Ordinary Least Squares */ 
_hacv = 1; @ with hetero. consistent var-cov @ 
call estimate(spending,income~income^2); 
end; 
 
Line 5 introduces the miss command of GAUSS. It modifies the matrix data by 
comparing each element in the matrix data to the character string “NA.” If an 
element in data equals “NA,” it is replaced with a dot (.), GAUSS’s symbol for a 
missing value. In the next line, packr(data) deletes any rows that contain any 
missing values in the matrix data. After data has been packed (line 6), the number 
of rows in data is reduced to 50. Refer to the GAUSS manual or on-line help to 
find more information on the commands miss and packr. 
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Try combining lines 4, 5, and 6 for efficiency: 
 
data=packr(miss(greene[2:52,.],"NA")); 

 
The result of the first least squares estimation with the option to print out the 
estimated variance-covariance matrix (lines 10 to 12) is: 
 

Least Squares Estimation 
------------------------ 
Dependent Variable = SPENDING 
Estimation Range =  1          50         
Number of Observations = 50           
Mean of Dependent Variable = 373.26       
Standard Error of Dependent Variable = 94.553       
 
R-Square = 0.65534      R-Square Adjusted = 0.64068      
Standard Error of the Estimate = 56.679       
Log-Likelihood Function Value = -271.27      
Log Ammemiya Prediction Criterion (APC) =  8.1331       
Log Akaike Information Criterion (AIC) =  8.1329       
Log Schwarz Bayesian Information Criterion (BIC) =  8.2476       
 
Sum of Squares         SS           DF          MSS            F       Prob>F 
Explained     2.8709E+005            2  1.4355E+005       44.684  1.3445E-011 
Residual      1.5099E+005           47       3212.5  
Total         4.3808E+005           49       8940.3  
 
Variable        Estimated     Standard      t-Ratio         Prob      Partial 
Name          Coefficient        Error        47 DF         >|t|   Regression 
INCOME            -1834.2       828.99      -2.2126     0.031820     0.094335  
INCOME^2           1587.0       519.08       3.0574    0.0036770      0.16590  
CONSTANT           832.91       327.29       2.5449     0.014275      0.12111  
 
Variance-Covariance Matrix of Coefficients 
INCOME        6.8722E+005  
INCOME^2     -4.2844E+005  2.6944E+005  
CONSTANT     -2.7021E+005  1.6709E+005  1.0712E+005  
                   INCOME     INCOME^2     CONSTANT  
 
 
Correlation Matrix of Coefficients 
INCOME             1.0000  
INCOME^2         -0.99567       1.0000  
CONSTANT         -0.99591      0.98352       1.0000  
                   INCOME     INCOME^2     CONSTANT  

 
In order to compare the ordinary least squares estimates of standard errors and the 
variance-covariance matrix with the heteroscedasticity-consistent variance-
covariance matrix, we look at a portion of the output from the second regression 
estimation (lines 13 and 14): 
 

Variable        Estimated     Standard      t-Ratio         Prob      Partial 
Name          Coefficient        Error        47 DF         >|t|   Regression 
INCOME            -1834.2       1243.0      -1.4756      0.14673     0.044275  
INCOME^2           1587.0       829.99       1.9121     0.061968     0.072177  
CONSTANT           832.91       460.89       1.8072     0.077137     0.064972  
 
Variance-Covariance Matrix of Coefficients 
INCOME        1.5452E+006  
INCOME^2     -1.0296E+006  6.8889E+005  
CONSTANT     -5.7170E+005  3.7941E+005  2.1242E+005  
                   INCOME     INCOME^2     CONSTANT  
 
Correlation Matrix of Coefficients 
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INCOME             1.0000  
INCOME^2         -0.99796       1.0000  
CONSTANT         -0.99789      0.99182       1.0000  
                   INCOME     INCOME^2     CONSTANT  

 
In this example, the estimated heteroscedasticity-consistent standard errors and the 
variance-covariance matrix of the regression parameters are both larger than their 
ordinary least squares counterparts. The results indicate that there are smaller t-
ratios, leading to the conclusion of statistically insignificant parameter estimates. 
Such correction to the model is useful when the problem of heteroscedasticity is of 
unknown form. 
 

Weighted Least Squares 

As mentioned earlier, if we can identify one or more of the regressors in the model as 
the source of heterogeneity in the variances, then a variation of least squares called 
weighted least squares is recommended. This estimation method adjusts all data 
series across the regression equation in accordance with the origin of the 
heteroscedasticity. Lesson 9.2 details the Goldfeld-Quandt approach, while Lesson 
9.3 presents more general testing procedures devised by Breusch-Pagan and White. 
 

Lesson 9.2: Goldfeld-Quandt Test and Correction for Heteroscedasticity 

Continuing on with the spending-income regression equation of Lesson 9.1, this 
lesson introduces the Goldfeld-Quandt method to test for heteroscedasticity. It then 
corrects for this condition by using the method of weighted least squares. 
 
The Goldfeld-Quandt test requires data to be sorted according to the size of the 
independent variable suspected to be the source of heteroscedasticity. The entire data 
set is then divided into three parts. The middle group is dropped, and the regression 
is run using only the groups containing the smallest and largest values. Separate 
regressions are estimated on each of the groups of smallest and largest values. 
Residual sum-of-squares (RSS) from both groups are then compared in the Goldfeld-
Quandt test statistic. 
 
As in the previous Lesson 9.1, the data are read from greene.txt and corrected for 
missing values. The Goldfeld-Quandt test requires a sorted data series in accordance 
with the suspected source of heteroscedasticity. Sorting the rows in the matrix, 
data, by the information in the third column (that is, the variable INCOME) is done 
in line 7. INCOME is sorted from its smallest value to its largest. The GAUSS Help 
menu gives greater details about the data sorting commands such as sortc used 
here.  
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/* 
** Lesson 9.2: Goldfeld-Quandt Test and 
** Correction for Heteroscedasticity     
*/ 
use gpe2; 
output file = gpe\output9.2 reset; 
load greene[52,3]= gpe\greene.txt; 
 
data = greene[2:52,.]; 
data = miss(data,"NA"); @ NA to missing value @ 
data = packr(data);   @ deletes row w/miss value @ 
data = sortc(data,3); @ sort data (income), in ascending order @ 
spending = data[.,2]; 
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income = data[.,3]/10000; 
 
call reset;  
 
/* Goldfeld-Quandt Test */ 
_names = {"spending","income","income^2"}; 
_begin = 1; 
_end = 17; 
call estimate(spending,income~income^2); 
mss1 =__rss/14; @ N-K = 17-3 = 14 @ 
 
_begin = 34; 
_end = 50; 
call estimate(spending,income~income^2); 
mss2 =__rss/14; @ N-K = 17-3 = 14 @ 
 
print "Goldfeld-Quandt Test Statistic = " mss2/mss1; 
 
/* Weighted Least Squares */ 
call reset; 
_weight = 1/income; 
call estimate(spending,income~income^2); 
end; 
 
Selecting the first group of the 17 smallest observations to regress for the Goldfeld-
Quandt test is done by restricting the data matrix to only include observations from 1 
to 17 (lines 12 and 13). The use of the output control variable, __rss, is introduced 
in line 15. __rss stores the sum-of-squared residuals from the latest regression 
estimation. Each time when the procedure estimate is called, output control 
variables are assigned new values. To save the value of __rss/14, the mean sum-
of-squares of residuals, for later use in the Goldfeld-Quandt test statistic, it is 
assigned to variable mss1. Similarly, lines 16, 17, and 18 select the 17 largest 
observations and run the regression, assigning the resulting __rss/14 to the 
variable mss2. 
 
Since we are only interested in the RSS from the regressions, the outputs from the 
first two estimations are not printed here. Instead, the result of Goldfeld-Quandt test 
statistic from line 20 is given as follows: 
 

Goldfeld-Quandt Test Statistic =       1.9444 
 
This statistic is computed according to the formula: 
 

KN
RSS

KN
RSS

1

1

2

2

−

−  

 
which follows the F-distribution with N2-K and N1-K degrees of freedom, where N1 
and N2 are the number of observations corresponding to the two separate samples, 
and K is the number of regressor parameters, including the constant term. Since the 
Goldfeld-Quandt method requires that the test statistic be greater than 1, the largest 
RSS (RSS2) must be in the numerator. The computed value of 1.94 is smaller than 
the critical value of F(14,14) at a 5% level of significance (that is, 2.40), so we could 
not reject the hypothesis of homoscedasticity. 
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Although there seems to be no problem of heteroscedasticity in the spending-income 
equation based on the Goldfeld-Quandt test, we warn the reader to never totally rely 
on statistical results from just one single test. We continue on to show you the 
weighted least squares method for correcting heteroscedasticity. 
 
The problem of heteroscedasticity is corrected using weighted least squares. In line 
22, the statement: 
 
_weight = 1/income; 
 
tells GPE to estimate the model using 1/INCOME as the weight incorporated in the 
regression estimation called on line 23. All the variables, both dependent and 
independent, including the constant term, are weighted (or divided by INCOME). 
The rationale is that the variable INCOME2 may be used to approximate the 
heterogeneous variances of the model.  
 
Because input variables _begin and _end had been set to non-default values 
earlier in the program, calling reset again (line 21) is the simplest way to insure 
that all control variables are reset to their default values for the new estimation to 
come. 

 

 

Delete line 21 or change it to 
 
@ call reset; @ 
 
See what happens. Why? 
 
The regression output corrected for heteroscedasticity is available in the output file 
output9.2. Compare the earlier ordinary least squares estimation with the 
heteroscedasticity-consistent covariance matrix from Lesson 9.1,  
 
SPENDING =  832.91 -  1834.2 INCOME +  1587.0 INCOME2 
s.e.  (460.89)  (1243.0)   (829.99) 
 
and with the weighted least squares estimation using 1/INCOME as the weighting 
variable, 
 
SPENDING =  664.58 -  1399.3 INCOME +  1311.3 INCOME2 
s.e.  (333.61)   (872.07)   (563.71) 
 
Notice that the numbers in parentheses are the estimated standard errors of the 
coefficients. The results of the two regressions are similar, but in theory, weighted 
least squares estimation is more efficient. 
 

Lesson 9.3: Breusch-Pagan and White Tests for Heteroscedasticity 

In this lesson, we will briefly explain two other methods to test for 
heteroscedasticity: the Breusch-Pagan and White tests for general heteroscedasticity. 
Many econometrics references cover the operation of these tests in more detail. 
 
In an auxiliary regression, the Breusch-Pagan test for general heteroscedasticity uses 
all explanatory variables including the constant term as the regressors to compute the 
test statistic. The test procedure does not rely on any particular variable or functional 
form to specify heteroscedasticity. In addition, it does not require the data to be 
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sorted. However, the Breusch-Pagan test does assume residual normality for accurate 
results. The alternative Koenker-Basset test is more forgiving in regards to the 
assumption of normality. 
 
The White test is based on the computation of the heteroscedasticity-consistent 
covariance matrix as described in Lesson 9.1, in which the explanatory variables and 
their squares and cross products are used to fit the squared residuals in a regression 
setting. The resulting goodness of fit is the test statistic. 
 
We note that both the Breusch-Pagan and White tests for general heteroscedasticity 
do not offer information about the source and the form of heteroscedasticity. To 
correct for this problem, a more specific heteroscedastic structure of the model may 
be required.  
 
It is quite easy to implement the Breusch-Pagan and White tests for 
heteroscedasticity in GPE. What you need is to set a positive value to the input 
control variable _bptest. 
 

 
 
 
 

1 
2 
3 
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9 
 
 

10 
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12 
13 

 
14 

/* 
** Lesson 9.3: Breusch-Pagan and White Tests  
** for Heteroscedasticity 
*/ 
use gpe2; 
output file = gpe\output9.3 reset; 
load greene[52,3]= gpe\greene.txt; 
 
data = greene[2:52,.];                
data = miss(data,"NA"); @ NA to missing value @ 
data = packr(data); @ deletes row w/mis value @ 
spending = data[.,2]; 
income = data[.,3]/10000; 
 
call reset; 
 
/* Breusch-Pagan and White Tests */ 
_names = {"spending","income","income^2"};  
_bjtest = 1; 
_bptest = 1; 
call estimate(spending,income~income^2); 
 
end; 
 
Lines 1 through 10 are similar to lesson9.1. Keeping in mind that the working of the 
Breusch-Pagan test assumes that residuals are normally distributed, so we have 
included the Bera-Jarque test for residual normality on line 11 (_bjtest=1). Line 
12 (_bptest=1) performs the Breusch-Pagan and White tests for general 
heteroscedasticity. 

 
Let’s examine the output now. The regression result from the first estimation (line 
13) is the same as the result discussed in the previous Lesson 9.2, with additional 
pieces of information: the Bera-Jarque test for normality, and the Breusch-Pagan and 
White tests for heteroscedasticity:  
 

Bera-Jarque Wald Test for Normality 
Asymptotic Standard Error of Residuals = 54.952       
Skewness of Residuals = -0.083322    
Kurtosis of Residuals = 3.3877       
Chi-Sq(   2)  Prob>Chi-Sq 
     0.37107      0.83066  
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Breusch-Pagan and White LM Tests for Heteroscedasticity 
                          Chi-Sq     DF  Prob>Chi-Sq 
Breusch-Pagan Test        18.903      2  7.8553e-005  
Koenkar-Basset Test       15.834      2   0.00036454  
White Test                21.159      4   0.00029443  

 
The result of the Bera-Jarque test reveals normality in the residuals (refer to Lesson 
3.6 for details on the Bera-Jarque test for residual normality). The last section of the 
regression output is what we are interested in: the Breusch-Pagan and White tests for 
heteroscedasticity. It is set up to test the null hypothesis of homoscedasticity. That is, 
for the Breusch-Pagan test, if the computed test value is less than the critical value of 
the Chi-square distribution with two degrees of freedom, we fail to reject the 
hypothesis that the model error is homogeneously distributed. A similar conclusion 
is obtained from the White test, which is based on the R2 statistic of the auxiliary 
regression with 4 degrees of freedom. Note the low P-values for both the Breusch-
Pagan and White test statistics, leading us to reject the hypothesis of 
homoscedasticity and conclude that heteroscedasticity exits in the model.  
 

 

Remember the requirement of residual normality for the Breusch-Pagan test? If the 
residuals are not normally distributed, we need to use a more general version of the 
Breusch-Pagan test, called the Koenkar-Basset test. The closer to normal the 
residuals are, the more similar these two test statistics. If absolute normality exists, 
the computed values of the two tests will be identical. Since the estimated residuals 
are indeed normally distributed for this example as shown earlier, both tests return 
rather close values, 18.9 and 15.8, respectively. Our conclusion of heteroscedasticity 
is the same from both the Breusch-Pagan and Koenkar-Basset test statistics. 
 

Nonlinear Maximum Likelihood Estimation 

A more general approach is to consider the regression model, linear or nonlinear, 
with the heteroscedastic variance-covariance matrix  
 
∑ = σ2Ω  
 
where Ω is a positive diagonal matrix representing the proportional variance weight 
of each data observation. It is impossible to estimate the general matrix Ω. Usually Ω 
is re-parameterized with a vector α of only a few parameters. By assuming a normal 
probability distribution for the model’s error term, maximum likelihood estimation is 
implemented to estimate the regression parameters and heteroscedastic variances. 
 
Consider a sample of N data observations Z = [Y,X] in fitting the regression model 
F(Z,β) = ε, where Y is the left-hand side dependent variable, X is the right-hand side 
independent variable, and β consists of the unknown parameters. For each data 
observation i, let εi(β) = F(Zi,β) and assume εi(β) is normally independently 
distributed with zero mean and positive variance σi

2. The log-likelihood function, 
ll(β,σ2) = ll(β,σ1

2,σ2
2,…,σN

2) for brevity, is 
 
ll(β,σ2) = -N/2 ln(2π) - ½ ∑i=1,2,…,N ln(σi

2) - ½ ∑i=1,2,…,N (εi(β)2 / σi
2) 

 
Given the general form of heteroscedasticity, there are too many unknown 
parameters. For practical purposes, some hypothesis of heteroscedasticity must be 
assumed: 
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σi

2 = σ2 h(Xi,α) 
 
where σ2 > 0 and the heteroscedastic function h depends on part or all of the 
regressors and a vector of parameters α. Given a specific formulation of 
heteroscedasticity, hi(α) = h(Xi,α) for brevity, the log-likelihood function is written 
as: 
 
ll(β,α,σ2) = -N/2 (ln(2π) + ln(σ2)) 

- ½ ∑i=1,2,…,N ln(hi(α)) - 
1

2σ2 ∑i=1,2,…,N (εi(β)2 / hi(α)) 

 
Let εi*(β,α) = εi(β) / hi(α)  and substitute out σ2 with ε*(β,α)'ε*(β,α)/N, then 
the concentrated log-likelihood function is 
 
ll*(β,α) = -N/2 (1 + ln(2π) + ln(ε*(β,α)'ε*(β,α)/N)) - ½ ∑i=1,2,…,N ln(hi(α)) 
 
As the variances must be explicitly estimated, σi

2 = σ2 hi(α), the objective log-
likelihood function is inevitably complicated. To maximize the log-likelihood 
function, the techniques of nonlinear optimization of Chapter VI are applicable. 
 
Consider the following examples of heteroscedasticity specifications, in which X is 
assumed to be a single variable for simplicity. The corresponding functional forms of 
h(α) and ε* are defined for the concentrated log-likelihood function: 
 
ll*(β,α) = -N/2 [1 + ln(2π) + ln(ε*'ε*/N)] - ½ ∑i=1,2,…,N ln(hi(α)) 
 

 σi
2 hi(α) εi* 

1.  σ2(Xiα) Xiα εi / (Xiα)½ (Note: Xiα > 0) 
2.  σ2(Xiα)2 (Xiα)2 εi / Xiα 
3.  σ2exp(Xiα) exp(Xiα) εi / exp(Xiα)½ 
4.  σ2(Xi

α)  Xi
α εi / Xi

α/2 
 
The last two cases may be expressed in log form: 
 
3. ln(σi

2)= ln(σ2) + α Xi 
4. ln(σi

2)= ln(σ2) + α ln(Xi) 
 
Depending on whether the variable X is log-transformed or not, both cases of 
multiplicative heteroscedasticity are essentially the same. For (3) and (4), if α = 0 the 
model is homoscedastic. If α = 2, we have case (2). 
 

Lesson 9.4: Multiplicative Heteroscedasticity 

Let’s reexamine the heteroscedastic relationship of public school spending 
(SPENDING) and income (INCOME) of the previous three lessons: 
 
SPENDING = β0 + β1 INCOME + β2 INCOME2 + ε 
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The data set is given in greene.txt. This time we will find and compare the 
maximum likelihood estimates based on the following hypothesis of multiplicative 
heteroscedasticity: 
 
σi

2 = σ2 INCOMEi
α 

 
Lesson 9.2 has demonstrated the weighted least squares estimation for the case of α 
= 2. The alternative expression of multiplicative heteroscedasticity is 
 
σi

2 = σ2 exp(α INCOMEi) 
 
If the variable INCOME is in log form for the alternative expression of 
heteroscedasticity, the two forms of multiplicative heteroscedasticity are the same. 
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/* 
** Lesson 9.4: Multiplicative Heteroscedasticity 
** Greene (1997), Chap. 12.5 
*/ 
use gpe2; 
output file=gpe\output9.4 reset; 
load data[52,3]=gpe\greene.txt; 
data=data[2:52,2]~(data[2:52,3]/10000); @ scale data @ 
data=packr(miss(data,"NA")); @ take care of missing obs @ 
b=data[.,1]/(ones(rows(data),1)~data[.,2]~(data[.,2]^2)); 
 
call reset; 
_method=4; 
_iter=100; 
_restart=10; 
_b=b|2.0; 
_nlopt=1; 
 
call estimate(&llf,data); 
 
end; 
 
proc llf(data,b); 
    local n,y,x,e,h,ll; 
    y=data[.,1]; @ public school spending @ 
    x=data[.,2]; @ income @ 
    n=rows(y); 
    h=x^b[4];    @ multiplicative hetero @ 
/* 
    h=exp(b[4]*x);   
*/ 
    e=(y-b[1]-b[2]*x-b[3]*(x^2))./sqrt(h); 
    ll=-0.5*n*(1+ln(2*pi)+ln(e'e/n))-0.5*sumc(ln(h)); 
    retp(ll); 
endp; 
 
The first part of the program loads and scales the data, which are the same as in 
previous lessons. Line 6 computes the linear model estimates as the starting values of 
parameters for nonlinear maximum likelihood estimation (see line 11). The objective 
log-likelihood function llf is defined in lines 15 through 23. The specific form of 
multiplicative heteroscedasticity is given in line 20. Since the estimation has 
experienced some difficulty in improving the function value in its final iterations, we 
set _restart=10 in line 10 to restart the iteration in case of failure. If you have 
trouble understanding what this program is doing, a review of Chapter VI and the 
program lessons on nonlinear models there is recommended. 
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The result of maximum likelihood estimation is given in the following: 
 

Non-Linear Optimization: Maximization Problem 
--------------------------------------------- 
Assuming Maximum Likelihood Function 
Number of Observations = 50           
Number of Parameters = 4            
 
Maximum Number of Iterations = 100          
Step Size Search Method = 0            
Convergence Criterion = 0            
Tolerance = 0.001        
 
Initial Result: 
Function Value =      -268.70  
Parameters =       832.91      -1834.2       1587.0       2.0000  
 
Using Newton-Raphson Algorithm 
Iteration =  1   Step Size =  1.0000  Value =      -268.11  
Parameters =       563.08      -1141.3       1150.6       3.2550  
Iteration =  2   Step Size =  1.0000  Value =      -268.09  
Parameters =       560.95      -1124.8       1132.8       3.2986  
Iteration =  3   Step Size =  1.0000  Value =      -268.09  
Parameters =       560.69      -1124.1       1132.4       3.2985  
Iteration =  4   Step Size =  1.0000  Value =      -268.09  
Parameters =       560.69      -1124.1       1132.4       3.2984  
Iteration =  5   Step Size =  1.0000  Value =      -268.09  
Parameters =       560.69      -1124.1       1132.4       3.2985  
 
Final Result: 
Iterations = 5           Evaluations = 126          
Function Value =      -268.09  
Parameters =       560.69      -1124.1       1132.4       3.2985  
Gradient Vector =  2.0276e-008      0.00000      0.00000  1.7233e-006  
Hessian Matrix =  
   -0.020623    -0.014837    -0.010848  -0.00024046  
   -0.014837    -0.010848   -0.0080655  9.0987e-005  
   -0.010848   -0.0080655   -0.0061037  -0.00013901  
 -0.00024046  9.0987e-005  -0.00013901     -0.58515  
 
                                   Asymptotic 
                Parameter   Std. Error      t-Ratio 
X1                 560.69       354.11       1.5834  
X2                -1124.1       943.28      -1.1917  
X3                 1132.4       621.04       1.8233  
X4                 3.2985       1.3790       2.3920 

 
The estimated public school spending-income relationship is summarized as: 
 
SPENDING =  560.69 -  1124.1 INCOME +  1132.4 INCOME2 
s.e.  (354.11)   (943.28)   (621.04) 
 
In addition, the heteroscedastic variance is related to the variable INCOME as 
follows: 
 
σi

2 = σ2 INCOMEi
3.3 

 
It is easy to modify lesson9.4 for the alternative (exponential) form of multiplicative 
heteroscedasticity. Line 20 in the definition of log-likelihood function would be 
replaced by: 
 
h=exp(b[4]*x); 
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which is currently ignored by GAUSS within the comment notations (/* */). Make 
the change and run the modified program. The resulting regression equation looks 
like this, 
 
SPENDING =  544.53 -  1076.2 INCOME +  1097.7 INCOME2 
s.e.  (364.97)   (974.17)   (643.10) 
 
and the variance equation is: 
 
σi

2 = σ2 exp(4.23 INCOMEi) 
 
Refer to the output file generated from the program and verify the above regression 
results. To summarize the discussion of heteroscedastic regression models, we put 
together and compare the estimation results of the public school spending-income 
relationship: 
 
SPENDING = β0 + β1 INCOME + β2 INCOME2 + ε 

 
 (1) 

Lesson 9.1 
(2) 
Lesson 9.2 

(3) 
Lesson 9.4 

(4) 
Lesson 9.4 

β1 -1834.2 
(1243.0) 

-1399.3 
(872.07) 

-1124.1 
(943.28) 

-1076.2 
(974.17) 

β2 1587.0 
(829.99) 

1311.3 
(563.71) 

1132.4 
(621.04) 

1097.7 
(643.10) 

β0 832.91 
(460.89) 

664.58 
(333.61) 

560.69 
(354.11) 

544.53 
(364.97) 

α 0 2 3.2985 
(1.3790) 

4.2344 
(1.7364) 

 
The numbers in parentheses are the estimated standard errors of the parameters. To 
recap the essence of each model: (1) Lesson 9.1 is an ordinary least squares with 
heteroscedasticity-consistent variance-covariance matrix; (2) Lesson 9.2 is a 
weighted least squares using 1/INCOME as the weight (i.e., σi

2 = σ2 INCOMEi
2); (3) 

and (4) are the maximum likelihood estimators with multiplicative heteroscedasticity 
(i.e., σi

2 = σ2 INCOMEi
α  and σi

2 = σ2 exp(α INCOMEi), respectively) as presented 
in Lesson 9.4. 
 
Which one is most accurate? We leave that decision to you. 
 



 

 

X 
Autocorrelation 
 

Autocorrelation is a problem most likely associated with time series data. It concerns 
the relationship between previous and current error terms in a regression model. In 
the simplest case, the serial correlation is of first order where the correlation between 
current and immediate previous errors is nonzero. A more complicated error 
structure can include autoregressive (AR) and moving average (MA) terms. 
 
OLS (ordinary least squares) estimation with autocorrelated error structure results in 
a loss of efficiency. Therefore, statistical inference using t and F test statistics cannot 
be trusted.  
 
In this chapter, we revisit the multiple regression model of U.S. production function, 
using the labor (L), capital (K), and output (X) data series of cjx.txt: 
 
ln(X) =  β0 + β1 ln(L) + β2 ln(K) + ε 
 
Lesson 10.1 below demonstrates the use of the input control variable _hacv to 
obtain a consistent estimator of the variance-covariance matrix, when ordinary least 
squares is used. Several tests for the existence of autocorrelation are given in Lesson 
10.2. Correction methods for first-order autocorrelation to improve the efficiency of 
parameter estimates are presented in Lessons 10.3 and 10.4. Since a more 
complicated structure of autocorrelation may be identified, the estimation of 
autoregressive and moving average error structures is considered in the last three 
lessons. Lesson 10.5 is a model with higher-order autocorrelation. The technique of 
maximum likelihood is introduced in Lesson 10.6, while Lesson 10.7 covers the 
nonlinear method. 
 

Autocorrelation-Consistent Covariance Matrix 

Given the existence of autocorrelation in a regression equation, the ordinary least 
squares estimator is unbiased but inefficient. Following from the treatment of the 
heteroscedasticity-consistent covariance matrix introduced in the previous chapter, 
we can keep the unbiased parameter estimators but correct for the variance-
covariance estimator with an autocorrelation-consistent covariance matrix. 
Combining both problems of heteroscedasticity and autocorrelation, the Newey-West 
estimator of the heteroscedasticity-autocorrelation-consistent covariance matrix is a 
simple approach to deal with an unspecified structure of heteroscedasticity and 
autocorrelation. The drawback is that the order of autocorrelation must be 
predetermined for the computation of Newey-West estimators. 
 
For a regression model with an unspecified structure of heteroscedasticity and 
autocorrelation, the consistent estimator of the variance-covariance matrix is 
 

( ) ( ) ( )( ) 11 XXXΣ̂XXXβ̂Var −− ′′′=  
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where X is the data matrix of regressors, β̂  is the ordinary least squares estimator of 
the parameter vector β , and Σ̂  is the Newey-West covariance estimator for 
autocorrelated and possibly heterogeneous disturbances. Refer back to Lesson 9.1 for 
more details on the consistent covariance matrix in the context of heteroscedasticity. 
 

Lesson 10.1: Heteroscedasticity-Autocorrelation-Consistent Covariance Matrix 

Based on the Cobb-Douglas production model for U.S. manufacturing introduced in 
Lesson 3.4, we first repeat the ordinary least squares estimation, printing out the 
OLS variance-covariance matrix. Then two more least squares estimations are 
performed, one with an estimated autocorrelation-consistent covariance matrix and 
the other with a heteroscedasticity-autocorrelation-consistent covariance matrix. 
Thus, we can directly compare the results of these regression estimations.  
 
Here is the program: 
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/* 
** Lesson 10.1: Heteroscedasticity Autocorrelation 
** Consistent Variance-Covariance Matrix 
*/ 
use gpe2; 
output file = gpe\output10.1 reset; 
load data[40,6]= gpe\cjx.txt; 
 
year = data[2:40,1]; 
X = ln(data[2:40,2]); 
L = ln(data[2:40,3]); 
K = ln(data[2:40,5]); 
 
call reset;  
 
/* Ordinary Least Squares */ 
_names = {"X","L","K"};  
_vcov = 1; 
call estimate(X,L~K); 
 
/* Ordinary Least Squares */ 
_hacv = {0,4};@ with auto consistent var-cov @ 
call estimate(X,L~K); 
 
/* Ordinary Least Squares */ 
_hacv = {1,4};@ w/hetero auto consist var-cov @ 
call estimate(X,L~K); 
end; 
 
Recall that by setting the GPE input variable _vcov = 1 (see line 10), the 
estimated variance-covariance matrix is presented. Instead of using the inefficient 
variance-covariance matrix from ordinary least squares, computation of the 
consistent covariance matrix is controlled by the input variable _hacv. _hacv is 
either a scalar or a two-element vector. The first element of _hacv is reserved for 
heteroscedasticity correction as shown earlier in Lesson 9.1, while the second 
element is the order of autocorrelation to be considered for the estimator of an 
autocorrelation-consistent variance-covariance matrix. Therefore, line 12 of the 
program: 
 
_hacv = {0,4}; 
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will compute the fourth-order autocorrelation-consistent variance-covariance matrix. 
The mixture of heteroscedasticity and a fourth-order autocorrelation-consistent 
covariance matrix is obtained by setting line 14 to: 
 
_hacv = {1,4}; 
 

 

Why the fourth-order autocorrelation correction? There is no particular reason for 
this choice. As a matter of fact, we should try different numbers of orders to 
compute all the consistent covariance matrices, to find the proper order that 
stabilizes the resulting covariance matrix. 
 
We now analyze the output of three regression estimations. The first least squares 
estimation with the option to print out the estimated variance-covariance matrix 
(lines 10 to 11) is as follows: 
 

Least Squares Estimation 
------------------------ 
Dependent Variable = X        
Estimation Range =  1          39         
Number of Observations = 39           
Mean of Dependent Variable = 5.6874       
Standard Error of Dependent Variable = 0.46096      
 
R-Square = 0.99463      R-Square Adjusted = 0.99433      
Standard Error of the Estimate = 0.034714     
Log-Likelihood Function Value = 77.286       
Log Ammemiya Prediction Criterion (APC) =  -6.6471      
Log Akaike Information Criterion (AIC) =  -6.6474      
Log Schwarz Bayesian Information Criterion (BIC) =  -6.5195      
 
Sum of Squares         SS           DF          MSS            F       Prob>F 
Explained          8.0310            2       4.0155       3332.2  1.3921E-041 
Residual         0.043382           36    0.0012051  
Total              8.0744           38      0.21248  
 
Variable        Estimated     Standard      t-Ratio         Prob      Partial 
Name          Coefficient        Error        36 DF         >|t|   Regression 
L                  1.4508     0.083228       17.431  3.9260E-019      0.89407  
K                 0.38381     0.048018       7.9930  1.7130E-009      0.63960  
CONSTANT          -3.9377      0.23700      -16.615  1.8332E-018      0.88464  
 
Variance-Covariance Matrix of Coefficients 
L               0.0069270  
K              -0.0038020    0.0023057  
CONSTANT        -0.018806    0.0092666     0.056169  
                        L            K     CONSTANT  
 
Correlation Matrix of Coefficients 
L                  1.0000  
K                -0.95134       1.0000  
CONSTANT         -0.95338      0.81428       1.0000  
                        L            K     CONSTANT  
 

 
Since autocorrelation is suspected for most time series data, the second regression 
estimation (lines 12 and 13) is carried out with the fourth-order autocorrelation-
consistent standard errors and the variance-covariance matrix: 
 

 
Variable        Estimated     Standard      t-Ratio         Prob      Partial 
Name          Coefficient        Error        36 DF         >|t|   Regression 
L                  1.4508      0.10980       13.213  2.2423E-015      0.82905  
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K                 0.38381     0.058368       6.5756  1.1907E-007      0.54568  
CONSTANT          -3.9377      0.33421      -11.782  6.5278E-014      0.79407  
 
Variance-Covariance Matrix of Coefficients 
L                0.012055  
K              -0.0060940    0.0034069  
CONSTANT        -0.035362     0.016267      0.11170  
                        L            K     CONSTANT  
 
Correlation Matrix of Coefficients 
L                  1.0000  
K                -0.95089       1.0000  
CONSTANT         -0.96366      0.83388       1.0000  
                        L            K     CONSTANT  
 

 
Finally, heteroscedasticity and the fourth-order autocorrelation-consistent covariance 
matrix is the outcome of the last regression estimation (lines 13 and 14): 
 

 
Variable        Estimated     Standard      t-Ratio         Prob      Partial 
Name          Coefficient        Error        36 DF         >|t|   Regression 
L                  1.4508      0.11561       12.549  1.0409E-014      0.81392  
K                 0.38381     0.062253       6.1653  4.1818E-007      0.51358  
CONSTANT          -3.9377      0.33788      -11.654  8.9304E-014      0.79048  
 
Variance-Covariance Matrix of Coefficients 
L                0.013366  
K              -0.0069673    0.0038755  
CONSTANT        -0.037946     0.018529      0.11416  
                        L            K     CONSTANT  
 
Correlation Matrix of Coefficients 
L                  1.0000  
K                -0.96804       1.0000  
CONSTANT         -0.97140      0.88092       1.0000  
                        L            K     CONSTANT  

 
Putting together the estimated regression equations with the three sets of estimated 
standard errors, we have 
 
ln(X) = -3.94 + 1.45 ln(L) + 0.38 ln(K) 
s.e. (ols)  (0.24)  (0.08)  (0.05) 
s.e. (ac)  (0.33)  (0.11)  (0.06) 
s.e. (hac)  (0.34)  (0.12)  (0.06) 
 
In general, the consistent estimators of the covariance matrix are larger than their 
ordinary least squares counterparts. The consequence is a higher probability of type 
II error (incorrectly accepting the null hypothesis) for the estimators. In this example, 
all three estimated variance-covariance matrices of the coefficients are quite similar 
in spite of the consistency correction for autocorrelation and heteroscedasticity. 
 

Detection of Autocorrelation 

Given each observation of a linear regression model 
 
Yi = Xi β + εi 
the linear form of autocorrelated errors is written as: 
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ε i = ρ1ε i-1 + ρ2ε i-2 + … + ρpεi-p + υi  
 
where Y is the dependent variable, X is a vector of explanatory independent 
variables, and β is the associated parameter vector. The simplest case of 
autocorrelated error structure is autocorrelation of order 1 (or AR(1)), where p = 1. It 
is always worthwhile to check for the existence of autocorrelation before considering 
correcting the problem. 
 

Lesson 10.2: Tests for Autocorrelation 

This lesson explores several methods to test for autocorrelation. The most popular 
test is the Durbin-Watson bounds test, which is designed to check for first-order 
serial correlation. The convenience of the Durbin-Watson bounds test has its limits: 
it tests only for first-order autocorrelation and the regression must include a constant 
term. Additionally, there cannot be lagged dependent variables in the regression 
equation. The Breusch-Godfrey LM test is more forgiving: lagged dependent 
variables may be included and it can be used to test for higher orders of 
autocorrelation. Checking the autocorrelation and partial autocorrelation coefficients 
can reveal a more complicated autoregressive and moving average structure of 
autocorrelated errors. This is accomplished with the Box-Pierce and Ljung-Box Q 
test statistics. However, except for the Durbin-Watson bounds test, all tests for 
autocorrelation need a large sample size to be useful. 
 
The popular Durbin-Watson test statistic is a part of the residual statistics output 
reported with the regression estimation. That is, it is available with the statement:  
 
_rstat = 1; 
 
To call the Breusch-Godfrey LM test statistic, we need to specify the order of 
autocorrelation to be tested. Indeed, this is a cumulative test for no serial correlation 
up to the order specified. Therefore, we need only to find the autocorrelation at a 
rather low order to confirm the problem. For example, to test for autocorrelation up 
to the fourth order, use the statement: 
 
_bgtest = 4; 
 
Autocorrelation and partial autocorrelation coefficients are typically computed and 
plotted for a long period of lags. By examining these coefficients and their 
distribution, a pattern of autoregressive and moving average structures of 
autocorrelated residuals may be identified. The Chi-square-based Box-Pierce and 
Ljung-Box Q test statistics work the same way as the Breusch-Godfrey LM test. For 
example, 12-lag autocorrelation and partial autocorrelation functions are called with 
the statement: 
 
_acf = 12; 

 

 

The selection of the fourth-order autocorrelation for the Breusch-Godfrey LM test is 
only a suggestion. What we need is the lowest number of orders to test for 
autocorrelation. Again, the use of 12 lags for calculating and plotting autocorrelation 
and partial autocorrelation coefficients is arbitrary. As a rule of thumb, about one 
quarter of the sample size should offer sufficient information concerning the sample 
autocorrelation. 
 
Here is the program: 
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/* 
** Lesson 10.2: Tests for Autocorrelation 
*/ 
use gpe2; 
output file = gpe\output10.2 reset; 
load data[40,6]= gpe\cjx.txt; 
 
year = data[2:40,1]; 
X = ln(data[2:40,2]); 
L = ln(data[2:40,3]); 
K = ln(data[2:40,5]); 
call reset;  
 
_names = {"X","L","K"}; 
_rstat = 1; 
_rplot = 2; 
_bgtest = 4; @ Breusch-Godfrey, 4th order @ 
_acf = 12;   @ auto & partial auto,12 lags @ 
call estimate(X,L~K); 
end; 
 
Looking at the program, the use of input control variables _bgtest (line 12) and 
_acf (line 13) are new. You may set the value of _bgtest to any order of 
autocorrelation for the Breusch-Godfrey LM test, in this case up to 4 orders are 
tested. Similarly, for calculating and plotting autocorrelation and partial 
autocorrelation functions, the number of lags must be given to the variable _acf. In 
this example, 12 lags seem sufficient for a data size of about 40 observations. 
 

 
To see the plotting of more than one graphs in multiple windows, the following 
statement must be included anywhere before calling estimate: 
 
pqgwin many; 
 
Let’s analyze the first part of the estimation result (which is the same as that of 
Lesson 10.1), paying attention to the Durbin-Watson test statistic: 
 

Squared Correlation of Observed and Predicted = 0.99463      
Sum of Squared Residuals = 0.043382     
Sum of Absolute Residuals = 0.96779      
Sum of Residuals = -9.88614E-011 
First-Order Rho = 0.57053      
Durbin-Watson Test Statistic = 0.85808      

 
The first-order Rho is the estimated first-order serial correlation coefficient 
(ρ) which ranges from –1 to 1. At a value of 0.57, we can see that autocorrelation is a 
problem. To test the statistical significance of ρ = 0, the Durbin-Watson bounds test 
is used here. The computed Durbin-Watson statistic of 0.858 lies below the lower 
bound critical value of 1.382 for a regression using 39 observations and 2 
explanatory variables (not including constant term) at a 5% level of significance. 
 
The second part of the result concerns the Breusch-Godfrey LM test of 
autocorrelation, up to the fourth order: 
 

Breusch-Godfrey LM Test for Autocorrelation 
                   Chi-Sq           DF  Prob>Chi-Sq 
AR(   1)           13.205            1   0.00027923  
AR(   2)           20.331            2  3.8471e-005  
AR(   3)           22.221            3  5.8666e-005  
AR(   4)           22.445            4   0.00016339  
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The Breusch-Godfrey LM test is compared with the critical value of the Chi-square 
distribution with degrees of freedom equal to the number of orders of 
autocorrelation. P-values of each order tested are given to simplify the analysis. It 
becomes clear that autocorrelation exists from the very first order upward. Since the 
first order exhibits the problem of serial correlation as the Durbin-Watson bounds 
test suggests, all LM tests for cumulative higher orders will certainly also identify 
autocorrelation. 
 
The last part of the output lists and displays autocorrelation and partial 
autocorrelation coefficients for regression residuals up to 12 lags. Standard errors of 
these coefficients are useful to spot the significance of lags for autoregressive and 
moving average structures of autocorrelated residuals. In addition, both Box-Pierce 
and Ljung-Box Q test statistics are computed for each lag. Similar to the Breusch-
Godfrey LM test, these accumulative tests follow a Chi-square distribution with 
degrees of freedom corresponding to each individual number of lags, adjusted for the 
number of regression coefficients whenever necessary. 
 

Autocorrelation and Partial Autocorrelation Functions 
ARMA Model Specification 
Mean = -2.8701e-012 Standard Error = 0.033788      
   Lag         AR    S.E.(AR)         PAR   S.E.(PAR)  Box-Pierce   Ljung-Box 
    1     0.55892     0.20411     0.55892     0.16013      12.183      13.145  
    2   -0.046422     0.20438    -0.52183     0.16013      12.267      13.238  
    3    -0.19341     0.20902     0.27527     0.16013      13.726      14.900  
    4    0.054712     0.20939     0.12555     0.16013      13.843      15.037  
    5     0.20105     0.21428   -0.093386     0.16013      15.419      16.937  
    6    0.047409     0.21455   -0.073459     0.16013      15.507      17.046  
    7    -0.20382     0.21946    -0.12344     0.16013      17.127      19.122  
    8    -0.32496     0.23147    -0.18444     0.16013      21.246      24.569  
    9    -0.20559     0.23610    0.043822     0.16013      22.894      26.822  
   10    -0.15817     0.23881    -0.36648     0.16013      23.870      28.202  
   11    -0.23694     0.24476   -0.047891     0.16013      26.059      31.407  
   12    -0.24987     0.25121    0.010437     0.16013      28.494      35.105  

 
Both moving average and autoregressive processes of lower orders are visibly 
identifiable from the significant values of autocorrelation and partial autocorrelation 
coefficients, respectively. These include the first lag of autocorrelation as well as the 
first and second lags of partial autocorrelation coefficients. Moreover, Box-Pierce 
and Ljung-Box Q test statistics confirm the problem of autocorrelation starting from 
the first lag. 
 
In summary, all these tests for autocorrelation suggest that our model may need to be 
re-specified. Moreover, the correct specification may not involve just the simple 
first-order correction. Nevertheless, the next two lessons will explain the correction 
mechanisms of autocorrelation for the first-order model. For higher-order 
autocorrelation and even the mixture of autoregressive and moving average error 
structure, a proper model specification must first be identified. 
 

Correction for Autocorrelation 

The GPE package offers several different methods to correct for autocorrelation. The 
default is the Prais-Winsten modified Cochrane-Orcutt iterative method, which 
applies a scaled data transformation 1-ρ2 to the first observation consistent with an 
AR(1) error structure. Due to the use of this transformation, only the estimation of an 
AR(1) process is applicable. 
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In GPE, use the input control variable _ar to specify the order of autocorrelation for 
estimation. Since the correction mechanism may require several iterations to 
complete, another control variable _iter must be set to a large enough number to 
achieve convergence. Therefore the following statements are minimal for estimating 
a regression model, which corrects for the first-order serial correlation within the 
limit of 50 iterations: 
 
_ar = 1; 
_iter = 50; 
 
Lesson 10.3 below illustrates the default method of Cochrane-Orcutt iterative 
estimation of the AR(1) model. 
 
As an alternative to the Prais-Winsten modification, the original Cochrane-Orcutt 
iterative method does not include the first observation or its transformation. It is 
simply dropped from the data set used in the regression estimation. Therefore, 
adding the statement: 
 
_drop = 1; 
 
will use the traditional Cochrane-Orcutt method to estimate and to correct for an 
AR(1) error process. As a matter of fact, this method applies to the autocorrelated 
error structure of both first and higher orders. It just drops more observations in the 
beginning of the sample, with a cost of inefficiency, partially due to the loss of 
degrees of freedom. For estimation with higher-order autocorrelation, it is not 
necessary to specify the variable _drop. For example, 
 
_ar = 4; 
 
will estimate and correct for the AR(4) process using the traditional Cochrane-Orcutt 
iterative method in which the initial four observations are dropped automatically. 
 
The Cochrane-Orcutt method only converges to a local solution. In rare cases, there 
may exist more than one solution for an autocorrelated error structure. The Hildreth-
Lu grid search method guarantees that the global solution will be found for an AR(1) 
model. Similar to the Prais-Winsten modification to the original Cochrane-Orcutt 
iterative method, the Hildreth-Lu grid search method may include the first 
observation with proper transformation. Alternatively, dropping the first observation 
is an option with the cost of a decrease in efficiency. Again, we note that the 
Hildreth-Lu method applies to an AR(1) model only. The Hildreth-Lu method is 
activated by letting: 
 
_method = 2; 
 
Based on the GAUSS program of Lesson 10.3, the Hildreth-Lu grid search method is 
introduced in Lesson 10.4, in which the global solution for the estimated AR(1) 
model is ensured.  
 
Both the Cochrane-Orcutt iterative and the Hildreth-Lu grid search methods offer the 
option of using least squares or maximum likelihood criterion for optimization. They 
are the same if the first observation is dropped. However, with the transformed first 
observation included, the use of different optimization criteria may result in finding 
different solutions, although they are usually close. We have noted the use of the 
input control variable _method to select different methods of estimation for an 
autocorrelated error structure. _method can be either a scalar or a 2-element vector. 
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When employing a 2-element vector, the first element of _method selects the 
estimation method, while the second element selects either least squares or 
maximum likelihood criterion for optimization. For example,  
 
_method = {0,1}; 
 
calls for the estimation of autocorrelation coefficients using the Cochrane-Orcutt 
iterative procedure based on maximum likelihood criterion. The default method is 
the Cochrane-Orcutt iterative method and the default optimization criterion is the 
least squares. See Appendix A for more information. 
 

 

There is another method implemented for estimating the first-order autocorrelation, 
which includes the transformed first observation of data series using maximum 
likelihood optimization criterion. This method is the Beach-MacKinnon iterative 
maximum likelihood algorithm, specified by: 
 
_method = 1; 

 

Lesson 10.3: Cochrane-Orcutt Iterative Procedure 

This lesson walks through the Prais-Winsten modified Cochrane-Orcutt iterative 
procedure based on the least square criterion. Unless otherwise specified, GPE 
defaults to this method for estimation and correction for a first-order autoregressive 
error structure. The most basic model is presented here. 
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/* 
** Lesson 10.3: Cochrane-Orcutt Iterative Procedure 
*/ 
use gpe2; 
output file = gpe\output10.3 reset; 
load data[40,6]= gpe\cjx.txt; 
      
year = data[2:40,1]; 
X = ln(data[2:40,2]); 
L = ln(data[2:40,3]); 
K = ln(data[2:40,5]); 
call reset;  
 
_names = {"X","L","K"}; 
_rstat = 1;  
_ar = 1;        @ AR(1) error structure @ 
_iter = 50;     @ 50 iter for default C-O @ 
call estimate(X,L~K); 
end; 
 
As shown below, the regression output of this program is more complicated than 
previous ones without the autocorrelation correction.  
 

Least Squares Estimation 
------------------------ 
Dependent Variable = X        
Estimation Range =  1          39         
Number of Observations = 39           
Mean of Dependent Variable = 5.6874       
Standard Error of Dependent Variable = 0.46096      
 
Order of Autoregressive Errors = 1    
Maximum Number of Iterations = 50   
Convergence Tolerance Level = 0.00100      
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Using Cochrane-Orcutt Iterative Least Squares Algorithm 
Iteration =  0   Sum of Squares =  0.04338     Log Likelihood =  77.28607     
      Rho =       0.00000  
Iteration =  1   Sum of Squares =  0.02784     Log Likelihood =  85.74134     
      Rho =       0.57053  
Iteration =  2   Sum of Squares =  0.02702     Log Likelihood =  86.22178     
      Rho =       0.66944  
Iteration =  3   Sum of Squares =  0.02670     Log Likelihood =  86.37819     
      Rho =       0.72411  
Iteration =  4   Sum of Squares =  0.02656     Log Likelihood =  86.42820     
      Rho =       0.75755  
Iteration =  5   Sum of Squares =  0.02649     Log Likelihood =  86.43761     
      Rho =       0.77780  
Iteration =  6   Sum of Squares =  0.02647     Log Likelihood =  86.43452     
      Rho =       0.78976  
Iteration =  7   Sum of Squares =  0.02645     Log Likelihood =  86.42949     
      Rho =       0.79670  
Iteration =  8   Sum of Squares =  0.02645     Log Likelihood =  86.42547     
      Rho =       0.80069  
Iteration =  9   Sum of Squares =  0.02644     Log Likelihood =  86.42278     
      Rho =       0.80297  
Iteration =  10  Sum of Squares =  0.02644     Log Likelihood =  86.42112     
      Rho =       0.80427  
Iteration =  11  Sum of Squares =  0.02644     Log Likelihood =  86.42014     
      Rho =       0.80501  
 
         Rho    Std.Error      t-Ratio 
     0.80501     0.095517       8.4279  
 
NOTE: R-Square, AOV are computed from original series. 
 
R-Square = 0.99673      R-Square Adjusted = 0.99654      
Standard Error of the Estimate = 0.027100     
Log-Likelihood Function Value = 86.420       
Log Ammemiya Prediction Criterion (APC) =  -7.1423      
Log Akaike Information Criterion (AIC) =  -7.1426      
Log Schwarz Bayesian Information Criterion (BIC) =  -7.0146      
 
Sum of Squares         SS           DF          MSS            F       Prob>F 
Explained          8.0200            2       4.0100       5460.0  1.9940E-045 
Residual         0.026440           36   0.00073443  
Total              8.0744           38      0.21248  
 
Variable        Estimated     Standard      t-Ratio         Prob      Partial 
Name          Coefficient        Error        36 DF         >|t|   Regression 
L                  1.0680      0.15125       7.0612  2.7289E-008      0.58072  
K                 0.55812     0.095595       5.8384  1.1428E-006      0.48635  
CONSTANT          -2.7298      0.45549      -5.9931  7.0980E-007      0.49943  
 
Squared Correlation of Observed and Predicted = 0.99673      
Sum of Squared Residuals = 0.026440     
Sum of Absolute Residuals = 0.76731      
Sum of Residuals = 3.30995E-002 
First-Order Rho = 0.37997      
Durbin-Watson Test Statistic = 1.2244       

 
Notice that the second block of output reports the Cochrane-Orcutt iterative results 
set in lines 11, 12, and 13 of the program. Every iteration is listed until convergence 
is reached. At the end of the iterations, we have the following results: the estimated 
Rho, standard error, and t-ratio associated with the first-order serial coefficient. In 
this example, the significant non-zero Rho value of 0.805 is used to correct the least 
squares regression. In summary, 
 
ln(X) = -2.73 + 1.07 ln(L) + 0.56 ln(K) + ε 
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s.e.  (0.46)  (0.15)  (0.10)   
 

ε =  0.805 ε-1 
s.e.  (0.096) 

 

 

To call for the estimation of autocorrelation coefficients using Cochrane-Orcutt 
iterative procedure based on the maximum likelihood criterion, add the following 
line before calling estimate in line 13: 
 
_method = {0,1}; 

 

 

The verbose listing of iterations may be suppressed by setting the control variable 
_print = 0. See Appendix A for details. 

 

 

If the iterative estimation terminates prematurely due to exceeding the maximum 
iteration limit, the estimation result may not be reliable. A larger value of _iter 
must be given and the model re-estimated. 

 

 

There is another optional input control variable _tol, which adjusts the 
convergence tolerance level. Its default value is set to 0.001. 

 
The remaining regression output is familiar, including the Durbin-Watson test 
statistic computed for the model corrected for an AR(1) error structure. Recall from 
the test result of Lesson 10.2 that the extent of autocorrelation specification may be 
more complicated than the estimated AR(1). Indeed, the first-order Rho of 0.38 for 
the corrected model supports the notion that we may need to specify and correct for 
higher orders of autocorrelation.  
 

Lesson 10.4: Hildreth-Lu Grid Search Procedure 

To be sure that the estimated coefficient of the first-order serial correlation is indeed 
a global solution, we need only to specify the estimation method in the previous 
program. Modify the program to call and run the Hildreth-Lu grid search procedure 
by adding the statement 
 
_method = 2; 
 
in line 12 as follows: 
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/* 
** Lesson 10.4: Hildreth-Lu Grid Search Procedure 
*/ 
use gpe2; 
output file = gpe\output10.4 reset; 
load data[40,6]= gpe\cjx.txt; 
 
year = data[2:40,1]; 
X = ln(data[2:40,2]); 
L = ln(data[2:40,3]); 
K = ln(data[2:40,5]); 
call reset;  
 
_names = {"X","L","K"}; 
_rstat = 1; 
_ar = 1;     @ AR(1) error structure @ 
_method = 2; @ H-L method @ 
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13 
14 
15 

_iter = 50;  @ 50 iterations @ 
call estimate(X,L~K); 
end; 

 

 

To call for the estimation of autocorrelation coefficients using the Hildreth-Lu grid 
search procedure based on the maximum likelihood criterion, try this in place of line 
12: 
 
_method = {2,1}; 
 
Running the above program returns many iterations and lengthy output. Remember 
that these iterations are controlled by the global variables _iter and _tol. For 
viewing the estimation result, we refer readers to the output file output10.4.  
 
The estimated model with AR(1) error structure is summarized as follows: 
 
ln(X) = -2.66 + 1.05 ln(L) + 0.56 ln(K) + ε 
s.e.  (0.47)  (0.15)  (0.10)   

 
ε =  0.826 ε-1 
s.e.  (0.090) 

 
The results are basically the same as those obtained by using the Cochrane-Orcutt 
method. Although the Hildreth-Lu grid search is costly in terms of computer 
resources, the global nature of the estimated autocorrelation coefficients is superior 
to the local solution found with either of the Cochrane-Orcutt methods.  
 

Lesson 10.5: Higher-Order Autocorrelation 

As we have seen, many methods and options are available for estimating and 
correcting an AR(1) model. For higher-order autocorrelation, the traditional 
Cochrane-Orcutt iterative method is used, with a truncated sample in which initial 
unusable observations are dropped. Based on the Cochrane-Orcutt method 
introduced in Lesson 10.3, the first part of this lesson reexamines the estimated 
AR(1) model and tests for possible higher-order autocorrelation. We recall the use of 
the Breusch-Godfrey test (_bgtest) and autocorrelation functions (_acf) in 
addition to the Durbin-Watson bounds test to check for higher-order problems after 
the AR(1) model is estimated. Higher-order problems are identified and corrected in 
the second part of this lesson. Further tests for autocorrelation reveal no more 
information can be extracted from the estimated residuals. 
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/* 
** Lesson 10.5: Higher-Order Autocorrelation 
*/ 
use gpe2; 
output file = gpe\output10.5 reset; 
load data[40,6]= gpe\cjx.txt; 
      
year = data[2:40,1]; 
X = ln(data[2:40,2]); 
L = ln(data[2:40,3]); 
K = ln(data[2:40,5]); 
 
call reset;  
 
_names = {"X","L","K"}; 
_rstat = 1; 
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_rplot = 2; 
_bgtest = 4; 
_acf = 12; 
 
_ar = 1;     @ AR(1) error structure @ 
_iter = 50;  @ 50 iterations @ 
call estimate(X,L~K); 
 
_ar = 3;     @ AR(3) error structure @ 
call estimate(X,L~K); 
end; 
 
Lines 12 and 13 add the options to perform tests for higher-order autocorrelation. 
These include the Breusch-Godfrey LM test up to the fourth order of autocorrelation 
and a plot of 12-lag autocorrelation functions. The AR(1) model is re-estimated (line 
16) with the following test results: 
 

Breusch-Godfrey LM Tests for Autocorrelation 
                          Chi-Sq     DF  Prob>Chi-Sq 
AR(   1)                  5.5093      1     0.018916  
AR(   2)                  14.853      2   0.00059525  
AR(   3)                  14.883      3    0.0019193  
AR(   4)                  15.021      4    0.0046572  
 
Autocorrelation and Partial Autocorrelation Functions 
ARMA Model Specification 
Mean = 0.00084871   Standard Error = 0.026364      
   Lag         AR    S.E.(AR)         PAR   S.E.(PAR)  Box-Pierce   Ljung-Box 
    1     0.36888     0.18061     0.36888     0.16013      5.3068      5.7257  
    2    -0.29377     0.19247    -0.49754     0.16013      8.6724      9.4552  
    3    -0.32527     0.20608    0.031588     0.16013      12.799      14.155  
    4    0.058462     0.20651     0.12368     0.16013      12.932      14.311  
    5     0.22715     0.21282   -0.015040     0.16013      14.944      16.737  
    6   -0.026579     0.21290    -0.15509     0.16013      14.972      16.772  
    7    -0.17667     0.21663    0.061130     0.16013      16.189      18.331  
    8    -0.15212     0.21935    -0.15998     0.16013      17.092      19.525  
    9     0.11512     0.22090     0.19394     0.16013      17.608      20.231  
   10     0.10311     0.22213    -0.19689     0.16013      18.023      20.817  
   11    -0.14423     0.22451   -0.090591     0.16013      18.834      22.005  
   12    -0.21271     0.22962   -0.026934     0.16013      20.599      24.685  

 
From the visual display of autocorrelation functions as well as the results of several 
test statistics (Breusch-Godfrey LM test, Box-Pierce and Ljung-Box Q tests), higher 
orders of autocorrelation, or a mixture of autocorrelation and moving average 
processes is suspected. In particular, the coefficients for the first lag of 
autocorrelation and the first two lags of partial autocorrelation are still statistically 
significantly different from zero. The second part of Lesson 10.5 goes ahead to 
estimate the AR(3) model using the traditional Cochrane-Orcutt iterative method. 
The possibility of a mixed error structure with a moving average process is discussed 
in the next lesson. 
 
Since the option to test for higher orders of autocorrelation is still included in the 
program (see lines 12 and 13), the estimated AR(3) model is also tested for problems 
of autocorrelation. Here are the estimation and test results with the AR(3) error 
structure: 
 

Least Squares Estimation 
------------------------ 
Dependent Variable = X        
Estimation Range =  4          39         
Number of Observations = 36           
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Mean of Dependent Variable = 5.7319       
Standard Error of Dependent Variable = 0.45153      
 
NOTE: Estimation Range Has Been Adjusted. 
 
Order of Autoregressive Errors = 3    
Maximum Number of Iterations = 50   
Convergence Tolerance Level = 0.00100      
 
Using Cochrane-Orcutt Iterative Least Squares Algorithm 
Iteration =  0   Sum of Squares =  0.03894     Log Likelihood =  71.84326     
      Rho =       0.00000      0.00000      0.00000  
Iteration =  1   Sum of Squares =  0.01579     Log Likelihood =  88.09111     
      Rho =        1.0537     -0.81992      0.31827  
… 
Iteration =  12  Sum of Squares =  0.01434     Log Likelihood =  89.82665     
      Rho =        1.3540     -0.92057      0.39938  
 
         Rho    Std.Error      t-Ratio 
      1.3540      0.14121       9.5891  
    -0.92057      0.21656      -4.2508  
     0.39938      0.14174       2.8178  
 
NOTE: R-Square, AOV are computed from original series. 
 
R-Square = 0.99799      R-Square Adjusted = 0.99787      
Standard Error of the Estimate = 0.020845     
Log-Likelihood Function Value = 89.827       
Log Ammemiya Prediction Criterion (APC) =  -7.6612      
Log Akaike Information Criterion (AIC) =  -7.6616      
Log Schwarz Bayesian Information Criterion (BIC) =  -7.5296      
 
Sum of Squares         SS           DF          MSS            F       Prob>F 
Explained          7.0896            2       3.5448       8157.7  3.4129E-045 
Residual         0.014340           33   0.00043453  
Total              7.1357           35      0.20388  
 
Variable        Estimated     Standard      t-Ratio         Prob      Partial 
Name          Coefficient        Error        33 DF         >|t|   Regression 
L                  1.0433      0.11306       9.2277  1.1644E-010      0.72070  
K                 0.54676     0.074920       7.2979  2.2460E-008      0.61743  
CONSTANT          -2.5236      0.38943      -6.4802  2.3638E-007      0.55996  
 
Squared Correlation of Observed and Predicted = 0.99800      
Sum of Squared Residuals = 0.014340     
Sum of Absolute Residuals = 0.56667      
Sum of Residuals = -1.68421E-012 
First-Order Rho = -0.0040825   
Durbin-Watson Test Statistic = 1.8661       
 
Breusch-Godfrey LM Tests for Autocorrelation 
                          Chi-Sq     DF  Prob>Chi-Sq 
AR(   1)                 0.41856      1      0.51766  
AR(   2)                 0.86990      2      0.64730  
AR(   3)                  3.3268      3      0.34393  
AR(   4)                  3.4588      4      0.48416  
 
Autocorrelation and Partial Autocorrelation Functions 
ARMA Model Specification 
Mean = 3.4232e-015  Standard Error = 0.020241      
   Lag         AR    S.E.(AR)         PAR   S.E.(PAR)  Box-Pierce   Ljung-Box 
    1  -0.0039777     0.16667  -0.0039777     0.16667  0.00056961  0.00061843  
    2   -0.086337     0.16791   -0.086355     0.16667     0.26892     0.30054  
    3    -0.20318     0.17460    -0.20543     0.16667      1.7551      2.0119  
    4  -0.0027129     0.17460   -0.016352     0.16667      1.7554      2.0122  
    5     0.10710     0.17642    0.074897     0.16667      2.1683      2.5184  
    6    -0.18193     0.18156    -0.23380     0.16667      3.3599      4.0277  
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    7    0.060756     0.18212    0.073555     0.16667      3.4928      4.2018  
    8    -0.14740     0.18540    -0.15926     0.16667      4.2749      5.2633  
    9     0.15411     0.18893    0.092475     0.16667      5.1299      6.4667  
   10    0.019960     0.18899   0.0049687     0.16667      5.1443      6.4876  
   11    -0.20234     0.19491    -0.24119     0.16667      6.6182      8.7281  
   12    -0.24101     0.20302    -0.28134     0.16667      8.7093      12.039  

 
Based on the Breusch-Godfrey LM test up to the fourth order as well as the plot of 
the 12-lag autocorrelation function and the associated Box-Pierce and Ljung-Box Q 
test statistics, the estimated model with AR(3) error structure is now free of 
autocorrelation. The estimated model is superior to that of correcting only for first-
order autocorrelation. 
 
In summary, 
 
ln(X) = -2.52 + 1.04 ln(L) + 0.55 ln(K) + ε 
s.e.  (0.39)  (0.11)  (0.08)   

 
ε = 1.35 ε-1 -  0.93 ε-2  + 0.40 ε-3 
s.e.  (0.14)  (0.22)  (0.14) 

 

Autoregressive and Moving Average (ARMA) Models: An Introduction 

GPE can handle the estimation of a more complicated regression model involving 
autoregressive and moving average autocorrelated errors. In addition to the p-th 
order autoregressive structure AR(p) discussed earlier such as 
 
ε i = ρ1ε i-1 + ρ2ε i-2 + … + ρpε i-p + υi 
 
the q-th order moving average error structure MA(q) is specified as 
 
ε i = υi - θ1υ i-1 - θ2υ i-2 - … - θqυ i-q 
 
Or in combination with the autoregressive structure, that is ARMA(p,q),  we have 
 
ε i = ρ1ε i-1 + ρ2ε i-2 + … + ρpεi-p - θ1υ i-1 - θ2υ i-2 - … - θqυ i-q + υi  
 
where the filtered error term υi is assumed to be normally independently distributed. 
Given a mixed error process of AR(p) and MA(q), or ARMA(p,q), the estimation of 
the p-element AR and q-element MA parameters is typically carried out by a 
nonlinear optimization algorithm. To be more specific, nonlinear least squares or 
maximum likelihood is called for in the estimation of an error structure with a 
moving average component. Without the moving average specification, the estimated 
autoregressive parameters are computed by the methods described earlier in previous 
lessons. 
 
With GPE, the following input control variables are relevant to the estimation of an 
error structure with autoregressive and moving average components: 
 
• _arma Autoregressive moving average orders 
• _nlopt Nonlinear least squares or maximum likelihood 
• _method Nonlinear optimization method 
• _iter Iteration limit 
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• _conv Convergence criteria 
• _tol Convergence tolerance level 
 
Among these control variables, only _arma is new. The other variables are related 
to nonlinear model estimation discussed in Chapters VI and VII. The variable 
_arma is used to specify the orders of the autoregressive and moving average 
components of the error structure. It is a column vector consisting of at least two 
elements: the first is the order of the autoregressive component, followed by the 
order of the moving average. For example, 
 
_arma = {1,1}; 
 
specifies an error process of the first-order autoregressive and first-order moving 
average. A pure moving average of q-th order is set by _arma = {0,q}. 
Obviously, _arma = {p,0} is identical to _ar = p where p is the order number 
of the autocorrelation. For parameter estimation, providing the initial guess values of 
autoregressive and moving average parameters will be helpful for the convergence. 
These values could be appended to the variable _arma, in which the first two 
elements are always the order of the respective process. We note that the estimated 
nonlinear ARMA error structure is conditional upon data initialization for the 
beginning observations necessary to compute the process. For convenience, in GPE, 
we initialize the data series with the sample mean of model errors. 
 

Lesson 10.6: ARMA(1,1) Error Structure 

In normal situations, a higher order of autoregressive structure can be specified with 
a lower order moving average structure, and vice versa. In order to keep the 
estimation simple, we recommend the use of a lower order model. Of course, this is a 
matter of taste and also depends on the theory and computational experience. Earlier 
lessons on estimating the U.S. production function suggest that the model is better 
described with an AR(3) error structure (see Lesson 10.5). An alternative would be 
to estimate the error process using a MA(1) structure or a mixed structure of 
autoregressive and moving average at a lower order, say, ARMA(1,1). Lesson 10.6 
demonstrates the estimation of an ARMA(1,1) model. 
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/* 
** Lesson 10.6: ARMA(1,1) Error Structure 
*/ 
use gpe2; 
output file = gpe\output10.6 reset; 
load data[40,6]= gpe\cjx.txt; 
      
year = data[2:40,1]; 
X = ln(data[2:40,2]); 
L = ln(data[2:40,3]); 
K = ln(data[2:40,5]); 
 
call reset;  
 
_names = {"X","L","K"}; 
_rstat = 1; 
_rplot = 2; 
_bgtest = 4; 
_acf = 12; 
 
_arma = {1,1}; @ ARMA(1,1) error structure @ 
_nlopt = 1;    @ maximum likelihood estimation @ 
_method = 5;   @ QHC optimization method @ 
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17 
18 
19 

_iter = 50;    @ 50 iterations @ 
call estimate(X,L~K); 
end; 
 
To double check for autocorrelation after the specification of ARMA(1,1) is 
estimated, we keep _bgtest and _acf (lines 12 and 13) in the program.  
 
The ARMA(1,1) structure is estimated with the nonlinear maximum likelihood 
method using the quadratic hill-climbing algorithm. It takes 34 iterations to achieve 
the convergence. Here is the abridged regression output of the estimated Cobb-
Douglas production function with an ARMA(1,1) error structure: 
 

Least Squares Estimation 
------------------------ 
Dependent Variable = X        
Estimation Range =  1          39         
Number of Observations = 39           
Mean of Dependent Variable = 5.6874       
Standard Error of Dependent Variable = 0.46096      
 
Maximum Likelihood Estimation for Nonlinear Error Structure 
ARMA(1 ,1 ) Autoregressive Moving Average Process 
 
Maximum Number of Iterations = 50           
Step Size Search Method = 0            
Convergence Criterion = 0            
Tolerance = 0.001        
 
Initial Result: 
Sum of Squares =     0.043221  
Log Likelihood =       77.359  
Parameters =       1.4508      0.38381      -3.9377      0.00000      0.00000  
 
Using Quadratic Hill-Climbing Algorithm 
Iteration =  1   Step Size =  2.3579  Log Likelihood =       89.926  
Parameters =       1.4410      0.38615      -3.8967      0.45558     -0.46020 
Iteration =  34  Step Size =  1.0000  Log Likelihood =       93.016  
Parameters =       1.1051      0.54833      -2.8796      0.62424     -0.67141  
 
Final Result: 
Iterations = 34          Evaluations = 50154        
Sum of Squares =     0.019363  
Log Likelihood =       93.016  
Parameters =       1.1051      0.54833      -2.8796      0.62424     -0.67141  
Gradient of Log Likelihood =     0.022545     0.019469    0.0044089  -
0.00020935   0.00015670  
 
 
                Parameter    Std.Error      t-Ratio 
AR(1 )            0.62424      0.22900       2.7259  
MA(1 )           -0.67141      0.17318      -3.8770  
 
NOTE: R-Square, AOV are computed from original series. 
R-Square = 0.99760      R-Square Adjusted = 0.99747      
Standard Error of the Estimate = 0.022282     
Log-Likelihood = 93.016       
Log Ammemiya Prediction Criterion (APC) =  -7.4538      
Log Akaike Information Criterion (AIC) =  -7.4541      
Log Schwarz Bayesian Information Criterion (BIC) =  -7.3261      
 
Sum of Squares         SS           DF          MSS            F       Prob>F 
Explained          8.0216            2       4.0108       7456.8  7.4158E-048 
Residual         0.019363           36   0.00053787  
Total              8.0744           38      0.21248  
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Variable        Estimated     Standard      t-Ratio         Prob      Partial 
Name          Coefficient        Error        39 DF         >|t|   Regression 
L                  1.1051      0.16031       6.8934  3.0026E-008      0.54923  
K                 0.54833     0.083877       6.5373  9.3096E-008      0.52285  
CONSTANT          -2.8796      0.54958      -5.2397  5.8625E-006      0.41314  
 
Squared Correlation of Observed and Predicted = 0.99761      
Sum of Squared Residuals = 0.019363     
Sum of Absolute Residuals = 0.67628      
Sum of Residuals = 1.84261E-002 
First-Order Rho = -0.0028812   
Durbin-Watson Test Statistic = 1.9895       
 
Breusch-Godfrey LM Tests for Autocorrelation 
                          Chi-Sq     DF  Prob>Chi-Sq 
AR(   1)                 0.50222      1      0.47852  
AR(   2)                 0.86082      2      0.65024  
AR(   3)                  5.3236      3      0.14958  
AR(   4)                  5.4880      4      0.24079  
 
Autocorrelation and Partial Autocorrelation Functions 
ARMA Model Specification 
Mean = 0.00047246   Standard Error = 0.022568      
   Lag         AR    S.E.(AR)         PAR   S.E.(PAR)  Box-Pierce   Ljung-Box 
    1  -0.0037201     0.16013  -0.0037201     0.16013  0.00053974  0.00058235  
    2   -0.049522     0.16052   -0.049537     0.16013    0.096186     0.10657  
    3    -0.23055     0.16880    -0.23150     0.16013      2.1691      2.4674  
    4    0.064036     0.16942    0.060518     0.16013      2.3290      2.6547  
    5     0.24181     0.17805     0.23366     0.16013      4.6095      5.4047  
    6    -0.13491     0.18065    -0.20050     0.16013      5.3193      6.2865  
    7    0.032581     0.18080    0.086890     0.16013      5.3607      6.3396  
    8    -0.26120     0.19023    -0.18931     0.16013      8.0215      9.8587  
    9     0.18387     0.19474     0.11395     0.16013      9.3400      11.661  
   10   0.0024843     0.19474   -0.030052     0.16013      9.3403      11.661  
   11    -0.10407     0.19616    -0.16014     0.16013      9.7627      12.280  
   12    -0.13637     0.19857   -0.093640     0.16013      10.488      13.381  

 

 

If you prefer to use nonlinear least squares instead of maximum likelihood to 
estimate the ARMA model, just delete line 15 or change it to: 
 
_nlopt = 0; 
 
The result should be the same. Why? 
 
Summarizing, the estimated model with ARMA(1,1) error structure is:  
 
ln(X) = -2.88 + 1.11 ln(L) + 0.55 ln(K) + ε 
s.e.  (0.55)  (0.16)  (0.08)   
         
ε = 0.62 ε-1 +  0.67 υ-1 
s.e.  (0.23)  (0.17) 

 
Both the parameter estimates of AR(1) and MA(1) are statistically significant and 
useful for correcting autocorrelation. Based on the Breusch-Godfrey LM test up to 
the  fourth order, as well as the 12-lag autocorrelation function plot and the 
associated Box-Pierce and Ljung-Box Q test statistics, the estimated ARMA(1,1) 
model is as good as that of the AR(3) specification presented in the Lesson 10.5. 
Both models are essentially equivalent. 
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Nonlinear Maximum Likelihood Estimation 

It is clear that a regression model with autocorrelation is intrinsically a nonlinear 
model. Even with the basic linear regression equation, ε = Y – Xβ, the functional 
form of model error for estimation is nonlinear in the parameters. Consider the 
AR(1), MA(1), and ARMA(1,1): 
 
 Residual Residual Function 
AR(1) υi =  εi – ρ εi-1 (Yi – ρYi-1) – (Xi – ρXi-1)β 
MA(1) υi =  εi + θ υi-1 (Yi – Xiβ) + θ υi-1 
ARMA(1,1) υi =  εi – ρ εi-1 + θ υi-1 (Yi – ρYi-1) – (Xi – ρXi-1)β + θ υi-1 
 
The nonlinearity of AR(1) is clearly due to the product of parameters β and ρ, while 
MA(1) is recursively weighted by θ. ARMA(1,1) is a mixed process of AR(1) and 
MA(1), and therefore contains both of aforementioned nonlinearities. For model 
estimation, the beginning observation of data series may be lost if not properly 
initialized. The built-in ARMA estimation of GPE is conditional upon the simple 
data initialization with the sample mean. We have seen the Prais-Winsten 
transformation for the first observation of AR(1): 1-ρ2 Y1 and 1-ρ2 X1. This adds 
more nonlinear complexity into the model and makes maximum likelihood the 
preferred method for estimation.  
 
Given N sample data observations of Z = [Y,X], the concentrated log-likelihood 
function for the AR(1) model is  
 
ll*(β,ρ) = -N/2 (1+2π-ln(N)) –N/2 ln(υ'υ) + ln(1-ρ2) 
 
For MA(1), the recursive process starts with the initial residual υ0 which is typically 
set to its expected value (i.e., zero) or the sample mean. An alternative is to estimate 
υ0 directly. The concentrated log-likelihood function is simpler but conditional to the 
initialization of υ0 as follows: 
 
ll*(β,θ,υ0) = -N/2 (1+2π-ln(N)) –N/2 ln(υ'υ) 
 
The concentrated log-likelihood function of the mixed process ARMA(1,1) is similar 
to that of AR(1) in which the residual function depends on both ρ and θ (in addition 
to β) and is subject to the initialization of υ0 and transformation for the first data 
observation. 
 

Lesson 10.7: Nonlinear ARMA Model Estimation 

We continue with the previous example of U.S. Cobb-Douglas production function 
and estimate the three autoregressive error structures: AR(1), MA(1), and 
ARMA(1,1). Using the method of nonlinear maximum likelihood, the regression 
parameter β and autoregressive coefficients ρ and/or θ are estimated jointly. For 
MA(1) and ARMA(1,1), the initialization of residuals with zero expected value is 
applied. As we have mentioned earlier, the nonlinear method may produce different 
results compared with the linear iterative approximations as employed in the 
Cochrane-Orcutt approach (Lesson 10.3) or the GPE built-in method of conditional 
nonlinear maximum likelihood (Lesson 10.6). However, the results are not 
drastically different. 
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This lesson differs from the previous ones in that the program setup is for nonlinear 
maximum likelihood estimation. Nonlinear maximum likelihood was covered in 
Chapter VII, and it is helpful to go back for a thorough review of the estimation 
technique. 
 
For each of three autoregressive models, the residual function must be defined in 
order to maximize the objective log-likelihood function. The block from line 34 to 
line 41 defines the residual function for an AR(1) model. The MA(1) specification is 
given in lines 42 through 48, while the ARMA(1,1) is specified from line 49 to line 
57. Notice that AR(1) and ARMA(1,1) require the use of Jacobians in the likelihood 
function. The Jacobian function is defined in the block from line 29 to line 33.  
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/* 
** Lesson 10.7: Maximum Likelihood Estimation 
** AR(1), MA(1), ARMA(1,1) 
*/ 
use gpe2; 
output file = gpe\output10.7 reset; 
load data[40,6]= gpe\cjx.txt; 
      
year = data[2:40,1]; 
X = ln(data[2:40,2]); 
L = ln(data[2:40,3]); 
K = ln(data[2:40,5]); 
data=X~L~K; 
 
@ OLS estimates as initial values @ 
b=data[.,1]/(ones(rows(data),1)~data[.,2:3]); 
 
call reset; 
_nlopt=1; 
_method=0; 
_iter=100; 
_conv=1; 
 
_b=b|0.5; 
_jacob=&jcb; 
_names = {"CONSTANT","LN(L)","LN(K)","AR(1)"}; 
call estimate(&ar,data); 
 
_b=b|0; 
_jacob=0; 
_names = {"CONSTANT","LN(L)","LN(K)","MA(1)"}; 
call estimate(&ma,data); 
 
_b=b|0.5|0; 
_jacob=&jcb; 
_names = {"CONSTANT","LN(L)","LN(K)","AR(1)","MA(1)"}; 
call estimate(&arma,data); 
 
end; 
 
proc jcb(x,b);  @ jacobian for AR(1) and ARMA(1,1) @ 
    local j; 
    j=ones(rows(x),1); 
    j[1]=sqrt(1-b[4]^2); 
    retp(j); 
endp; 
 
proc ar(x,b); 
    local n,e,u; 
    n=rows(x); 
    e=x[.,1]-b[1]-b[2]*x[.,2]-b[3]*x[.,3]; 
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    u=e-b[4]*lagn(e,1); 
    @ first obs transformation @ 
    u[1]=sqrt(1-b[4]^2)*e[1]; 
    retp(u); 
endp; 
 
proc ma(x,b); 
    local n,e,u; 
    n=rows(x); 
    e=x[.,1]-b[1]-b[2]*x[.,2]-b[3]*x[.,3]; 
    u=recserar(e,e[1],b[4]); @ u[1]=e[1] since u[0]=0 @ 
/* 
    @ recursive computation of errors using @ 
    @ built-in RECSERAR is the same as below: @ 
    u=e;    @ initialize: u[1]=e[1] @ 
    i=2; 
    do until i>n; 
        u[i]=e[i]+b[4]*u[i-1]; 
        i=i+1; 
    endo; 
*/ 
    retp(u); 
endp; 
 
proc arma(x,b); 
    local n,e,u,v; 
    n=rows(x); 
    e=x[.,1]-b[1]-b[2]*x[.,2]-b[3]*x[.,3]; 
    u=e-b[4]*lagn(e,1); 
    @ first obs transformation @ 
    u[1]=sqrt(1-b[4]^2)*e[1]; 
    v=recserar(u,u[1],b[5]); 
    retp(v); 
endp; 
 
Using the linear least squares estimates as initial values of parameters (line 9), lines 
15-18 carry out the estimation for the AR(1) model. Here is the result:  
 

Maximum Likelihood Estimation 
----------------------------- 
Number of Observations = 39           
Number of Parameters = 4            
 
Maximum Number of Iterations = 100          
Step Size Search Method = 0            
Convergence Criterion = 1            
Tolerance = 0.001        
 
Initial Result: 
Sum of Squares =     0.029940  
Log Likelihood =       84.518  
Parameters =      -3.9377       1.4508      0.38381      0.50000  
 
Using Berndt-Hall-Hall-Hausman (BHHH) Algorithm 
 
Final Result: 
Iterations = 17          Evaluations = 4914         
Sum of Squares =     0.027133  
Log Likelihood =       86.438  
Gradient of Log Likelihood =  4.9312e-005   0.00023054   0.00020964  2.6217e-
005  
                                   Asymptotic 
                Parameter   Std. Error      t-Ratio 
CONSTANT          -2.8220      0.56933      -4.9567  
LN(L)              1.0926      0.17753       6.1546  
LN(K)             0.54995     0.096866       5.6775  
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AR(1)             0.77832      0.13059       5.9599 
 
The BHHH method is used for log-likelihood function maximization (see line 12), 
and it converges in 17 iterations. As seen in line 15, the initial value of the AR(1) 
coefficient is set to 0.5. The solution is close to that of the Cochrane-Orcutt (Lesson 
10.3) and Hildreth-Lu (Lesson 10.4) procedures. The crucial point of this model is 
the use of first observation transformation (line 39) and the resulting Jacobian 
function must be incorporated for the exact maximum likelihood estimation. 
 
Similarly, the MA(1) model is estimated in lines 19-22 with the starting value of the 
MA(1) coefficient at 0. Here is the estimation result: 
 

Maximum Likelihood Estimation 
----------------------------- 
Number of Observations = 39           
Number of Parameters = 4            
 
Maximum Number of Iterations = 100          
Step Size Search Method = 0            
Convergence Criterion = 1            
Tolerance = 0.001        
 
Initial Result: 
Sum of Squares =     0.043382  
Log Likelihood =       77.286  
Parameters =      -3.9377       1.4508      0.38381      0.00000  
 
Using Berndt-Hall-Hall-Hausman (BHHH) Algorithm 
 
Final Result: 
Iterations = 29          Evaluations = 8073         
Sum of Squares =     0.022342  
Log Likelihood =       90.226  
Gradient of Log Likelihood =  -0.00016182  -0.00094511  -0.00082061  4.1086e-
005  
 
                                   Asymptotic 
                Parameter   Std. Error      t-Ratio 
CONSTANT          -3.6176      0.27477      -13.166  
LN(L)              1.3379     0.094876       14.102  
LN(K)             0.44264     0.054316       8.1495  
MA(1)            -0.81620     0.095539      -8.5431 

 
As the MA(1) model does not use the first-observation transformation of AR(1), the 
Jacobian function should not be called (see line 20). The residual function is defined 
with an autoregressive recursive series using the GAUSS built-in function 
recserar (line 46). The initialization of the recursive series is the expected value 
of the series, which is zero. Line 46 shows the use of recserar with initialization. 
Check the GAUSS manual or online help for more information about the procedure 
recserar. The computation of autoregressive recursive series is also explained in 
the comment block immediately below line 46. 

 

 

Conditional to the initialization of the recursive moving average series 
 
υi = (Yi – Xiβ) + θ υi-1 
 
we have obtained the maximum likelihood estimates of β and θ as shown above. For 
i = 1, υ0 = 0 is assumed. The alternative is to estimate υ0 together with β and θ. 
Simply replace line 46 with the following: 
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u=recserar(e,e[1]+b[5]*b[4],b[4]); 
 

where b[5] is the unknown υ0 to be estimated with the rest of the parameters. 
Starting from the initial guess of (θ,υ0) at (0,0), in addition to the linear least squares 
estimator of β, the model is estimated exactly the same way as before except that 
line 19 should be: 
 
_b=b|0|0; 
 

How do the estimation results differ from those of Lesson 10.7, which assumed υ0 = 
0? We leave this question to you. 
 
For ARMA(1,1), both the first observation transformation of AR(1) and the 
autoregressive recursive series with initialization of MA(1) are required. The model 
is estimated in lines 23-26. Here is the estimation result: 
 

Maximum Likelihood Estimation 
----------------------------- 
Number of Observations = 39           
Number of Parameters = 5            
 
Maximum Number of Iterations = 100          
Step Size Search Method = 0            
Convergence Criterion = 1            
Tolerance = 0.001        
 
Initial Result: 
Sum of Squares =     0.029940  
Log Likelihood =       84.518  
Parameters =      -3.9377       1.4508      0.38381      0.50000      0.00000  
 
Using Berndt-Hall-Hall-Hausman (BHHH) Algorithm 
 
Final Result: 
Iterations = 21          Evaluations = 7059         
Sum of Squares =     0.018525  
Log Likelihood =       93.879  
Gradient of Log Likelihood =  -0.00012631  -0.00065739  -0.00055447   
0.00015394 -1.6021e-006  
                                   Asymptotic 
                Parameter   Std. Error      t-Ratio 
CONSTANT          -2.6041      0.42941      -6.0644  
LN(L)              1.0321      0.12537       8.2320  
LN(K)             0.57271     0.071019       8.0641  
AR(1)             0.66145      0.14519       4.5559  
MA(1)            -0.71077      0.12402      -5.7309 

 

 

Again, for estimating the above ARMA(1,1) model: 
 
υi = (Yi – ρYi-1) – (Xi – ρXi-1)β + θ υi-1 
 
υ0 = 0 is assumed for i = 1. The alternative is to estimate υ0 together with β, ρ, and 
θ. Simply replace line 55 with the following: 
 
v=recserar(u,u[1]+b[6]*b[5],b[5]); 
 

where b[6] is the unknown υ0 to be estimated with the rest of the parameters. 
Starting from the initial guess of (ρ,θ,υ0) at (0.5,0,0), in addition to the linear least 
squares estimator of β, the model is estimated exactly the same way as before except 
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that line 23 should be changed to: 
 
_b=b|0.5|0|0; 
 
To summarize the discussion of autoregressive regression models, we put together 
and compare the estimation results of the U.S. Cobb-Douglas production function: 
 
ln(X) = β0 + β1 ln(L) + β2 ln(K) + ε 
 
where X is output, and the two factor inputs are labor L and capital K. The following 
table presents the parameter estimates (numbers in parentheses are the estimated 
standard errors of the parameters) and the corresponding log-likelihood function 
value ll for each model. 
 
 (1)  

Lesson 
10.1 

(2) 
Lesson 
10.3 

(3) 
Lesson 
10.4 

(4) 
Lesson 
10.7 

(5) 
Lesson 
10.7 

(6) 
Lesson 
10.7 

(7) 
Lesson 
10.6 

β1 1.451 
(0.083) 

1.068 
(0.151) 

1.050 
(0.153) 

1.093 
(0.178) 

1.338 
(0.095) 

1.032 
(0.125) 

1.105 
(0.160) 

β2 0.384 
(0.048) 

0.558 
(0.096) 

0.563 
(0.098) 

0.550 
(0.097) 

0.443 
(0.054) 

0.573 
(0.071) 

0.548 
(0.084) 

β0 -3.94 
(0.237) 

-2.73 
(0.456) 

-2.66 
(0.465) 

-2.82 
(0.569) 

-3.62 
(0.275) 

-2.60 
(0.429) 

-2.88 
(0.550) 

ρ 0 0.805 
(0.096) 

0.826 
(0.090) 

0.778 
(0.131) 

0 0.661 
(0.145) 

0.624 
(0.229) 

θ 0 0 0 0 -0.816 
(0.096) 

-0.711 
(0.124) 

-0.671 
(0.173) 

ll 77.286 86.420 86.379 86.438 90.226 93.879 93.016 
 
The top row of the table identifies the model and its corresponding lesson: (1) 
Lesson 10.1 is the ordinary least squares estimates without autocorrelation 
correction; (2) Lesson 10.3 is the AR(1) model using the Cochrane-Orcutt iterative 
procedure; (3) Lesson 10.4 is the same AR(1) model using Hildreth-Lu grid search 
method; (4), (5), and (6) are based on Lesson 10.7, using nonlinear maximum 
likelihood estimation for the model AR(1), MA(1), and ARMA(1,1), respectively. 
The last column (7) is the ARMA(1,1) model estimated with the GPE built-in 
conditional maximum likelihood method in Lesson 10.6. All the methods use the 
entire sample of 39 observations from 1929 to 1967. For model comparison, the 
statistics of pair-wise Likelihood Ratio will be useful. It is immediately clear that the 
model must be corrected for autocorrelation. The plain OLS model (1) is rejected 
based on LR tests with all the other models. Finally, the structure of the 
autoregressive moving average ARMA(1,1) of both Lessons 10.6 and 10.7 cannot be 
rejected.  
 
 



 

 

XI 
Distributed Lag Models 
 

With the proper use of distributed lags, regression models can be expanded to 
include dynamic features such as long-run and short-run elasticities and multipliers 
for analysis. In this chapter we will consider two popular setups of distributed lags: 
geometric, or Koyck lags, and polynomial, or Almon lags. The former is an infinite 
distributed lags model with a geometric declining pattern, which in turn can be 
transformed into a lagged dependent variable model. The latter is a finite distributed 
lags model with polynomial functional restrictions. The combination of the two is the 
so-called autoregressive distributed lag (ARDL) model. 
 

Lagged Dependent Variable Models 

Applications of lagged dependent variable models include partial adjustment and 
adaptive expectation estimations. These models relate the long-run and short-run 
behavior of influential variables. However, regression models with lagged dependent 
variables may possess some undesirable characteristics. Possible problems include 
correlated error terms and random regressors. The resulting least squares estimation 
is biased, inconsistent, and inefficient. The lagged dependent variable model is 
considered in Lesson 11.1.  
 
For estimating such a model with lagged dependent variables, instrumental variable 
(IV) estimation is suggested. IV weighs the trade-off between “biasedness” and 
“inefficiency” and obtains a “consistent” parameter estimator which minimizes the 
ill effects of using lagged dependent variables. Instrumental variable estimation for a 
lagged dependent variable model is the focus of Lesson 11.2. 
 

Lesson 11.1: Testing for Autocorrelation with Lagged Dependent Variable 

A classical consumption-income relationship based on the Permanent Income 
Hypothesis is a good example to demonstrate the construction, testing, and 
estimation of the lagged dependent variable model: 
 
C = β0 + β1Y + β2 C-1 + ε 
 
where C is consumption and Y is income. Assuming a simple partial adjustment of 
short-run consumption towards its long-run equilibrium, the lagged dependent 
variable C-1 is included in the model specification.  
 
To estimate the above consumption-income equation, we introduce a new data file 
usyc87.txt. This data file consists of three variables: YEAR, Y, and C. YEAR is just 
the time indicator ranging from 1929 to1994. Y is personal disposable income, and C 
is personal consumption expenditure. Both income and consumption time series are 
expressed in billions of 1987 dollars. In total there are 66 observations. 
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In this lesson we will estimate a lagged dependent variable model. The only new 
input control variable is _dlags, which is used to specify the number of lags 
desired. For example, by setting _dlags = 1, GPE inserts the first lag of the 
dependent variable into the regression equation for least squares estimation. The 
lagged dependent variable is added in front of the other explanatory variables. The 
Durbin-H test statistic is automatically included in the output of _rstat when 
_dlags is set to a value greater than zero.  
 

 
 
 
 

1 
2 
3 
4 
5 
 

6 
7 
8 
9 

10 
 

11 
12 
13 
14 

/* 
** Lesson 11.1: Lagged Dependent Variable Model 
** Estimation and Testing for Autocorrelation 
*/ 
use gpe2; 
output file = gpe\output11.1 reset; 
load z[67,3] = gpe\usyc87.txt; 
y = z[2:67,2]; 
c = z[2:67,3]; 
 
call reset;  
_names = {"c","y"}; 
_rstat = 1; 
_dlags = 1; 
call estimate(c,y); 
 
_ar = 1; 
_iter = 50; 
call estimate(c,y); 
end; 

 

 

If more than one lag is needed, just change the value of _dlags to the desired 
positive number of lags. 

 
To estimate the model is simple, but to evaluate and interpret the effect of a lagged 
dependent variables is not. Line 9 specifies that the model to be estimated includes 
the first lag of the dependent variable. The following call to estimate (line 10) 
proceeds to carry out least squares estimation of the model. Since _rstat is set to 1 
in line 8, a summary of residual statistics including the new Durbin-H test statistic is 
presented.  
 

 

Alternatively, you can create the lagged dependent variable and then include it in 
estimate as an independent variable. In GAUSS, the lagged variable is 
constructed with the command lag1 or lagn. This method requires the extra step 
of handling the initial observation lost from lagging the dependent variable explicitly 
so that the program will run. Setting the GPE control variable _begin to the 
beginning of the usable sample for estimation may be necessary. In addition, GPE 
will not treat the variable you created differently from the rest of the explanatory 
variables. Therefore, the Durbin-H test statistic, unique to the lagged dependent 
variable model, is not computed. In passing, we note that testing linear restrictions 
involving lagged dependent variables requires specifying restrictions on those 
variables explicitly. 
 
The result of the first least squares estimation (line 10) is given below: 
 

Least Squares Estimation 
------------------------ 
Dependent Variable = C        
Estimation Range =  2          66         
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Number of Observations = 65           
Mean of Dependent Variable = 1588.2       
Standard Error of Dependent Variable = 955.14       
 
NOTE: Estimation Range Has Been Adjusted. 
Lagged Dependent Variables Used = 1    
 
R-Square = 0.99927      R-Square Adjusted = 0.99925      
Standard Error of the Estimate = 26.154       
Log-Likelihood Function Value = -302.86      
Log Ammemiya Prediction Criterion (APC) =  6.5731       
Log Akaike Information Criterion (AIC) =  6.5731       
Log Schwarz Bayesian Information Criterion (BIC) =  6.6734       
 
Sum of Squares         SS           DF          MSS            F       Prob>F 
Explained     5.8344E+007            2  2.9172E+007       42648.  4.9624E-098 
Residual           42410.           62       684.03  
Total         5.8387E+007           64  9.1229E+005  
 
Variable        Estimated     Standard      t-Ratio         Prob      Partial 
Name          Coefficient        Error        62 DF         >|t|   Regression 
C-1               0.69465     0.057390       12.104  5.6098E-018      0.70265  
Y                 0.29660     0.051205       5.7925  2.4894E-007      0.35114  
CONSTANT         -0.56350       6.4092    -0.087920      0.93022   0.00012466  
 
Squared Correlation of Observed and Predicted = 0.99927      
Sum of Squared Residuals = 42410.       
Sum of Absolute Residuals = 1274.2       
Sum of Residuals = -1.12485E-008 
First-Order Rho = 0.45221      
Durbin-Watson Test Statistic = 1.0769       
Durbin-H Statistic = 4.1974       

 
Notice that the estimation range given in the first block of the output is from 2 to 66, 
using 65 observations. This is because of the use of the first lag of the dependent 
variable on the right-hand side of the regression equation. Next is a statement giving 
the number of lags included in the estimation. 
 
The last line of the first block of output is the Durbin-H statistic. Given the first-
order Rho at 0.45 with the Durbin-H test statistic as high as 4.2 (comparing with the 
critical values of a standardized normal distribution), the problem of autocorrelation 
is readily apparent. Methods of correction for autocorrelation discussed in the 
previous chapter should be used to improve the results of the model estimation. 
 
Lines 11 to 13 of the program correct and then re-estimate the model with a first-
order autocorrelated error structure. The default Cochrane-Orcutt iterative method is 
used. We refer the reader to the output file output11.1 for details of the 
regression results. In summary, here is our estimated lagged dependent variable 
model with AR(1) error structure: 
 

C = -6.284 + 0.487 Y + 0.484 C-1 + ε 
s.e.  (14.61)  (0.065)  (0.073)   

 
ε = 0.648 ε-1 
s.e.  (0.098) 

 

 

The correction for first-order autocorrelation is certainly a right step to improve the 
model. It may not be a bad idea to continue to carry out testing for higher orders of 
autocorrelation. Remember to use the following statements before the last call of 
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estimate in the above program: 
 
_bgtest = 4; 
_acf = 12; 
 
With the results not shown here, we did not find a significant autocorrelation 
problem at higher orders. 
 

Lesson 11.2: Instrumental Variable Estimation 

The more serious specification problem related to the lagged dependent variable 
model is random regressors. In Lesson 11.1, although the problem of autocorrelation 
seems easy to resolve by correcting the first-order serial correlation, the estimated 
parameters are still biased and inefficient. These problems are due to the ill effects of 
random regressors that may be involved through the use of lagged dependent 
variables. 
 
To handle a lagged dependent variable model estimation with instrumental variables, 
GPE implements an estimation technique which uses the current and lagged 
explanatory variables as instruments for the lagged dependent variable. If longer lags 
of the dependent variable are adopted or an autocorrelated error structure is 
identified, the instrumental variable estimation procedure may need to include more 
lags of the explanatory variables as well. In the context of a lagged dependent 
variable model, instrumental variable estimation is activated by setting the following 
input control variable: 
 
_ivar = 1; 
 

The alternative is to specify the entire data matrix for the variable _ivar. This is 
useful for applying instrumental variable estimation in other contexts such as 
measurement error in the regression model. We note that the matrix specification of 
_ivar requires that its size (rows and columns) to be at least as large as that of the 
data matrix of explanatory variables. 
 
We now continue on from the end of Lesson 11.1, adding the option to estimate the 
model using instrumental variables in the following program: 
 

 
 
 
 

1 
2 
 

3 
4 
5 
 

6 
7 
8 
9 

10 
11 
12 

 
13 
14 
15 

/* 
** Lesson 11.2: Lagged Dependent Variable Model 
** Instrumental Variable Estimation            
*/ 
use gpe2; 
output file=gpe\output11.2 reset; 
 
load z[67,3]=gpe\usyc87.txt; 
y=z[2:67,2]; 
c=z[2:67,3]; 
 
call reset; 
_names={"c","y"}; 
_rstat=1; 
_dlags=1; 
_ar=1; 
_iter=50; 
call estimate(c,y); 
 
_ivar=1; 
call estimate(c,y); 
end; 
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The only new addition to the program is line 13: 
 
_ivar = 1; 
 
which calls for the use of internal instrumental variables that GPE will construct for 
the lagged dependent variables. In addition, the autocorrelation correction is 
requested for the first order (line 10), hence one additional lag of explanatory 
variables is needed as part of the instrumental variables. 
 

 

Alternatively, line 13 can be replaced with the explicitly defined instrumental 
variables as follows: 
 
_ivar = y~lagn(y,1)~lagn(y,2)~ones(rows(y),1); 
_begin = 3; 
 
The advantage is that you have more control over the addition of relevant 
instrumental variables in order to improve the small-sample properties of the 
estimator. In contexts other than the lagged dependent variable model, instrumental 
variable estimation may be requested with the variable _ivar explicitly assigned to 
a data matrix no smaller than that of explanatory variables. 

 

 

We note that the scalar definition of _ivar = 1 will only work when specifying a 
positive number of _dlags. _ivar = 1 without _dlags (or _dlags = 0) 
will result in a program error. 
 
Looking at the output file output11.2, the results of the first regression in this 
lesson are the same as the results of the second regression of Lesson 11.1. The 
second estimation of this lesson performs instrumental variable estimation while at 
the same time correcting for first-order serial correlation. We will show you only a 
partial result of the second regression estimation: 
 

Least Squares Estimation 
------------------------ 
Dependent Variable = C        
Estimation Range =  3          66         
Number of Observations = 64           
Mean of Dependent Variable = 1604.9       
Standard Error of Dependent Variable = 953.09       
 
NOTE: Estimation Range Has Been Adjusted. 
NOTE: Lagged Dependent Variables Used = 1    
NOTE: Instrumental Variables Used = 4    
 
Order of Autoregressive Errors = 1    
Maximum Number of Iterations = 50   
Convergence Tolerance Level = 0.00100      
 
Using Cochrane-Orcutt Iterative Least Squares Algorithm 
Iteration =  0   Sum of Squares =  50104.92594 Log Likelihood = -304.02779    
      Rho =       0.00000  
Iteration =  1   Sum of Squares =  31093.47963 Log Likelihood = -289.01518    
      Rho =       0.63232  
… 
Iteration =  8   Sum of Squares =  31055.04449 Log Likelihood = -289.01591    
      Rho =       0.66806  
 
         Rho    Std.Error      t-Ratio 
     0.66806     0.097245       6.8699  
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NOTE: R-Square, AOV are computed from original series. 
 
R-Square = 0.99946      R-Square Adjusted = 0.99944      
Standard Error of the Estimate = 22.563       
Log-Likelihood = -289.02      
Log Ammemiya Prediction Criterion (APC) =  6.2785       
Log Akaike Information Criterion (AIC) =  6.2784       
Log Schwarz Bayesian Information Criterion (BIC) =  6.3796       
 
Sum of Squares         SS           DF          MSS            F       Prob>F 
Explained     5.7131E+007            2  2.8566E+007       56110.  2.6192E-100 
Residual           31055.           61       509.10  
Total         5.7228E+007           63  9.0838E+005  
 
Variable        Estimated     Standard      t-Ratio         Prob      Partial 
Name          Coefficient        Error        61 DF         >|t|   Regression 
C-1               0.45966     0.094109       4.8843  7.8449E-006      0.28114  
Y                 0.50728     0.084052       6.0353  1.0194E-007      0.37388  
CONSTANT          -3.8035       16.185     -0.23501      0.81499   0.00090457  
 
Squared Correlation of Observed and Predicted = 0.99946      
Sum of Squared Residuals = 31055.       
Sum of Absolute Residuals = 1040.2       
Sum of Residuals = -1.67559E+001 
First-Order Rho = 0.20383      
Durbin-Watson Test Statistic = 1.5864       
Durbin-H Statistic = 2.5137       
 

 

Because instrumental variables are used essentially to replace lagged dependent 
variables in the model estimation, testing and correction for autocorrelation is now 
the same as in the classical model. The Durbin-Watson test statistic can be applied 
as usual. 
 
The model uses four instrumental variables: the original, the first and second lags of 
the explanatory independent variable Y, and the constant term. The second lag is 
included due to the first-order serial correlation being specified for model estimation.  
 
Comparing the estimation results obtained when instrumental variables are not used, 

 
C = -6.284 + 0.487 Y + 0.484 C-1 + ε 
s.e.  (14.61)  (0.065)  (0.073)   

 
ε = 0.648 ε-1 
s.e.  (0.098) 

 
with our estimated model using instrumental variables, 
 

C = -3.804 + 0.507 Y + 0.460 C-1 + ε 
s.e.  (16.185)  (0.084)  (0.094)   

 
ε = 0.668 ε-1 
s.e.  (0.097) 

 
we see that their parameter estimates are similar. But the current estimated standard 
errors of the parameters are slightly larger than the standard errors resulting from not 
using the instrumental variables. Nevertheless, the conclusions of statistical 
inferences are not affected in this example. 
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We will keep the interpretation of the estimated model using instrumental variables 
brief. First, the short-run marginal propensity to consume is 0.51. With the estimated 
coefficient 0.46 for the lagged dependent variable, the long-run consumption change 
is about 0.94 for each dollar increase of income. To realize 50% of the total effect 
(that is, half of 0.94 or 0.47) will take 0.89 years. This is the concept of median lag 
frequently used in dynamic analysis. The other measurement is the lag-weighted 
average or the mean lag, which is computed at about 0.85 years. 
 

 

Remember the formula for computing the median lag and mean lag? Let λ be the 
estimated parameter of the lagged dependent variable. Then the median lag is 
computed as ( )

( )λln
ln 5.0 , and the mean lag is 

λ−
λ

1
. 

 

Polynomial Lag Models 

By imposing polynomial functional restrictions on the finite distributed lags of some 
or all explanatory variables, the dynamic model can be estimated with traditional 
restricted least squares methodology. In this model we specify the polynomial 
distributed lag structure for each explanatory variable. Given the number of 
distributed lags q, a polynomial function of order p is used to describe p-1 number of 
turning points in the lag structure. In addition, we can add end-point restrictions to 
“tie down” the effects of distributed lags at either or both ends. For a polynomial lag 
model to be meaningful, p must be greater than 1, and the total number of lags (q) 
must be greater than the polynomial orders (p). If q equals p, the distributed lag 
model is without polynomial restrictions. 
 
In GPE, a polynomial lag model is defined with the input control variable _pdl. The 
variable _pdl is a 3-column matrix with the number of the rows corresponding to 
the number of explanatory variables. A polynomial lag structure must be defined for 
each variable (row) in the _pdl matrix. The 3-column entry for each explanatory 
variable must be separately called out for the lags q, polynomial orders p, and end-
point restrictions r in that order. End-point restrictions “tie down” one or both ends 
of the polynomial’s curve, enforcing a theoretical or empirical justification of the lag 
structure. For variables that do not have the polynomial lag structure, the 3-column 
entry 0 0 0 should be used. Normally the constant term is not included in the 
_pdl matrix, unless otherwise specified. 
 
Estimating a model with a polynomial lag structure defined for each explanatory 
variable is essentially the same as restricted least squares. The number of restrictions 
is (q-p) polynomial restrictions plus the number of end-point restrictions. Any 
additional linear restrictions imposed with the variable _restr must take into 
account the correct structure of right-hand side variables that _pdl may add to the 
original equation.  
 

Lesson 11.3: Almon Lag Model Revisited 

In this lesson, we will revisit the relationship between appropriations (CAPP) and 
capital expenditure (CEXP) first introduced in Lesson 4.1. The data file almon.txt 
provides quarterly data series containing the values of CEXP and CAPP in the period 
from 1953 to 1967. In the following, we try to duplicate the original study of S. 
Almon published in 1965. Almon’s regressions were computed using a fourth-order 
polynomial and lags extending in seven periods. She also included seasonal dummy 
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variables whose four coefficients were constrained to sum to zero. Also, both end-
points are restricted on the polynomial lags. 
 
Here is the program: 
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/* 
** Lesson 11.3: Polynomial Distributed Lag Model 
** Almon Lag Model Revisited 
*/ 
use gpe2; 
output file = gpe\output11.3 reset; 
load almon[61,3] = gpe\almon.txt; 
 
cexp = almon[2:61,2]; 
capp = almon[2:61,3]; 
qt = almon[2:61,1]; 
 
q1=(qt%10).==1;  @ quarterly seasonal dummies @ 
q2=(qt%10).==2; 
q3=(qt%10).==3; 
q4=(qt%10).==4; 
 
call reset; 
_rstat = 1;  
_end = 36; 
 
/* restrictions on all dummy variables */ 
_const = 0; 
_restr = {0 0 0 0 0 0 0 0 1 1 1 1 0}; 
_pdl = {7 4 2, 
        0 0 0, 
        0 0 0, 
        0 0 0, 
        0 0 0}; 
_names={"cexp","capp","q1","q2","q3","q4"}; 
call estimate(cexp,capp~q1~q2~q3~q4); 
end; 
 
In her original discussion, Almon used only 36 observations, therefore we end our 
estimation at 36 (line 13). As you will remember, suppressing the constant term (line 
14) is necessary to avoid the dummy variable trap when using all four seasonal 
dummy variables. The reason for not dropping one dummy variable is so that we can 
impose a linear restriction, summing the coefficients of these four dummy variables 
to zero (line 15). Line 16 defines the polynomial lag structures with _pdl. Each row 
of _pdl controls a different explanatory variable and rows are separated by 
commas. Remember that carriage returns are not “seen” by GAUSS. Three columns 
of _pdl specify the following: q = lags, p = orders, and r = end-point restrictions, 
respectively. There are four possible settings for end-point restrictions: -1 
(beginning), 1 (ending), 2 (both), or 0 (no restriction). The first row of _pdl in line 
16 assigns 7 lags, to the fourth order, with both endpoints restricted to the variable 
CAPP. The four dummy variables are not affected since each entry is set to 0 from 
the second to the last rows of _pdl. 
 
Run the program to see how _pdl works.9 
 

Least Squares Estimation 

                                                           
9 As pointed out by Greene (1997, Chapter 17), it was not possible to reproduce Almon’s 
original results. Our regression results match with Greene’s results. 
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------------------------ 
Dependent Variable = CEXP     
Estimation Range =  8          36         
Number of Observations = 29           
Mean of Dependent Variable = 2568.3       
Standard Error of Dependent Variable = 468.69       
 
NOTE: Estimation Range Has Been Adjusted. 
Distributed Lags Variables Used = 7 
 
WARNING: Constant Term Suppressed. 
R-Square, AOV, SE, and t may not be reliable! 
 
WARNING: Linear Restrictions Imposed. 
R-Square, AOV, SE, and t may not be reliable! 
Wald F-Test for Linear Restrictions 
F(   6,  17)       Prob>F 
      1.1338      0.38486 
Asymptotic Hypothesis Testing for Linear Restrictions 
                                Chi-Sq     DF  Prob>Chi-Sq 
Wald Chi-Square Test            6.8028      6      0.33947  
Lagrange Multiplier Test        8.2882      6      0.21774  
Likelihood Ratio Test           9.7611      6      0.13508  
 
R-Square = 0.91023      R-Square Adjusted = 0.88681      
Standard Error of the Estimate = 154.94       
Log-Likelihood Function Value = -184.04      
Log Ammemiya Prediction Criterion (APC) =  10.432       
Log Akaike Information Criterion (AIC) =  10.682       
Log Schwarz Bayesian Information Criterion (BIC) =  11.248       
 
 
Sum of Squares         SS           DF          MSS            F       Prob>F 
Explained     6.5671E+006            6  1.0945E+006       45.590  1.2384E-011 
Residual      5.5218E+005           23       24008.  
Total         6.1508E+006           29  2.1210E+005  
 
Variable        Estimated     Standard      t-Ratio         Prob      Partial 
Name          Coefficient        Error        23 DF         >|t|   Regression 
CAPP             0.086812     0.020858       4.1620   0.00037595      0.42960  
CAPP-1            0.12315     0.014384       8.5619  1.3128E-008      0.76118  
CAPP-2            0.13424     0.011553       11.620  4.1900E-011      0.85445  
CAPP-3            0.13671     0.020442       6.6879  8.0157E-007      0.66041  
CAPP-4            0.13859     0.020447       6.7778  6.5118E-007      0.66637  
CAPP-5            0.13931     0.011649       11.959  2.3667E-011      0.86146  
CAPP-6            0.12972     0.014578       8.8986  6.5882E-009      0.77492  
CAPP-7           0.092066     0.020974       4.3894   0.00021327      0.45584  
Q1                -13.302       50.453     -0.26365      0.79440    0.0030131  
Q2                -7.0170       50.455     -0.13907      0.89060   0.00084023  
Q3                -7.6275       50.450     -0.15119      0.88114   0.00099286  
Q4                 27.946       48.255      0.57915      0.56812     0.014373  
 
Squared Correlation of Observed and Predicted = 0.91622      
Sum of Squared Residuals = 5.5218E+005  
Sum of Absolute Residuals = 3437.7       
Sum of Residuals = 1.88769E+002 
First-Order Rho = 0.78062      
Durbin-Watson Test Statistic = 0.43219      

 
In the output, seven lags of CAPP are estimated with the adjusted sample size. Look 
at the results of hypothesis testing for linear restrictions. Although we have explicitly 
defined only one restriction to sum all the seasonal effects across four quarters to 
zero, there are six restrictions. How are the other five restrictions entering the model? 
Remember the 7 lags and 4 orders of the polynomial lag structure for the variable 
CAPP?  Equivalently, there are 3 restrictions (that is, 7-4). On top of them, there 
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were two end-point restrictions. The computed Wald F-test statistic of 1.13 (with P-
value 0.38) suggests these 6 linear restrictions cannot be jointly rejected. Similar 
results are obtained from the other test statistics. We notice the insignificant seasonal 
effect for all four quarters. The model may be re-estimated without quarterly dummy 
variables but with a constant. 

 

 

Of course, there are problems of model misspecification. As you can see from the 
Durbin-Watson statistic, autocorrelation is a serious problem that was not addressed 
in the original Almon study. We leave for an exercise the challenge of refining this 
model further. 

 

Autoregressive Distributed Lag Models 

A polynomial (finite) lag structure may be combined with geometric (infinite) lag to 
form an ARDL (autoregressive distributed lag) model. The result is a powerful 
dynamic specification which captures the essences of two types of distributed lag 
models. The benefit is a better fit of the model with improved (or “whiter”) error 
structure. The cost is the potential problem of random regressors and 
multicollinearity. Autocorrelation must be evaluated and tested with the presence of 
lagged dependent variables. By including more lags of the dependent variable, the 
estimated model is assured of being free of misspecification. Further, the model 
should be checked for dynamic stability. 
 
To implement an ARDL model using GPE, we need to specify _pdl for the 
appropriate polynomial lag structure (restricted or unrestricted) of the explanatory 
variables and _dlags for the number of lags of dependent variable. Additional 
parameter restrictions may be imposed on these lag variables as well. We have seen 
the input control variables _pdl and _dlags used separately in previous lessons. 
For specifying an ARDL model, both _pdl and _dlags are required. 
 

Lesson 11.4: Almon Lag Model Once More 

As an example of ARDL model, we will improve upon the Almon Lag Model of 
Lesson 11.3 by including lags of the dependent variables. First, we need to fix up a 
few issues from the regression output of Lesson 11.3. The quarterly seasonality is not 
statistically significant, and the parameter restriction on the seasonal dummy 
variables is not necessary. We eliminate four quarterly seasonal dummy variables, 
and in their place insert a constant term (constant is included in the regression by 
default). In the program lesson11.4, line 14, we keep the same polynomial lag 
structure for the single explanatory variable. That is, we include seven lags with 
fourth-order polynomials, and with end-point restrictions on both sides. Because 
quarterly dummy variables are deleted from the model, _pdl consists of only one 
row (for the explanatory variable). Now we will deal with the autocorrelation 
problem associated with the polynomial lag model of Lesson 11.3. By adding lags of 
the dependent variable in the regression equation, serial dependence of the model 
errors may be reduced. Through trial and error, and testing for no serial correlation, 
we decide on two augmenting lags of the dependent variable.10 Line 15 of lesson11.4 
does exactly that. 

                                                           
10 To correct for autocorrelation, we could continue on the model of Lesson 11.3 and assume 
that the error structure is AR(1) or even higher-order. Such derivation will result in 
complicated non-linear restrictions involving lagged variables (dependent and independent). 
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/* 
** Lesson 11.4: Autoregressive Distributed Lag Model 
** Almon Lag Model Once More 
*/ 
use gpe2; 
output file = gpe\output11.4 reset; 
load almon[61,3] = gpe\almon.txt; 
 
cexp = almon[2:61,2]; 
capp = almon[2:61,3]; 
qt = almon[2:61,1]; 
 
q1=(qt%10).==1;  @ quarterly seasonal dummies @ 
q2=(qt%10).==2; 
q3=(qt%10).==3; 
q4=(qt%10).==4; 
 
call reset; 
_rstat = 1;  
_end = 36; 
 
_pdl = {7 4 2}; 
_dlags = 2; 
 
_names={"cexp","capp"}; 
call estimate(cexp,capp); 
end;   
 
Running the program, we have the following: 
 

Least Squares Estimation 
------------------------ 
Dependent Variable = CEXP     
Estimation Range =  8          36         
Number of Observations = 29           
Mean of Dependent Variable = 2568.3       
Standard Error of Dependent Variable = 468.69       
 
NOTE: Estimation Range Has Been Adjusted. 
NOTE: Lagged Dependent Variables Used = 2    
NOTE: Distributed Lags Variables Used = 7    
 
WARNING: Linear Restrictions Imposed. 
R-Square, AOV, SE, and t may not be reliable! 
Wald F-Test for Linear Restrictions 
F(   5,  18)       Prob>F 
     0.77945      0.57735 
Asymptotic Hypothesis Testing for Linear Restrictions 
                                Chi-Sq     DF  Prob>Chi-Sq 
Wald Chi-Square Test            3.8972      5      0.56430  
Lagrange Multiplier Test        5.1614      5      0.39650  
Likelihood Ratio Test           5.6837      5      0.33823 
 
R-Square = 0.98015      R-Square Adjusted = 0.97584      
Standard Error of the Estimate = 72.850       
Log-Likelihood = -162.15      
Log Ammemiya Prediction Criterion (APC) =  8.8984       
Log Akaike Information Criterion (AIC) =  9.1036       

                                                                                                                                                       
We can view it as a restricted version of ARDL model. For example, assuming AR(1) 
correlation ε = ρ ε-1 + u for the long-run relation Y = α + β X + ε is the same as assuming the 
short-run dynamics Y = a + b X + c X-1 + ρY-1 + u with the non-linear restriction b = -c/ρ. In 
other words, given ε = ρ ε-1 + u, we must have a = α/(1-ρ), b = β, c = -βρ. 
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Log Schwarz Bayesian Information Criterion (BIC) =  9.6223       
 
Sum of Squares       SS           DF          MSS            F       Prob>F 
Explained   6.0288E+006            5  1.2058E+006       227.20  8.8193E-019 
Residual    1.2206E+005           23       5307.1  
Total       6.1508E+006           28  2.1967E+005  
 
Variable        Estimated     Standard      t-Ratio         Prob      Partial 
Name          Coefficient        Error        23 DF         >|t|   Regression 
CEXP-1             1.2541      0.16540       7.5824  1.0625E-007      0.71426  
CEXP-2           -0.62565      0.16853      -3.7124    0.0011458      0.37469  
CAPP             0.033586     0.018926       1.7746     0.089205      0.12043  
CAPP-1           0.041515     0.016618       2.4982     0.020075      0.21343  
CAPP-2           0.038166     0.012788       2.9845    0.0066274      0.27916  
CAPP-3           0.033262     0.017913       1.8568     0.076188      0.13036  
CAPP-4           0.031873     0.021607       1.4751      0.15373     0.086433  
CAPP-5           0.034417     0.021396       1.6086      0.12135      0.10113  
CAPP-6           0.036656     0.021233       1.7263     0.097699      0.11471  
CAPP-7           0.029698     0.018826       1.5775      0.12833     0.097636  
CONSTANT           228.22       160.09       1.4256      0.16742     0.081186  
 
Squared Correlation of Observed and Predicted = 0.98015      
Sum of Squared Residuals = 1.2206E+005  
Sum of Absolute Residuals = 1480.9       
Sum of Residuals = -4.66639E-008 
First-Order Rho = -0.085940    
Durbin-Watson Test Statistic = 2.0420       
Durbin-H Statistic = -0.24902 

 
The estimated model is a restricted ARDL model. The restrictions come in the form 
of the fourth-order (of 7 lags) polynomial and end-point restrictions. There are 5 
restrictions because of the polynomial lag structure assumed, and these restrictions 
are statistically significant based on all the tests. The first two lags of the dependent 
variable, with coefficients 1.25 and –0.63, are statistically significant. The stability 
of a dynamic equation hinges on the characteristic equation for the autoregressive 
part of the model. It is easy to show that the model is stable.11 By augmenting two 
lags of the dependent variables, the model is free of autocorrelation as required. 
 
 

 

                                                           
11 Solving the characteristic function 1-1.25z + 0.63z2 = 0, z = 0.9921 ± 0.7766i. It is obvious 
that the solutions are greater than 1 in absolute value. Thus two complex solutions of z lie 
outside of unit circle. 



 

 

XII 
Generalized Method of Moments 
 

Recall from the study of maximum likelihood estimation that assumptions regarding 
the underlying probability density or likelihood function of a model structure are 
rather strong, typically including the assumption that the model error is normally 
distributed. The alternative to the maximum likelihood approach, known as 
generalized method of moments (GMM), does away with assumptions regarding the 
probability density or likelihood function. Instead, GMM estimation begins by 
specifying a set of identities, or moment functions, involving the model variables and 
parameters, and then finds the set of parameters that best satisfies those identities 
according to a quadratic criterion function. As a result, the GMM estimator is 
consistent. For some ideal cases, it can be shown to be as efficient as a maximum 
likelihood estimator. In addition to the classical least squares and maximum 
likelihood methods, GMM serves as an alternative for regression parameter 
estimation. Even for the purpose of estimating the parameters for a probability 
distribution of a random variable, GMM is a viable alternative to maximum 
likelihood estimation. 
 
GMM estimation is nonlinear in nature. In the following, we shall revisit the problem 
of estimating a probability distribution first seen in Lesson 6.3. Instead of using the 
maximum likelihood method, GMM is introduced to estimate the parameters of a 
gamma probability distribution. It is generalized to study a nonlinear regression 
model of rational expectations as done by Hansen and Singleton (1982), where a set 
of moment equations or orthogonality conditions are estimated. Finally, the special 
cases of linear regression models are considered. For linear models, GMM is more 
general than the least squares estimation. It is analogous to an instrumental variable 
estimator which accounts for heteroscedasticity and autocorrelation. One of the 
advantages of GMM estimation is that it is less dependent on the underlying 
probability density or likelihood function. Classical least squares and maximum 
likelihood estimation methods are special cases of GMM. 
 

GMM Estimation of Probability Distributions  

GMM estimation relies on the specification of a set of identities, known as moment 
functions, involving variables and parameters. A moment function is defined as the 
expectation of some continuous function m of a random variable X with a parameter 
vector θ:  
 
E[m(X,θ)] = 0 
 
Let’s consider a simple example. Suppose X is a random variable for which the 
population mean is defined as θ = E(X). Then, E(X) - θ = E(X-θ) = 0. The moment 
function is m(X,θ) = X - θ = 0 so that E[m(X,θ)] = 0. In the now familiar maximum 
likelihood case, m(X,θ) = ∂ll(θ)/∂θ and E[∂ll(θ)/∂θ] = 0, where ll(θ) is the log-
likelihood function with unknown parameters θ. Moments are used to describe the 
characteristics of a distribution, and much of the statistical estimation focuses on the 
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problem of moment functions (or in the case above, orthogonality conditions). In 
addition, a function of moments is also a moment. A more general class of estimators 
based on moment functions has been shown to exhibit desirable asymptotic (or large-
sample) properties. For empirical estimation, GMM estimators are based on the 
sample moment functions: 
 
m(θ) = 1/N ∑i=1,2,...,N m(Xi,θ)' = 0 
 
where Xi is a sample observation of the random variable and θ is the vector of 
unknown parameters. If there are K parameters (i.e., θ = (θ1, θ2, ..., θK)'), we will 
need at least K moment equations in order to successfully estimate the parameters 
(i.e., m(θ) = (m1(θ), m2(θ), ..., mL(θ))', L ≥ K). In other words, the number of sample 
moment equations must be at least as large as the number of parameters to be 
estimated. This is just the classical identification problem. If L = K, this model is 
exactly identified. If L > K, the model is over-identified with L-K functional 
restrictions. The optimization problem is to minimize the quadratic criterion 
function: 
 
Q(θ) = m(θ)'W m(θ) 
 
where W is a positive definite weighting matrix. Optimally, W is chosen to be the 
inverse of the estimated consistent covariance matrix of m(θ). That is, W = W(θ) = 
[Var(m(θ))]-1 and Var(m(θ)) = 1/N2 ∑∑i,j=1,2,...,N m(Xi,θ)'m(Xj,θ). 
 
To ensure that W is positive definite, we need to say some things about its 
autocovariance structure. For example,  
 
Var(m(θ)) =  S0(θ) + ∑j=1,2,...,p(1 - j/(p+1)) (Sj(θ) + Sj(θ)')  
 S0(θ) = m(θ)m(θ)' = 1/N2 ∑i=1,2,...,N m(Xi,θ)'m(Xi,θ)  
 Sj = m(θ)m-j(θ)' = 1/N2 ∑i=j+1,...,N m(Xi,θ)'m(Xi-j,θ)  
 j = 1, ..., p < N 
 
where p is the degree of autocovariance assumed in the model. This is the White-
Newey-West estimator of Var(m(θ)), which guarantees positive definiteness by 
down-weighting higher-order autocovariances. 
 
For an exactly identified model, the optimal value of Q is zero and therefore the 
choice of weighting matrix W is irrelevant. For an over-identified case, there are L-K 
moment restrictions which must be satisfied with a minimal positive value (or 
penalty) of Q. The function of weighting matrix W as constructed is to place the 
importance of each individual moment function. Typically, the first iteration of 
GMM estimation starts with the special case of W = I (the identity matrix). In other 
words, we find the estimator θ0 of θ that minimizes the quadratic function, Q(θ) = 
m(θ)'m(θ), with the associated asymptotic covariance matrix:  
 
Var(θ0) = [G(θ0)'G(θ0)]-1G(θ0)'[Var(m(θ0))] G(θ0) [G(θ0)'G(θ0)]-1  
 
where G(θ0) = ∂m(θ0)/∂θ is the L by K matrix of derivatives. With the initial 
parameter estimates θ0, let W = W(θ0) = [Var(m(θ0))]-1 and then minimize the 
quadratic function:  
 
Q(θ) = m(θ)'W m(θ)  
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The asymptotic covariance matrix for the resulting GMM estimator θ1 of θ is:  
 
Var(θ1) = [G(θ1)'W G(θ1)]-1G(θ1)'W [Var(m(θ1))] WG(θ1) [G(θ1)'W G(θ1)]-1  
 
Updating the weighting matrix W = W(θ1) = [Var(m(θ1))]-1 and reiterating the 
optimization process until convergence, the final GMM estimator θ* of θ is 
obtained, with the following asymptotic covariance matrix:  
 
Var(θ*) = [G(θ*)'W(θ*)G(θ*)]-1  
 
We note that convergence is not necessary for a consistent GMM estimator of θ. If 
our estimate θ* of θ is to be asymptotically efficient, the optimal weighting matrix 
W = W(θ*) must have been used. In other words, the iterative estimation process 
must converge on the solution θ*. With the optimal weighting matrix, θ* is 
asymptotically normally distributed with mean θ and covariance Var(θ*). The value 
of quadratic function Q at the optimal solution θ* is:  
 
Q* = Q(θ*) = m(θ*)'W(θ*)m(θ*) 
 
Q* serves as the basis for hypothesis testing of moment restrictions. If there are L 
moment equations with K parameters (L > K), the Hansen test statistic Q* follows a 
Chi-square distribution with L-K degrees of freedom. Justification for including L-K 
additional moment functions is made based on the value of Q*.  
 

Lesson 12.1 Gamma Probability Distribution 

Recall the classical maximum likelihood method of estimating a probability 
distribution discussed in Chapter VI. We now return to Lesson 6.3, estimating the 
two parameters of the gamma distribution of the INCOME variable. Consider four 
sample moment functions of the gamma probability distribution function with 
unknown parameters λ and ρ:  
 
m1(λ,ρ) = 1/N ∑i=1,2,...,N Xi - ρ/λ 
m2(λ,ρ) = 1/N ∑i=1,2,...,N Xi

2 - ρ(ρ+1)/λ2 
m3(λ,ρ) = 1/N ∑i=1,2,...,N ln(Xi) - dlnΓ(ρ)/dρ + ln(λ) 
m4(λ,ρ) = 1/N ∑i=1,2,...,N 1/Xi - λ/(ρ-1)  
 
The GMM estimator of θ = (λ,ρ) is obtained from minimizing the weighted sum-of-
squares:  
 
Q(θ) = m(θ)'W m(θ)  
 
where m(θ) = (m1(θ), m2(θ), m3(θ), m4(θ))' and W is a positive definite symmetric 
matrix. Conditional to the weighting scheme W, the variance-covariance matrix of θ 
is estimated by: 
 
Var(θ) = [G(θ)'W G(θ)]-1 G(θ)'W [Var(m(θ))] WG(θ) [G(θ)'W G(θ)]-1  
 
If we let W equal the inverse of the covariance matrix of m(θ), or [Var(m(θ))]-1, then 
Var(θ) = [G(θ)'W G(θ)]-1.  
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From here, we can show that the GMM class of estimators includes the maximum 
likelihood estimator as a special case. Solving from the score of the log-likelihood 
function based on the gamma distribution:  
 
∂ll(X,θ)/∂λ = N (ρ/λ) - ∑i=1,2,...,N Xi = 0 
 
∂ll(X,θ)/∂ρ = N ln(λ) – N dlnΓ(ρ)/dρ + ∑i=1,2,...,N ln(Xi) = 0 
 
where ll(X,θ) = N [ρln(λ) - lnΓ(ρ)] - λ ∑i=1,2,...,N Xi + (ρ-1) ∑i=1,2,...,N ln(Xi). Thus, the 
maximum likelihood estimate of θ = (λ,ρ) is an exactly identified GMM with m(θ) = 
(m1(θ), m3(θ)). For this exactly identified case, the weighting matrix W is irrelevant, 
and the optimal criterion Q is zero. 
 
GMM is a nonlinear estimation method. Nonlinear optimization methods were 
discussed in Chapter VI. Chapter VII presented the applications of nonlinear least 
squares and maximum likelihood estimation in econometrics. GMM estimation is a 
straightforward example of a nonlinear minimization problem. The first part of the 
program lesson12.1 sets up a standard nonlinear optimization problem. The data 
series INCOME is read from the text file yed20.txt. As in Lesson 6.3, the INCOME 
variable is scaled by 10 and renamed x (line 4).12 The next few lines specify the 
minimization problem (_nlopt=0 in line 6) to be estimated by the QHC method 
(_method=5 in line 7) with no more than 100 iterations (_iter=100 in line 8). 
Line 9 specifies the initial values of the two parameters ρ and λ, respectively. 
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/* 
** Lesson 12.1: GMM Estimation of a Gamma Distribution 
** See Greene (1999), Example 4.26 and Example 11.4 
*/ 
use gpe2; 
output file=gpe\output12.1 reset; 
load data[21,2]=gpe\yed20.txt; 
x=data[2:21,1]/10;      @ income: data scaling may help @  
 
call reset; 
_nlopt=0;               @ it is a minimization problem @ 
_method=5; 
_iter=100; 
 
_b={3,1};               @ initial values of parameters @ 
_hacv=1;                @ hetero consistent covariance @ 
                        @ assuming serially uncorrelated @ 
call estimate(&gmmqw,x); 
                        @ using the results of previous estimator @ 
_b=__b;                 @ for initial value of parameters and @ 
gmmw=invpd(gmmv(x,_b)); @ for computing the weight matrix @ 
call estimate(&gmmqw,x);  
call gmmout(x,__b);     @ print GMM output @ 
/* 
_b=__b; 
call estimate(&gmmq,x); 
call gmmout(x,__b);     @ print GMM output @ 
*/ 

                                                           
12 Our implementation of this example is slightly different from that of Example 11.4 in 
Greene (1999). Instead of using the scaled moment equations as Greene did, we scale the data 
series first and then estimate the original moment equations as described. The numerical 
results are more stable and easier to evaluate. 
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end; 
 
/* 
User-defined moments equations, must be named mf 
based on gamma distribution: b[1]=rho, b[2]=lambda 
*/ 
proc mf(x,b); 
    local n,m; 
    n=rows(x); 
    m=zeros(n,4); 
    m[.,1]=x-b[1]/b[2]; 
    m[.,2]=x^2-b[1]*(b[1]+1)/(b[2]^2); 
    m[.,3]=ln(x)-gradp(&lngamma,b[1])+ln(b[2]); 
    m[.,4]=1/x-b[2]/(b[1]-1); 
    retp(m); 
endp; 
 
/* 
Log of gamma distribution function 
*/ 
fn lngamma(x)=ln(gamma(x)); 
 
#include gpe\gmm.gpe; 
 
Most of the computation details and algorithms of GMM estimation in GAUSS are 
grouped in a module named GMM.GPE. There are many ways to include a module 
in your program. The simplest is to use the GAUSS compiler directive #include. 
It will include the specified module during the compilation of your program. We 
suggest including the module GMM.GPE at the end of your program. If you have 
properly installed the GPE package with your version of GAUSS, GMM.GPE is 
located in the GPE subdirectory. Putting source codes in a separate file hides their 
implementation “secrets.” If you are interested in the programming details, you can 
examine the program listing of GMM.GPE available in Appendix B-1.  
 
The module GMM.GPE defines two objective functions, gmmqw and gmmq. The 
former uses a predefined weighting matrix, while the latter computes the weighting 
matrix together with the unknown parameters. In addition, the procedure gmmout 
prints the regression output. Since GMM is a nonlinear optimization method, it 
requires a user-defined moment function with the name mf which, like the other 
functions (e.g. residual function for nonlinear least squares or maximum likelihood 
estimation), depends on a sample data matrix x and a parameter vector b.  
 
Based on the gamma probability distribution, two parameters λ and ρ will be 
estimated from the four moment functions we defined earlier (see lines 17 through 
26 which define the procedure mf(x,b)). One tricky part is computing the 
derivative of the log of the gamma function for the third moment equation (line 23). 
The logarithm of the gamma function is defined as a separate one-line function in 
line 27, so that the GAUSS built-in gradient function gradp is applied in line 23. 
 
One of the key advantages of GMM is that it allows for a flexible specification of 
covariance structure, including heteroscedasticity and autocorrelation. We have seen 
the use of the GPE control variable _hacv to compute the heteroscedasticity-
autocorrelation-consistent covariance matrix in the context of heteroscedasticity 
(Chapter IX) and autocorrelation (Chapter X). _hacv is used similarly for nonlinear 
GMM estimation, except that heteroscedasticity-consistent covariance is the default 
option here. If we assume first-order autocovariance, then line 10 needs to be 
modified as follows: 
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_hacv = {1,1}; 
 

The first element of _havc directs the computation of the heteroscedasticity-
consistent covariance matrix, while the second element specifies the order of 
autocovariance requested. See Appendix A for more information about the global 
control variable _hacv. 
 
We begin the GMM estimation by minimizing the objective function gmmqw (line 
11) with the default weighting matrix I (identity matrix). The estimated parameters 
are used as starting point for the next iteration. First, we start from the estimated 
parameters (line 12) and compute the corresponding weighting matrix (line 13). 
Then the improved consistent parameter estimates are obtained (line 14) and printed 
(line 15). We could continue on updating the weighting matrix and estimating the 
parameters until convergence. Equivalently, we could estimate the parameters 
together with the associated weighting matrix. However, finding a convergent 
solution is not guaranteed due to a high degree of nonlinearity in the objective 
function.  
 
Running lesson12.1, the first set of GMM estimation results, based on the identity 
weighting matrix, is as follows:  
 

Non-Linear Optimization: Minimization Problem 
--------------------------------------------- 
Assuming Generalized Method of Moments 
Number of Observations = 20           
Number of Parameters = 2            
 
Maximum Number of Iterations = 100          
Step Size Search Method = 0            
Convergence Criterion = 0            
Tolerance = 0.001        
 
Initial Result: 
Function Value =       6.4658  
Parameters =       3.0000       1.0000  
 
Using Quadratic Hill-Climbing Algorithm 
Iteration =  1   Step Size =  1.0000  Value =       1.9867  
Parameters =       3.0010      0.86896  
… 
Iteration =  8   Step Size =  1.0000  Value =    0.0068077  
Parameters =       2.3691      0.74112  
 
Final Result: 
Iterations = 8           Evaluations = 123          
Function Value =    0.0068077  
Parameters =       2.3691      0.74112  
Gradient Vector =     -0.21423      0.44266  
 
                            Asymptotic   Asymptotic 
                Parameter   Std. Error      t-Ratio 
X1                 2.3691     0.010345       229.02  
X2                0.74112    0.0028050       264.21  

 
The second set of GMM estimation results is based on the previous estimates of the 
parameters and the associated weighting matrix (see lines 12-14 of the program 
lesson12.1). As is standard practice in nonlinear optimization, the estimated standard 
errors and t-ratios of the parameters are computed from the inverse of the hessian 
matrix calculated during minimization of the quadratic criterion function. Note that 
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these are not the GMM estimates of the standard errors and t-ratios. The correct 
estimates of the standard errors and t-statistics of the parameters are computed at the 
end. In addition, the Hansen test statistic of the moment restrictions is presented. 
Calling the procedure gmmout (see line 15 of the program lesson12.1) gives us the 
following result:  
 

Non-Linear Optimization: Minimization Problem 
--------------------------------------------- 
Assuming Generalized Method of Moments 
Number of Observations = 20           
Number of Parameters = 2            
 
Maximum Number of Iterations = 100          
Step Size Search Method = 0            
Convergence Criterion = 0            
Tolerance = 0.001        
 
Initial Result: 
Function Value =       13.294  
Parameters =       2.3691      0.74112  
 
Using Quadratic Hill-Climbing Algorithm 
Iteration =  1   Step Size =  1.0000  Value =       9.3992  
Parameters =       3.3687      0.74667  
… 
Iteration =  5   Step Size =  0.5000  Value =       3.2339  
Parameters =       2.8971      0.84839  
 
Final Result: 
Iterations = 5           Evaluations = 103          
Function Value =       3.2339  
Parameters =       2.8971      0.84839  
Gradient Vector =      -487.16      -6.2162  
 
                            Asymptotic   Asymptotic 
                Parameter   Std. Error      t-Ratio 
X1                 2.8971    0.0079292       365.37  
X2                0.84839     0.062556       13.562  
 
GMM Estimation Result 
===================== 
   Parameter   Std. Error      t-Ratio 
      2.8971    0.0044004       658.37  
     0.84839      0.11996       7.0721  
 
Hansen Test Statistic of the Moment Restrictions 
Chi-Sq(   2) =       4.4604  

 
For the two parameters of the gamma distribution, ρ and λ, we now compare their 
GMM estimators with the maximum likelihood (ML) estimators obtained earlier 
from Lesson 6.3 in Chapter VI. The standard errors are in parentheses. 
 

 ML GMM 
ρ 2.4106 (0.7161) 2.8971 (0.0044) 
λ 0.7707 (0.2544) 0.8484 (0.120) 

 

GMM Estimation of Econometric Models 

The GMM estimation of econometric models can be considered as an extension of 
the IV (instrumental variable) estimation method. IV estimation is widely used for 
models with random regressors (e.g. lagged dependent variables) which exhibit 
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contemporaneous correlation with the model’s errors. The advantage of GMM over 
IV is that the model need not be homoscedastic and serially independent. The 
covariance matrix of the averages of sample moments is taken into account for 
minimizing the GMM criterion function.  
 
For notational convenience, let X be a combined data matrix of endogenous 
(dependent) and predetermined (independent or explanatory) variables in the model. 
β is a K-element vector of unknown parameters. Suppose there are L moment 
equations, m(X,β) = (m1(X,β), ..., mL(X,β)), where L ≥ K. The model formulation is 
not limited to the case of a single equation. Generalization to a system of linear or 
nonlinear equations is straightforward.  
 
Corresponding to the moment conditions E(m(X,β)) = 0, we write the sample 
moment equations as follows:  
 
m(β) = 1/N ∑i=1,2,...,N m(Xi,β)' = 0  
 
Recall that the objective function, known as the GMM criterion function, to be 
minimized is Q(β) = m(β)'W m(β). We would optimally choose W to be equal to 
[Var(m(β))]-1. To find the β* which minimizes Q(β), we solve the zero-gradient 
conditions: ∂Q(β*)/∂β = 0. Our estimator β* of β will be asymptotically efficient and 
normally distributed with mean β and covariance matrix: 
 
Var(β*) = {G(β*)'[Var(m(β*))]-1G(β*)}-1 
 
where G(β*) = ∂m(β*)/∂β and [Var(m(β*))] is the White-Newey-West estimator of 
the covariance matrix of the sample moments.  
 

Nonlinear IV Estimation 

Now we consider the regression model ε = ε(β) = F(Y,X,β) (or Y- f(X,β)), where Y 
is the endogenous or dependent variable, and X consists of predetermined (or 
independent) variables. β is a K-element parameter vector. Let Z be a set of L 
instrumental variables, for which we assume L ≥ K. Under the general assumption 
that E(ε) = 0 and Var(ε) = E(εε') = Σ = σ2Ω, we can write the model as E(Z'ε) = 0. 
The sample moment functions are defined by m(β) = 1/N Z'ε(β) with covariance 
matrix: 
 
Var(m(β)) = 1/N2 Z' E[ε(β)ε(β)'] Z = 1/N2 Z'Σ(β)Z  
 
Therefore, GMM estimation amounts to finding the β* which minimizes: 
 
Q(β) = ε(β)'Z [Z'Σ(β)Z]-1Z'ε(β)  
 
The resulting GMM estimator β* is asymptotically normally distributed with mean β 
and covariance matrix: 
 
Var(β*) = {(∂ε(β*)/∂β)'Z [Z'Σ(β*)Z]-1Z'(∂ε(β*)/∂β)}-1 
 
where Σ(β∗) is the White-Newey-West estimator of Σ = σ2Ω.  
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Linear IV Estimation 

If the model is linear, or ε = ε(β) = Y - Xβ, then the GMM estimator of β is 
equivalent to the IV estimator:  
 
β* = (X'Z[Z'Σ(β∗)Z]-1Z'X)-1 X'Z[Z'Σ(β∗)Z]-1Z'Y  
Var(β*) = {X'Z[Z'Σ(β∗)Z]-1Z'X }-1 
 
If the instrumental variables Z = X, then 
 
β* = (X'X)-1X'Y  
Var(β*) = (X'X)-1[X'Σ(β∗)X](X'X)-1  
 

Special Cases 

If the IV model is homoscedastic and serially uncorrelated, that is Σ = σ2I, then  
 
β* = (X'Z[Z'Z]-1Z'X)-1X'Z[Z'Z]-1Z'Y  
Var(β*) = σ2(β∗) {X'Z[Z'Z]-1Z'X}-1  
 
where σ2(β∗) = 1/N ε(β∗)'ε(β∗). If the instrumental variables Z = X, this further 
reduces to the ordinary least squares estimator: 
 
β* = (X'X)-1X'Y  
Var(β*) = σ2(β∗) (X'X)-1  
 

Hypothesis Testing 

Based on the statistical inference for nonlinear regression models (see Chapter VII, 
Lesson 7.3 in particular), there are three corresponding test statistics for testing linear 
or nonlinear restrictions on the GMM estimate of β. Suppose there are J constraint 
equations written in the form c(β) = 0. Let β* be the unconstrained GMM estimator 
of β, and let b* be the constrained estimator of β. All the three test statistics 
discussed below will follow a Chi-square distribution with J degrees of freedom.  
 

Wald Test 

The Wald test statistic, based on the unconstrained estimator β*, is defined as: 
 
W  = c(β*)'[Var(c(β*)]-1c(β*)  
 = c(β*)' {(∂c(β*)/∂β) [Var(β*)] (∂c(β*)/∂β)'}-1 c(β*)  
 

Lagrangian Multiplier (LM) Test 

Let α = ∂Q(b*)/∂β = 2 m(b*)'W G(b*), where G(b*) = ∂m(b*)/∂β. If the constraints 
hold, then α approaches to 0. The LM statistic is: 
 
LM  = α[Var(α)]-1α'  
 = m(b*)'W G(b*)[G(b*)'W G(b*)]-1G(b*)'W m(b*)  
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Likelihood Ratio (LR) Test 

If we estimate both β* and b*, the LR test statistic is computed as: 
 
LR = Q(b*) - Q(β*)  
 
We note that both β* and b* are computed using the same consistent estimator of the 
weighting matrix W.  
 

Lesson 12.2 A Nonlinear Rational Expectations Model 

An important application of GMM estimation is to estimate the first-order conditions 
(or Euler equations) of a dynamic optimization problem. As an example, we will use 
a model common in the finance literature. Suppose a representative stockholder at 
current time t, who tries to maximize a concave expected utility function of 
consumption over an indefinite future horizon.  This can be modeled as: 
 
∑τ=0,...,∞ βτ E{u(Ct+τ) | Zt}  
 
where Zt is the information available to the consumer at time t and Ct+τ  is the 
consumption τ periods from t. 0 < β <1 is known as the discount factor of time 
preference. Given N different stocks, the optimal consumption-investment allocation 
must satisfy the following condition: 
 
u'(Ct) = β E{u'(Ct+1) [(Pi,t+1+Di,t+1)/Pt] | Zt} 
 
for i = 1,...,N. u'(Ct) = ∂u/∂Ct is the marginal utility of consumption at time t. Pi,t+1 is 
the price of stock i at time t+1 and Di,t+1 is the dividend per share of stock i at t+1. 
The ratio (Pi,t+1+Di,t+1)/Pi,t represents the returns of investment in stock i between 
periods t and t+1. In other words, this merely defines the equilibrium condition that 
the marginal utility of consumption in the current period must equal the expected 
return next period from investing in stock i. Assume that the utility function exhibits 
constant relative risk aversion as:  
 
u(Ct) = Ct

α/α     for α<1 
 
where 1-α is known as the coefficient of relative risk aversion, and 1-α > 0. Then, 
for each i = 1, ..., N, the optimal decision-rule is  
 
Ct

α-1 = β E{Ct+1
α-1 [(Pi,t+1+Di,t+1)/Pt] | Zt}  

 
Equivalently, for each stock i = 1, ..., N, we must have  
 
βE{[(Ct+1/Ct)α-1] [(Pi,t+1+Di,t+1)/Pt] | Zt} = 1  
 
The hypothesis of rational expectations assumes that the intertemporal decision-
making should be independent from the historical information available at the time at 
which the decision is made. Therefore, the derived orthogonality condition for each 
stock i = 1, ..., N is:  
 
E [Zt {β[(Ct+1/Ct)α-1] [(Pi,t+1+Di,t+1)/Pt] -1}] = 0  
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For more detailed description of the model, see Hansen and Singleton (1982).13 In 
terms of our econometric estimation, the model may be expressed with the 
orthogonality condition: E[Z ε(X,θ)] = 0, where X = [X1,X2,X3], θ = (β,α), and  
 
ε(X,θ)   = [βX1

α−1X2 – 1, βX1
α−1X3 – 1] 

 
The data file gmmq.txt installed in the GPE subdirectory consists of three variables 
(335 observations from January 1959 to December 1978, though not the original 
Hansen-Singleton data):  
 

X1 Ratio of two-period consumption, Ct+1/Ct. 
X2 Value-weighted returns of NYSE stock market, (Pt+1+Dt+1)/Pt where Pt+1 is the 

price and Dt+1 is the dividend payoff of stock at t+1. 
X3 Risk-free rate of returns (T-Bill rate). 

 
We note that this model consists of a system of two nonlinear equations. The 
instrumental variables Z consist of one or several lags of X and a constant. The 
following program lesson12.2 implements and estimates the Hansen-Singleton 
rational expectations model. The program structure looks similar to that of Lesson 
12.1. The main difference is the model specification described in the block from line 
19 to line 27 for the moment function procedure mf(x,b), which reflects exactly 
the model described above. We use one lag of each of the three variables X1, X2, X3, 
and a constant as the instrumental variables (see line 22). More lags may be included 
for the additional instrumental variables. The two orthogonality equations for stock 
and risk-free returns are concatenated to form the moment functions system (see 
lines 23 and 24). The rest of the program performs the GMM estimation. First, the 
initial estimates of (β,α) are obtained by assuming the default identity weighting 
matrix in the objective function for minimization (line 10). Then, with the resulting 
covariance matrix of the moment functions, the consistent parameter estimates are 
calculated (see lines 11-13). An efficient solution is obtained from simultaneously 
estimating the parameters and the corresponding covariance matrix in the second 
iteration (see lines 15 and 16). 
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/* 
** Lesson 12.2: A Nonlinear Rational Expectation Model 
** GMM Estimation of Hansen-Singleton Model (Ea, 1982) 
*/ 
use gpe2; 
output file=gpe\output12.2 reset; 
load x[335,3]=gpe\gmmq.txt; @ data columns: @ 
                            @ (1) c(t+1)/c(t) (2)vwr (3)rfr @ 
call reset; 
_nlopt=0; 
_method=5; 
_tol=1.0e-5; 
_iter=100; 
 
_b={1,0};                @ GMM estimation with initial @ 
call estimate(&gmmqw,x); @ identity weighting matrix @ 
 
_b=__b;                  @ GMM estimation with external @ 

                                                           
13 For computational implementation of the model and the data file gmmq.txt used in this 
lesson example, see also the Hasen-Heaton-Ogaki GMM package from the American 
University GAUSS archive at http://www.american.edu/academic.depts/cas/econ/gaussres/ 
GMM/GMM.HTM. 
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gmmw=invpd(gmmv(x,__b)); @ covariance weighting matrix @ 
call estimate(&gmmqw,x); 
 
call gmmout(x,__b);      @ print GMM output @ 
 
_b=__b;                    @ may be a convergent efficient solution @ 
call estimate(&gmmq,x);  @ with internal covariance weighting matrix @ 
 
call gmmout(x,__b);      @ print GMM output @ 
 
end; 
 
/* 
User-defined moments functions, must be named mf 
*/ 
proc mf(x,b); 
    local z,n,m; 
    n=rows(x); 
    z=ones(n,1)~lagn(x,1);   @ IV @ 
    m=z.*(b[1]*(x[.,1]^(b[2]-1)).*x[.,2]-1); 
    m=m~(z.*(b[1]*(x[.,1]^(b[2]-1)).*x[.,3]-1)); 
    @ nonlinear multiple equations system @ 
    retp(packr(m)); 
endp; 
 
#include gpe\gmm.gpe; 
 
The first part of the output (the first iteration, using the identity matrix as the 
weighting matrix) is only preparation for computing the consistent parameter 
estimates in the second iteration of the GMM estimation. The result of second 
consistent estimation is shown below: 
 

Non-Linear Optimization: Minimization Problem 
--------------------------------------------- 
Assuming Generalized Method of Moments 
Number of Observations = 335          
Number of Parameters = 2            
 
Maximum Number of Iterations = 100          
Step Size Search Method = 0            
Convergence Criterion = 0            
Tolerance = 1e-005       
 
Initial Result: 
Function Value =       55.406  
Parameters =      0.99977  -0.00012883  
 
Using Quadratic Hill-Climbing Algorithm 
Iteration =  1   Step Size =  1.0000  Value =       19.924  
Parameters =       1.0014   0.00045142  
… 
Iteration =  13  Step Size =  1.4641  Value =       9.4685  
Parameters =      0.99919      0.85517  
 
Final Result: 
Iterations = 13          Evaluations = 239          
Function Value =       9.4685  
Parameters =      0.99919      0.85517  
Gradient Vector =  -0.00026951   0.00017303  
 
 
                            Asymptotic   Asymptotic 
                Parameter   Std. Error      t-Ratio 
X1                0.99919   0.00012573       7946.9  
X2                0.85517     0.044497       19.219  
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GMM Estimation Result 
===================== 
   Parameter   Std. Error      t-Ratio 
     0.99919   0.00047887       2086.6  
     0.85517      0.17853       4.7901  
 
Hansen Test Statistic of the Moment Restrictions 
Chi-Sq(   6) =       13.306  

 
The consistent estimates (0.9992, 0.8552) of the two parameters are obtained using 8 
instrument variables (4 for each of the two equations). The Hansen test statistic of 
the extra 6 moment restrictions is barely statistically significant at 5% level (with the 
critical value 12.59). 
 

Non-Linear Optimization: Minimization Problem 
--------------------------------------------- 
Assuming Generalized Method of Moments 
Number of Observations = 335          
Number of Parameters = 2            
 
Maximum Number of Iterations = 100          
Step Size Search Method = 0            
Convergence Criterion = 0            
Tolerance = 1e-005       
 
Initial Result: 
Function Value =       13.306  
Parameters =      0.99919      0.85517  
 
Using Quadratic Hill-Climbing Algorithm 
Iteration =  1   Step Size =  1.0000  Value =       12.590  
Parameters =      0.99934      0.85482  
… 
Iteration =  7   Step Size =  0.0039  Value =       12.474  
Parameters =      0.99950      0.78735  
 
Final Result: 
Iterations = 7           Evaluations = 127          
Function Value =       12.474  
Parameters =      0.99950      0.78735  
Gradient Vector =    0.0069545    0.0056644  
 
                            Asymptotic   Asymptotic 
                Parameter   Std. Error      t-Ratio 
X1                0.99950  9.8686e-005       10128.  
X2                0.78735     0.037531       20.979  
 
 
GMM Estimation Result 
===================== 
   Parameter   Std. Error      t-Ratio 
     0.99950   0.00047957       2084.2  
     0.78735      0.17736       4.4393  
 
Hansen Test Statistic of the Moment Restrictions 
Chi-Sq(   6) =       12.474 

 
The final GMM estimate of (β,α) at (0.9995, 0.7874) is consistent with the result of 
Hansen and Singleton (1982). Since it is the convergent solution, it is also efficient. 
However, the 6 moment restrictions are significant only at the 10 percent level. 
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It may be of interest to perform hypothesis tests on the coefficient of relative risk 
aversion 1-α. Two cases that are often of practical interest are α approaching 0 
(indicating a logarithmic utility function) and α = 1 (indicating a linear utility 
function), we leave applying hypothesis testing in the GMM framework to interested 
readers. 
 

Linear GMM 

GMM estimation of a linear regression model is essentially the same as IV 
estimation with a general covariance matrix. In Chapters IX and X, we discussed the 
computation of White-Newey-West estimates of heteroscedasticity-autocorrelation-
consistent covariance by using the GPE control variable _hacv. In the case of the 
IV approach, Lesson 11.2 introduced the use of another GPE control variable, 
_ivar, to specify a set of instruments for linear model estimation. _ivar may be 
internally determined in the case of autocorrelation correction for a lagged dependent 
variable model. Alternatively, it may be externally specified as a data matrix 
consisting of a list of instrumental variables. Refer to your econometrics textbook for 
the requirements and proper use of instrumental variables in a regression model. 
 
In GPE, _ivar may be combined with _hacv to carry out GMM estimation. In 
addition, as in a nonlinear model estimation, we can set the control variable _iter 
to allow for iterated computation of the parameter estimates. If the solution 
converges, it is efficient. Even if it does not converge, the GMM estimator is still 
consistent. 
 

Lesson 12.3 GMM Estimation of U.S. Consumption Function 

In the following, we present a simple example of a consumption function derived 
from Hall’s Life Cycle-Permanent Income Hypothesis (Hall, 1978) with a quadratic 
utility function. The intertemporal model formulation is similar to that of Lesson 
12.2 on the consumption-investment decision-making, with the exception that we 
consider only the consumption plan with a quadratic utility function. The use of a 
quadratic functional form leads to a linear consumption function: 
 
Ct+1 = β0 + β1Ct + εt+1  
 
Ct+1 and Ct are expected and current consumption, respectively. Let Zt be historical 
information available to the consumer at time t or earlier. Then the orthogonality 
condition becomes: 
 
E(Ztεt+1) = 0 
 
From other theories of consumption, the instrumental variables Z may include levels 
of income Y and consumption C in addition to a constant. That is, 
 
Zt = [ 1 Ct Yt] 
 
Further lags of C and Y may be added to the model as needed. The consumption-
income relationship was studied in Chapter XI with income as the explanatory 
variable. Based on an Euler equation of a constrained expected utility maximization, 
in this example, the future consumption is affected indirectly by the current and past 
income as the instrumental variables. Using the U.S. time series data of usyc87.txt, 



GENERALIZED METHOD OF MOMENTS 

 

 

193 

Lesson 12.3 demonstrates GMM estimation of the linear consumption function as 
follows: 
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/* 
** Lesson 12.3: GMM Estimation of U.S. Consumption Function 
** GMM Estimation of a Linear Regression Model 
*/ 
use gpe2; 
output file=gpe\output12.3 reset; 
 
load z[67,3]=gpe\usyc87.txt; 
y = z[2:67,2]; 
c = z[2:67,3]; 
 
call reset; 
_names={"c","c1"}; 
_rstat=1; 
_rplot=2; 
_dlags=1; 
_ivar=ones(rows(y),1)~lagn(c~y,1); 
_hacv={1,1}; 
_iter=100; 
 
call estimate(c,0); 
 
end; 
 
Two variables, named C and Y, are read from the data file usyc87.txt. Line 10, 
_dlags = 1, specifies the lagged dependent variable model. GMM estimation for 
the linear autoregressive consumption function is given in line 14, with the 
instrumental variables _ivar specified in line 11. We use only the first lag of 
income and consumption variables in addition to a constant as the instruments. The 
first-order autocovariance structure is specified in line 12, in which the White-
Newey-West estimate will be computed. The computation of GMM estimates will be 
iterated until convergence or until the limit set in line 13, _iter = 100. The 
empirical results in greater detail can be found in the output file output12.3. 
 
Of course the estimated model is not good enough to be free of misspecification. It 
serves the purpose for demonstrating GMM estimation of a linear model. To improve 
the model, either more lags of consumption should be included for a comprehensive 
autoregressive specification or the model should explicitly correct for serial 
correlation. We leave the rest of the model improvement task to the interested reader. 

 





 

 

XIII 
Systems of Simultaneous Equations 
 

GPE can estimate systems of linear and nonlinear equations. For a system of linear 
equations, you need to define the endogenous and predetermined (including lagged 
endogenous, current and lagged exogenous) variables. By selecting and identifying 
the relevant variables for each equation, the procedure estimate carries out the 
system model estimation as in the case of a single equation model. For a system of 
nonlinear equations, it becomes more involved to define the functional form for the 
model equations. In this chapter, the classic example of Klein Model I (1950) is used 
to demonstrate the estimation of a system of linear regression equations. The special 
case of seemingly unrelated regressions (SUR) is considered with the Berndt-Wood 
model of energy demand. Finally, re-examining the Klein Model, nonlinear 
maximum likelihood estimation is shown to be useful for estimating a system of 
nonlinear equations. 
 

Linear Regression Equations System 

We follow the conventional matrix representation of a system of linear equations as: 
 
YB + XΓ = U 
 
Let N be the number of observations, G be the number of endogenous variables 
(therefore, the number of equations), and K be the number of predetermined 
variables. Then Y, a N×G matrix, and X, a N×K matrix, are the respective data 
matrices of endogenous and predetermined variables. The corresponding G×G 
matrix B associated with the endogenous variable matrix Y, and the G×K matrix Γ 
associated with predetermined variable matrix X are the sparse parameter matrices in 
which the unknown nonzero elements need to be estimated. Finally, U is the N×G 
stochastic error matrix. 
 
Given the data matrices Y and X, the unknown parameters in B and Γ can be 
estimated using a variety of methods. GPE implements both single equation (limited 
information) methods and simultaneous equations (full information) methods. Before 
the parameter estimation, the model of multiple equations must be properly specified 
to account for the relevant variables and restrictions. In GPE, this is done by 
specifying the structure of the parameter matrices B and Γ. It uses a couple of 
specification matrices to define the stochastic equations and fixed identities of the 
system by representing the parameter matrices of the system as arrays of 1’s, 0’s, and 
–1’s, signifying the inclusion or exclusion of variables from particular equations. In 
the following, we discuss the three most important input variables that control the 
specification and estimation of a simultaneous linear equations model. 
 
• _eq 
• _id 
• _method 
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First, the variable _eq specifies the stochastic equation matrix for system model 
estimation. This is a Gs by (G+K) matrix with elements -1, 0, and 1 arranged in 
accordance with the order of endogenous variables Y followed by the predetermined 
variables X. Note that Gs is the number of stochastic equations and G ≥ Gs. For each 
stochastic equation, there is exactly one row of _eq to define it. In the stochastic 
equation specification matrix _eq, an element -1 indicates the left-hand side 
endogenous variable. Only one -1 entry is allowed in each equation. An element 1 
indicates the use of an endogenous and/or a predetermined variable on the right-hand 
side of an equation. The zeros indicate the corresponding unused or excluded 
variables in the equation. Constant terms are not normally included in the equation 
specification. If _eq is not specified, or _eq=0 by default, a SUR equations system 
is assumed. In this case, Gs = G, and the _eq matrix consists of a G×G sub-matrix 
with -1 in the diagonals and zeros elsewhere (endogenous variables portion of _eq), 
and a G×K sub-matrix consisting entirety of ones (predetermined variables portion of 
_eq). 
 
The second input variable _id specifies the identity equation specification matrix 
for a system model. _id is similar in size and setup to _eq, except that its entries 
can be any value as required by the model. If _id is not specified, or _id=0 by 
default, there is no identity. To ensure system compatibility, the number of rows in 
two specification matrices _eq and _id must sum to G, the total number of 
endogenous variables or equations in the system. 
 
The input variable _method controls the use of the specific method of estimation. 
In the context of simultaneous linear equations, the available estimation methods are: 
 
_method=0 Ordinary least squares (OLS, the default method) 
_method=1 Limited information maximum likelihood (LIML) 
_method=2 Two-stage least squares (2SLS) 
_method=3 Three-stage least squares (3SLS, may be iterative) 
_method=4 Full information maximum likelihood (FIML, may be iterative) 
 
Note that LIML and FIML are not true nonlinear maximum likelihood estimation 
methods. Instead they are types of instrumental variables estimation. In GPE, three 
variants of the FIML method are available: 
 
_method={4,0} (or 4) FIML instrumental variable method (Hausman, 1975) 
_method={4,1} FIML linearized method (Dhrymes, 1970) 
_method={4,2} FIML Newton method 
 
2SLS and 3SLS are flavors of the instrumental variables estimation method, where 
the instrumental variables used are all the predetermined variables in the system. For 
estimation of a linear system model, external instrumental variables may be 
requested and specified in the matrix _ivar. The data matrix _ivar will be 
combined with all the predetermined variables to form the basis for instrumental 
variable estimation. A constant term is automatically included in _ivar. For 
technical details and comparisons of different estimation methods for a linear 
equations system, refer to your econometrics textbook. 
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Klein Model I (1950) 

The pedagogical example of Klein Model I is typically used to demonstrate the 
model estimation of a linear regression equations system. It was the first U.S. 
economy-wide econometric model consisting of three stochastic equations with 
about 10 variables covering the prewar period from 1920 to 1941. klein.txt is a text 
data file containing these variables which will be used in the Klein Model I. There 
are several variations of the Klein Model in the literature. For the convenience of 
illustration, we adopt the following specification of the model: 
 
C = α0 + α1 P + α2 P-1 + α3 (W1 + W2) + ε1 
I = β0 + β1 P + β2 P-1 + β3 K + ε2 
W1 = γ0 + γ1 X + γ2 X-1 + γ3 A + ε3 
X = C + I + G 
P = X – T – W1 
K = K-1 + I 
 
The variables used are: 
 
C Consumption in billions of 1934 dollars. 
I Investment. 
W1 Private wage bill. 
X Total private income before taxes, or X = Y + T - W2 where Y is after-tax 

income. 
P Private profits. 
K Capital stock in the beginning of year, or capital stock lagged one year. 
W2 Government wage bill. 
G Government non-wage spending. 
T Indirect taxes plus net exports. 
A Year – 1931 (a time trend). 
 
The first three equations are stochastic with unknown parameters α’s, β’s, and γ’s, 
respectively. The remaining three equations are accounting identities. Since the sum 
of private and public wage bills (W1+W2) appears in the first equation, it is more 
convenient to introduce one additional endogenous variable W, total wage bill, with 
the accounting identity: 
 
W = W1 + W2 
 
The alternative is to impose a linear parameter restriction of identical parameter 
value for W1 and W2 in the first equation. The resulting model consists of 7 
endogenous variables (C, I, W1, X, P, K, W) and 8 predetermined variables (X-1, P-1, 
K-1, W2, G, T, A, and Constant). Lesson 13.1 below implements the model as 
described. 
 

Lesson 13.1: Klein Model I 

In the program, from line 3 to line 15, the data file klein.txt is loaded and each 
variable used in the model is defined. Data matrix yvar of endogenous variables is 
defined in line 16. Line 17 defines the data matrix xvar of predetermined variables 
which includes three lagged endogenous variables and four exogenous variables. By 
default, a constant term is automatically included in each stochastic equation. Then, 
in the next two lines, are the two important control variables: _eq and _id. We 
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explain the construction of the first line of these two matrices, and leave you to 
puzzle out the rest. 
 
First, the _eq matrix (line 21) specifies which variables are to be included in which 
stochastic equations. Recall the first stochastic equation in the Klein Model I: 
 
C = α0 + α1 P + α2 P-1 + α3 (W1 + W2) + ε1 
 
Then the first line of the _eq matrix is: 
 
        @ C  I W1  X  P  K  W XL PL KL W2  A  G  T  1 @ 
_eq =   {-1  0  0  0  1  0  1  0  1  0  0  0  0  0, … 
 
Note that the column under the variable C contains a –1. This means that C is the 
left-hand side variable of the first stochastic equation. Since I and W1 are not in the 
first stochastic equation, we place 0’s in their respective columns. Looking again at 
this equation, we see that the right-hand side variables are: constant, P, P-1, and W 
(remember that W = W1+ W2). To let GPE know that P, P-1, and W are in the first 
equation, we place 1’s in their respective places in the _eq matrix. This does not 
mean that their coefficients are restricted to be equal to one, it merely tells GPE to 
include those particular variables in the equation. GPE includes the constant 
automatically. All other variables (namely X, K, X-1, K-1, W2, A, G, T) are not in the 
first equation. Putting 0’s in the respective places of these variables in the _eq 
matrix lets GPE know that it should not include these variables in the first stochastic 
equation of the system. 
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/* 
** Lesson 13.1: Klein’s Model I 
** Simultaneous Equation System of Klein’s Model I 
*/ 
use gpe2; 
output file = gpe\output13.1 reset; 
load data[23,10] = gpe\klein.txt; 
 
a=data[2:23,1]-1931;      @ time trend: 1931 = 0 @ 
c=data[2:23,2];           @ consumption @ 
p=data[2:23,3];           @ profit income @ 
w1=data[2:23,4];          @ private wage income @ 
i=data[2:23,5];           @ investment @ 
k1=data[2:23,6];          @ lagged capital stock @ 
x=data[2:23,7];           @ private total income @ 
w2=data[2:23,8];          @ public wage income @ 
g=data[2:23,9];           @ government spending @ 
t=data[2:23,10];          @ tax @ 
 
k=k1[2:22]|209.4;         @ capital stock @ 
w=w1+w2;                  @ total wage income @ 
 
yvar=c~i~w1~x~p~k~w; 
xvar=lag1(x~p~k)~w2~a~g~t; 
 
call reset; 
 
_names={"c","i","w1","x","p","k","w", 
        "x-1","p-1","k-1","w2","a","g","t"}; 
_vcov=1; 
        @ C  I W1  X  P  K  W XL PL KL W2  A  G  T  1 @ 
_eq =   {-1  0  0  0  1  0  1  0  1  0  0  0  0  0, 
          0 -1  0  0  1  0  0  0  1  1  0  0  0  0, 
          0  0 -1  1  0  0  0  1  0  0  0  1  0  0}; 
_id =   { 1  1  0 -1  0  0  0  0  0  0  0  0  1  0, 
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23 
 

24 
25 
26 
27 
28 
29 

 
30 
31 
32 
33 
34 
35 

          0  0 -1  1 -1  0  0  0  0  0  0  0  0 -1, 
          0  1  0  0  0 -1  0  0  0  1  0  0  0  0, 
          0  0  1  0  0  0 -1  0  0  0  1  0  0  0}; 
 
_begin=2; 
 
_method=0;        @ OLS estimation @ 
call estimate(yvar,xvar); 
_method=1;        @ LIML estimation @ 
call estimate(yvar,xvar); 
_method=2;        @ 2SLS estimation @ 
call estimate(yvar,xvar); 
 
_iter=100; 
_method=3;        @ 3SLS estimation (iterative) @ 
call estimate(yvar,xvar); 
_method=4;        @ FIML estimation @ 
call estimate(yvar,xvar); 
end; 
 
Similarly, line 22 specifies the identity equations of the model. Take the first identity 
equation as an example: 
 
X = C + I + G 
 
It involves the variables X, C, I, and G.  Therefore, in the first row of the _id 
matrix, only the relevant columns have non-zero values. Typically these entries are 1 
or -1, but they could be any other values as required. Variables not used in the 
definition of an identity have zeros in the corresponding places of the _id matrix. 
The first row of the _id matrix looks like this: 
 
        @ C  I W1  X  P  K  W XL PL KL W2  A  G  T  1 @ 
_id =   { 1  1  0 -1  0  0  0  0  0  0  0  0  1  0, … 
 

 

The easiest way to understand the construction of the system model described so far 
is to relate it with the matrix representation: 
 
YB + XΓ = U 
 
where Y corresponds to yvar and X corresponds to xvar in the program. The 
matrix _eq|_id (vertical concatenation of _eq and _id) is the specification 
matrix corresponding to the transpose of B|Γ (vertical concatenation of B and Γ). 
 
Because of the use of lag variables, the first observation of the data is lost and 
estimation must start from the second observation (see line 23). In lines 24 through 
34, five estimation methods are carried out. They are OLS, LIML, 2SLS, 3SLS, and 
FIML. It is of interest to see the covariance matrices of the equations, thus line 20 
sets the option _vcov=1 to show the variance-covariance matrix across equations 
and across parameters as well. Note that 3SLS and FIML are iterative methods, and 
it is wise to set an iteration limit for the solution to converge. Line 30, _iter=100, 
does the job. 
 
Running the program of Lesson 13.1 will generate about 20 pages of output. To save 
space, we will only present the results of 2SLS because of its popularity in the 
literature. You should run the program in its entirety and check the output file to see 
the complete results. In a summary table, the parameter estimates of these methods 
are listed and compared. You need to check your econometrics textbook for the 
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evaluation of the pros and cons of these estimation methods, in particular the 
differences between limited information and full information estimation methods.  
 
The regression results of a typical linear system model are divided into two parts: the 
results of the system of equations as a whole, and the results of each separate 
equation. Here we present only the first part of 2SLS for the estimated parameters, 
including the variance-covariance matrices across equations. For the rest of 
regression results by equation, we refer to the output file output13.1. 
 

Simultaneous Linear Equations Estimation 
---------------------------------------- 
Number of Endogenous Variables = 7            
Number of Predetermined Variables = 8            
Number of Stochastic Equations = 3            
Number of Observations = 21           
Estimation Range =  2          22         
 
Two Stages Least Squares Estimation 
 
System R-Square = 0.97711      
Log-Likelihood = -121.56134   
 
Equation   Variable      Estimated          Asymptotic 
Name       Name        Coefficient    Std Error      t-Ratio 
C          P              0.017302      0.11805      0.14657  
           W               0.81018     0.040250       20.129  
           P-1             0.21623      0.10727       2.0158  
           CONSTANT         16.555       1.3208       12.534  
I          P               0.15022      0.17323      0.86718  
           P-1             0.61594      0.16279       3.7838  
           K-1            -0.15779     0.036126      -4.3677  
           CONSTANT         20.278       7.5427       2.6885  
W1         X               0.43886     0.035632       12.316  
           X-1             0.14667     0.038836       3.7767  
           A               0.13040     0.029141       4.4746  
           CONSTANT         1.5003       1.1478       1.3071  
 
Asymptotic Variance-Covariance Matrix of Equations 
C                  1.0441  
I                 0.43785       1.3832  
W1               -0.38523      0.19261      0.47643  
                        C            I           W1  
 
 
Asymptotic Variance-Covariance Matrix of Coefficients 
P                0.013936  
W              -0.0015260    0.0016200  
P-1            -0.0095710  -0.00053085     0.011506  
CONSTANT        -0.015344    -0.032733   -0.0047520       1.7445  
P               0.0040375    0.0012781   -0.0046423    -0.045188     0.030008  
P-1            -0.0031110   -0.0011810    0.0051395     0.017372    -0.025772  
K-1           -0.00037500   0.00039811  -0.00013045   -0.0080439    0.0041898  
CONSTANT         0.057936    -0.082066     0.020400       2.1124     -0.92485  
X              -0.0018149  5.1138E-005    0.0011799    0.0092111   0.00059433  
X-1             0.0018888 -8.0164E-005   -0.0017884   0.00071044  -0.00058617  
A              0.00066034  -0.00052372   0.00047623    0.0027719   0.00047661  
CONSTANT      -0.00052229    0.0015772     0.032840     -0.61273   -0.0017044  
                        P            W          P-1     CONSTANT            P  
 
P-1              0.026499  
K-1            -0.0038717    0.0013051  
CONSTANT          0.77760     -0.26903       56.892  
X             -0.00033125 -9.0028E-005     0.013436    0.0012696  
X-1            0.00061121  9.9812E-005    -0.020120   -0.0011997    0.0015082  
A             -0.00066991   0.00017448    -0.032062  -0.00030915  5.1023E-005  
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CONSTANT        -0.015548  -0.00038089      0.36894   -0.0066842    -0.015405  
                      P-1          K-1     CONSTANT            X          X-1  
 
A              0.00084920  
CONSTANT         0.015608       1.3174  
                        A     CONSTANT  

 
The system estimation methods such as 3SLS and FIML may be iterated until the 
convergent solution is found. To control the iteration, as in the case of nonlinear 
iteration methods, the following input control variables may be applied: _iter, 
_tol, and _restart. We refer readers to Appendix A for more details of these 
control variables. For example, the statement _iter=100 of line 30 sets the 
number of iterations for 3SLS and FIML estimation. This is to ensure the near 
efficiency (theoretically speaking) of the parameter estimates, if they are found 
before exhausting the limit of iterations. It will be warned that the results may be 
unreliable when iterations exceed the limit. 
 

 

In Lesson 13.1, line 33, 
 
_method = 4; 
 
indicates that the instrumental variables method of FIML is used for estimation. It is 
equivalent to state the scalar 4 as a vector {4,0}. The alternatives are either setting 
_method to {4,1} for a linearized FIML or setting it to {4,2} for the Newton 
method. It is mind-boggling that, for the same problem, not all the FIML methods 
will converge to the same solution (provided there is convergence of a solution). It is 
now common wisdom that different methods may produce different results due to 
different algorithms in use for nonlinear model estimation. 
 
We now present the summary table of the parameter estimates obtained from five 
methods we use in estimating the Klein Model I. Numbers in parentheses are 
asymptotic standard errors. 
 

Eq. Variable OLS LIML 2SLS 3SLS FIML/IV 
C P 0.19293     

(0.082065) 
-0.22251      
(0.20175) 

0.017302      
(0.11805) 

0.16451     
(0.096198) 

-0.23190      
(0.23178) 

 W 0.79622     
(0.035939) 

0.82256     
(0.055378) 

0.81018     
(0.040250) 

0.76580     
(0.034760) 

0.80182     
(0.037137) 

 P-1 0.089885     
(0.081559) 

0.39603      
(0.17360) 

0.21623      
(0.10727) 

0.17656     
(0.090100) 

0.38545      
(0.18362) 

 Const. 16.237       
(1.1721) 

17.148       
(1.8403) 

16.555       
(1.3208) 

16.559       
(1.2244) 

18.340       
(1.8637) 

I P 0.47964     
(0.087377) 

0.075185      
(0.20218) 

0.15022      
(0.17323) 

-0.35651      
(0.26015) 

-0.80082      
(0.35761) 

 P-1 0.33304     
(0.090747) 

0.68039      
(0.18817) 

0.61594      
(0.16279) 

1.0113      
(0.24876) 

1.0516      
(0.30823) 

 K-1 -0.11179     
(0.024048) 

-0.16826     
(0.040798) 

-0.15779     
(0.036126) 

-0.26019     
(0.050868) 

-0.14811     
(0.033826) 

 Const. 10.126       
(4.9175) 

22.591       
(8.5458) 

20.278       
(7.5427) 

42.895       
(10.593) 

27.267       
(7.7850) 

W1 X 0.43948     
(0.029158) 

0.43394     
(0.067937) 

0.43886     
(0.035632) 

0.37478     
(0.031103) 

0.23412     
(0.045546) 

 X-1 0.14609     
(0.033671) 

0.15132     
(0.067054) 

0.14667     
(0.038836) 

0.19365     
(0.032402) 

0.28464     
(0.042736) 
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 A 0.13025     
(0.028711) 

0.13159     
(0.032386) 

0.13040     
(0.029141) 

0.16792     
(0.028929) 

0.23487     
(0.033488) 

 Const. 1.4970       
(1.1427) 

1.5262       
(1.1884) 

1.5003       
(1.1478) 

2.6247       
(1.1956) 

5.7963       
(1.7621) 

Log-Likelihood -141.92156 -122.81636 -121.56134 -86.14210 -83.32381 
 

Lesson 13.2: Klein Model I Reformulated 

In lesson13.1, we saw the use of the input variable _begin (line 23) to control the 
starting data observation for model estimation, and of _vcov (line 20) to show the 
estimated variance-covariance matrix of the parameters. There are many other input 
variables useful for controlling single equation model estimation that are applicable 
to system model estimation. These include, but are not limited to: _const, 
_dlags, and _restr. In addition, for presenting the estimation results, control 
variables such as _rstat and _rplot are useful. For details of using these input 
control variables, we refer the reader to Appendix A: GPE Control Variables. 
 
lesson13.2 below is a reformulation of Klein Model I. There are no new things 
added. Instead, it demonstrates the use of a few of the input control variables 
mentioned above in order to offer an alternative formulation of the model. This may 
be a more useful representation for the purpose of forecasting and simulation. In the 
following, we will list the program without running it. 
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/* 
** Lesson 13.2: Klein’s Model I Reformulated 
** Using _dlags and _restr 
*/ 
use gpe2; 
output file = gpe\output13.2 reset; 
load data[23,10] = gpe\klein.txt; 
 
a=data[2:23,1]-1931;      @ time trend: 1931 = 0 @ 
c=data[2:23,2];           @ consumption @ 
p=data[2:23,3];           @ profit income @ 
w1=data[2:23,4];          @ private wage income @ 
i=data[2:23,5];           @ investment @ 
k1=data[2:23,6];          @ lagged capital stock @ 
x=data[2:23,7];           @ private total income @ 
w2=data[2:23,8];          @ public wage income @ 
g=data[2:23,9];           @ government spending @ 
t=data[2:23,10];          @ tax @ 
 
k=k1[2:22]|209.4;         @ capital stock @ 
w=w1+w2;                  @ total wage income @ 
 
@ do not include lagged endog. var. in xvar and _names @ 
yvar=c~i~w1~x~p~k; 
xvar=w2~a~g~t; 
 
call reset; 
 
_names={"c","i","w1","x","p","k", 
        "w2","a","g","t"}; 
_vcov=1; 
 
@ do not include lagged endog. var. in _eq and _id @ 
@         C  I W1  X  P  K W2  A  G  T  1 @ 
_eq =   {-1  0  1  0  1  0  1  0  0  0, 
          0 -1  0  0  1  0  0  0  0  0, 
          0  0 -1  1  0  0  0  1  0  0}; 
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22 
 
 
 
 
 
 

23 
 
 
 
 
 
 
 
 
 

24 
 

25 
26 

 
27 
28 
29 

 
30 
31 
32 

_id =   { 1  1  0 -1  0  0  0  0  1  0, 
          0  0 -1  1 -1  0  0  0  0 -1, 
          0  1  0  0  0 -1  0  0  0  0}; 
 
@ using _dlags option to add the specified lagged endog. var. @ 
@ after the entire list of endog. var. in _eq and _id @ 
@         C  I W1  X  P  K  @ 
_dlags = {0  0  0  0  1  0, 
          0  0  0  0  1  1, 
          0  0  0  1  0  0, 
          0  0  0  0  0  0, 
          0  0  0  0  0  0, 
          0  0  0  0  0  1}; 
 
@ restriction: W1 and W2 share the same coef. in C eq. @ 
@ EQ:          C    |    I  |    W1  @ 
@ VAR:    W1 P P1 W2|P P1 K1|X X1  A|q  **incl. lagged endog. @ 
_restr = { 1 0  0 -1 0  0  0 0  0  0 0}; 
 
_method=2; @ 2SLS estimation @ 
call estimate(yvar,xvar); 
 
_iter=100; 
_method=3; @ 3SLS estimation (iterative) @ 
call estimate(yvar,xvar); 
 
_method=4; @ FIML estimation @ 
call estimate(yvar,xvar); 
end; 
 
We notice the use of _dlags in line 23 to specify the lagged endogenous variables 
in each equation. _dlags is a G×G matrix whose entries indicate the number of 
lags for each endogenous variable (column) in each equation (row). If there is no lag 
of a particular endogenous variable in a particular equation, the corresponding entry 
in _dlags is set to 0. The resulting lag variables are appended to the list of 
endogenous variables to form the complete system. Instead of hard-coding the 
relevant lags as in Lesson 13.1, the advantage of using _dlags to specify the 
model’s lag structure is to let GPE control the dynamic specification of the model. 
This feature will be useful for forecasting and simulation. 
 
Considering linear restrictions of the model’s parameters is a cumbersome task in a 
simultaneous equations system. Whenever possible, it is recommended to substitute 
out the restrictions (as we did in Lesson 13.1 by defining W = W1+W2). 
Nevertheless, we recall that linear restrictions are expressed in the form Rβ=q, where 
β is the parameter vector and _restr=[R|q] is the restriction matrix. The number of 
rows in _restr is the number of restrictions imposed. We first introduced the use 
of variable _restr in Lesson 3.4, to specify the linear restrictions in a single 
regression equation. For a system model, in the matrix R, restrictions are stacked 
horizontally in accordance with the order of equations. q is a column vector of the 
restricted values. Cross equation restrictions, if any, can be coded accordingly. In 
general, restrictions on the constant terms are not required. In cases with restrictions 
involving the constant term, we have to explicitly treat the constant term as one of 
the exogenous variables. The input control variable _const is used for this purpose. 
That is, coding the restrictions with the constant term (as one of the exogenous 
variables) requires setting _const=0 first. Then the restrictions involving the 
constant term can be specified correctly. Normally, a constant term will be added for 
each equation, unless otherwise specified. This variable can be a column vector with 
0 (no constant) or 1 (with constant) associated with each equation.  
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Leaving Klein Model I for the moment, let’s move on to consider a special class of 
simultaneous linear regression equations which has broad application. More 
examples involving the usage of the above mentioned input control variables will 
follow. 
 

Seemingly Unrelated Regression Equations System (SUR) 

Recall the matrix representation of a simultaneous linear equations system: YB + XΓ 
= U. Let B = -I (minus identity matrix) and E = -U. Then, the resulting system is a 
seemingly unrelated regression system of equations: 
 
Y = XΓ + E 
 
The system is seemingly unrelated because of the correlated error structure of the 
model due to the embedded parameter restrictions or data constraints. In other words, 
errors in one equation may be correlated with errors in other equations. 
 
The estimation of a cost-minimizing factor demand system, developed by Berndt and 
Wood (1975), is an application of seemingly unrelated regression. The system is 
derived from an indirect translog cost function of four factors: capital (K), labor (L), 
energy materials (E), and non-energy materials (M). Assuming constant returns to 
scale and price normalization, the real unit cost function is: 
 
ln(c) = β0 + ∑i=K,L,E βi ln(pi) + ½ ∑i=K,L,E ∑j=K,L,E βij ln(pi) ln(pj) 
 
where c = (C/PM)/Q is the normalized unit cost (C is total cost and Q is total output), 
and the normalized factor price is pi = Pi/PM for i = K, L, E. All the βs are unknown 
parameters of the cost function. Invoking the Shepard Lemma, we can derive the 
factor shares as Si = PiXi/C = ∂ln(c)/∂ln(pi), where Xi is the quantity demanded of the 
i-th factor (i = K, L, E). Therefore, adding the error terms, the system of factor 
demand equations for model estimation is written as: 
 
Si = βi + ∑j=K,L,E βij ln(pj) + εi 
i = K, L, E 
 
The symmetry condition, βij = βji, must be imposed as parameter restrictions. We 
note that the factor M is treated as a numeraire, and it is clear that  
SM = 1- ∑i=K,L,E Si 
 

Lesson 13.3: Berndt-Wood Model 

The price and quantity data of the Berndt-Wood Model come in two files: bwp.txt 
and bwq.txt. The time series from 1947 to 1971 covers the period before oil 
embargo. Quantity series are in billions of dollars, and the price series are the 1947-
based indexes. 
  

 
 
 
 
 

1 

/* 
** Lesson 13.3: Berndt-Wood Model 
** Seemingly Unrelated Regression Estimation 
** Factor Shares System with Symmetry Restrictions 
*/ 
use gpe2; 
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output file = gpe\output13.3 reset; 
 
n=26; 
load x[n,6] = gpe\bwq.txt; 
year=x[2:n,1]; 
qy=x[2:n,2]; 
qk=x[2:n,3]; 
ql=x[2:n,4]; 
qe=x[2:n,5]; 
qm=x[2:n,6]; 
load x[n,6] = gpe\bwp.txt; 
py=x[2:n,2]; 
pk=x[2:n,3]; 
pl=x[2:n,4]; 
pe=x[2:n,5]; 
pm=x[2:n,6]; 
 
tc=pk.*qk + pl.*ql + pe.*qe + pm.*qm; 
sk=(pk.*qk)./tc; 
sl=(pl.*ql)./tc; 
se=(pe.*qe)./tc; 
sm=(pm.*qm)./tc; 
pk=ln(pk./pm); 
pl=ln(pl./pm); 
pe=ln(pe./pm); 
 
yv=sk~sl~se; 
xv=pk~pl~pe; 
 
call reset; 
 
_names={"sk","sl","se","pk","pl","pe"}; 
 
         @ PK PL PE|PK PL PE|PK PL PE| q @ 
_restr = {  0  1  0 -1  0  0  0  0  0  0, 
            0  0  1  0  0  0 -1  0  0  0, 
            0  0  0  0  0  1  0 -1  0  0}; 
 
_method=0; 
call estimate(yv,xv); 
_method=1; 
call estimate(yv,xv); 
_method=2; 
call estimate(yv,xv); 
 
_iter=50; 
_method=3; 
call estimate(yv,xv); 
_method=4; 
call estimate(yv,xv); 
_method={4,1}; 
call estimate(yv,xv); 
_method={4,2}; 
call estimate(yv,xv); 
end; 
 
The program is rather straightforward. It loads the two data files and calculates the 
necessary variables such as factor shares and normalized prices needed for model 
estimation. We do not use either _eq or _id to define the equations system. First, 
there are no identity equations. All the equations in the model are stochastic. The 
model is in the form Y = XΓ + E where Y corresponds to yv and X corresponds to 
xv in the program, and all variables in the xv matrix appear in each equation. Recall 
that this is exactly the default structure of the _eq matrix.  
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For the Berndt-Wood example of three equations or endogenous variables (factor 
shares) and three exogenous variable (factor prices), the _eq matrix could be 
specified as follows: 
 
_eq = {-1  0  0  1  1  1, 
        0 –1  0  1  1  1, 
        0  0 –1  1  1  1}; 
 
The more challenging task is to specify the symmetry condition for the parameters. 
As shown in lesson13.2, linear restrictions are expressed in Rβ= q and _restr = 
[R|q]. Recall that the number of rows in _restr is the number of restrictions 
imposed. As explained before, the restrictions are stacked horizontally in matrix R, 
and q is a column vector of the restricted values. There are three symmetry 
restrictions for the Berndt-Wood Model across three equations: βKL = βLK, βKE = βEK, 
and βLE = βEL. Line 29 does exactly that by setting the correct entries in the _restr 
matrix. No restrictions on the constant terms are needed. 
 

 

The first row of _restr corresponds to the first restriction βKL = βLK. The entry for 
the variable PL of SK equation is set to 1, while the entry for the variable PK of SL 
equation is –1. Since there is a zero for the q’s column, it amounts to βKL - βLK = 0, 
or βKL = βLK. By the same token, the other two restrictions, βKE = βEK and βLE = βEL, 
are expressed in the second and third rows of _restr, respectively: 
 
         @ PK PL PE|PK PL PE|PK PL PE| q @ 
_restr = {  0  1  0 -1  0  0  0  0  0  0, 
            0  0  1  0  0  0 -1  0  0  0, 
            0  0  0  0  0  1  0 -1  0  0}; 
 
Although we estimate the model with all the available methods, there are only two 
sets of solutions. One is from the limited information method, and the other from full 
information. Of course, the single equation method is not appropriate for a seemingly 
unrelated equations system in which parameter restrictions bind the equations 
together. Cross equation covariance is of interest in the multiple equations system. 
Iterative 3SLS and FIML are the methods of choice for this particular class of model. 
In the literature, the estimated parameters of a production function are rich in terms 
of elasticity interpretation. Elasticities are simple to compute once the parameters 
have been estimated according to the formula: 
 

Elasticities of Substitution Price Elasticities 
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jiij
ij SS

SSβ +
=ζ  
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We leave the elasticity interpretation of the production function to the reader. Here is 
the summary output of 3SLS estimation of the Berndt-Wood Model (see 
output13.2 for the estimated results by equation): 
 

Simultaneous Linear Equations Estimation 
---------------------------------------- 
Number of Endogenous Variables = 3            
Number of Predetermined Variables = 4            
Number of Stochastic Equations = 3            
Number of Observations = 25           
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Estimation Range =  1          25         
 
Three Stages Least Squares Estimation 
Maximum Number of Iterations = 50           
Tolerance = 0.001        
 
Iteration =  1    Log Likelihood =  344.55       
Parameters =  0.030634    -0.00035814  -0.0097343    0.057091    -0.00035814   
0.075102    -0.0044159    0.25349     -0.0097343   -0.0044159    0.018921     
0.044330     
Iteration =  2    Log Likelihood =  344.57       
Parameters =  0.029791    -0.00038017  -0.010208     0.057029    -0.00038017   
0.075403    -0.0044256    0.25340     -0.010208    -0.0044256    0.018761     
0.044291     
 
System R-Square = 0.87645      
Log-Likelihood = 344.56744    
 
Equation   Variable      Estimated          Asymptotic 
Name       Name        Coefficient    Std Error      t-Ratio 
SK         PK             0.029791    0.0059443       5.0117  
           PL          -0.00038017    0.0038638    -0.098392  
           PE            -0.010208    0.0034011      -3.0014  
           CONSTANT       0.057029    0.0013574       42.013  
SL         PK          -0.00038017    0.0038638    -0.098392  
           PL             0.075403    0.0068108       11.071  
           PE           -0.0044256    0.0024401      -1.8137  
           CONSTANT        0.25340    0.0021210       119.47  
SE         PK            -0.010208    0.0034011      -3.0014  
           PL           -0.0044256    0.0024401      -1.8137  
           PE             0.018761    0.0053539       3.5042  
           CONSTANT       0.044291   0.00088399       50.103  
 
Asymptotic Variance-Covariance Matrix of Equations 
SK            9.9232E-006  
SL            8.0000E-006  2.8720E-005  
SE            4.6387E-006  4.7966E-006  3.1884E-006  
                       SK           SL           SE  

 

Lesson 13.4: Berndt-Wood Model Extended 

Extending from the basic system model of factor demand equations, the stochastic 
unit cost function: 
 
ln(c) = β0 + ∑i=K,L,E βi ln(pi) + ½ ∑i=K,L,E ∑j=K,L,E βij ln(pi) ln(pj) + εc 
 
may be added to the model of Lesson 13.3 to form a four-equation system. The idea 
is to explicitly estimate the cost function from which the factor share equations are 
derived. In particular, this model allows us to estimate the scale parameter β0 of the 
cost function. In addition, both first-order βi and second-order βij parameters are 
constrained to equal the corresponding parameters of the factor share equations.  
 
The parameter restrictions are certainly more involved in the extended model. Since 
the restrictions involve constant terms of each equation, we need to address the issue 
of regression intercept explicitly. In lesson13.4 below, we first define the constant 
vector one in line 32, and include it in the list of exogenous variables xv in line 34. 
The model is then estimated without the constant term or _const=0 (line 38). Line 
39 specifies 13 linear restrictions among 23 variables (including constant terms for 
each equation). Identifying and restricting the parameters of the unit cost function 
with those of derived factor share equations is accomplished in the first 10 rows of 
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_restr. The last 3 rows are the familiar three symmetry conditions across factor 
demand equations, as specified in Lesson 13.3. 
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/* 
** Lesson 13.4: Berndt-Wood Model Extended 
** Seemingly Unrelated Regression Estimation 
** Full System with Restrictions 
*/ 
use gpe2; 
output file = gpe\output13.4 reset; 
n=26; 
load x[n,6] = gpe\bwq.txt; 
year=x[2:n,1]; 
qy=x[2:n,2]; 
qk=x[2:n,3]; 
ql=x[2:n,4]; 
qe=x[2:n,5]; 
qm=x[2:n,6]; 
load x[n,6] = gpe\bwp.txt; 
py=x[2:n,2]; 
pk=x[2:n,3]; 
pl=x[2:n,4]; 
pe=x[2:n,5]; 
pm=x[2:n,6]; 
 
tc=pk.*qk + pl.*ql + pe.*qe + pm.*qm; 
sk=(pk.*qk)./tc; 
sl=(pl.*ql)./tc; 
se=(pe.*qe)./tc; 
sm=(pm.*qm)./tc; 
c=ln(tc./pm./qy); 
pk=ln(pk./pm); 
pl=ln(pl./pm); 
pe=ln(pe./pm); 
pkpk=0.5*pk.*pk; 
pkpl=pk.*pl; 
pkpe=pk.*pe; 
plpl=0.5*pl.*pl; 
plpe=pl.*pe; 
pepe=0.5*pe.*pe; 
one=ones(rows(c),1); 
 
yv=sk~sl~se~c; 
xv=pk~pl~pe~pkpk~pkpl~pkpe~plpl~plpe~pepe~one; 
 
call reset; 
_names={"sk","sl","se","c","pk","pl","pe", 
       "pkpk","pkpl","pkpe","plpl","plpe","pepe","one"}; 
_iter=50; 
_const=0; 
            @ |----yv----|------------xv--------------|  @ 
            @ SK SL SE  C PK PL PE KK KL KE LL LE EE  1  @ 
_eq[4,14] = { -1  0  0  0  1  1  1  0  0  0  0  0  0  1, 
               0 -1  0  0  1  1  1  0  0  0  0  0  0  1, 
               0  0 -1  0  1  1  1  0  0  0  0  0  0  1, 
               0  0  0 -1  1  1  1  1  1  1  1  1  1  1}; 
 
_restr[12,23] = 
                                   @ P P P K K K L L E @ 
@PK PL PE  1|PK PL PE  1|PK PL PE  1|K L E K L E L E E 1|q @ 
 {0  0  0 -1  0  0  0  0  0  0  0  0 1 0 0 0 0 0 0 0 0 0 0, 
  0  0  0  0  0  0  0 -1  0  0  0  0 0 1 0 0 0 0 0 0 0 0 0, 
  0  0  0  0  0  0  0  0  0  0  0 -1 0 0 1 0 0 0 0 0 0 0 0, 
 -1  0  0  0  0  0  0  0  0  0  0  0 0 0 0 1 0 0 0 0 0 0 0, 
  0  0  0  0  0 -1  0  0  0  0  0  0 0 0 0 0 0 0 1 0 0 0 0, 
  0  0  0  0  0  0  0  0  0  0 -1  0 0 0 0 0 0 0 0 0 1 0 0, 
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  0 -1  0  0  0  0  0  0  0  0  0  0 0 0 0 0 1 0 0 0 0 0 0, 
  0  0 -1  0  0  0  0  0  0  0  0  0 0 0 0 0 0 1 0 0 0 0 0, 
  0  0  0  0  0  0 -1  0  0  0  0  0 0 0 0 0 0 0 0 1 0 0 0, 
  0  1  0  0 -1  0  0  0  0  0  0  0 0 0 0 0 0 0 0 0 0 0 0, 
  0  0  1  0  0  0  0  0 -1  0  0  0 0 0 0 0 0 0 0 0 0 0 0, 
  0  0  0  0  0  0  1  0  0 -1  0  0 0 0 0 0 0 0 0 0 0 0 0}; 
 
_method=3; 
call estimate(yv,xv); 
end; 
 
The extended Berndt-Wood Model is estimated with 3SLS. To save space, we leave 
out the lengthy results of the model estimation. You should run the program and 
check out the results yourself. Instead, we compare the parameter estimates for two 
versions of the Berndt-Wood Model. We do not expect the parameter estimates to be 
the same, or close, for the two models, even though the same 3SLS method is used 
for model estimation. Numbers in the parentheses are standard errors.  
 

Eq. Variable Basic Model Extended Model 
SK ln(PK) 0.029791 (0.0059443) 0.040482 (0.0048854) 
 ln(PL) -0.00038017 (0.0038638) 0.029914 (0.0031598) 
 ln(PE) -0.010208 (0.0034011) -0.0043608 (0.0026280) 
 Constant 0.057029 (0.0013574) 0.049289 (0.0015800) 
SL ln(PK) -0.00038017 (0.0038638) 0.029914 (0.0031598) 
 ln(PL) 0.075403 (0.0068108) 0.096927 (0.0065949) 
 ln(PE) -0.0044256 (0.0024401) 0.014914 (0.0019469) 
 Constant 0.25340 (0.0021210) 0.24955 (0.0022281) 
SE ln(PK) -0.010208 (0.0034011) -0.0043608 (0.0026280) 
 ln(PL) -0.0044256 (0.0024401) 0.014914 (0.0019469) 
 ln(PE) 0.018761 (0.0053539) 0.019229 (0.0047603) 
 Constant 0.044291 (0.00088399) 0.039379 (0.0010016) 
C ln(PK)  0.049289 (0.0015800) 
 ln(PL)  0.24955 (0.0022281) 
 ln(PE)  0.039379 (0.0010016) 
 ln(PK)ln(PK)  0.040482 (0.0048854) 
 ½ ln(PK)ln(PL)  0.029914 (0.0031598) 
 ½ ln(PK)ln(PE)  -0.0043608 (0.0026280) 
 ln(PL)ln(PL)  0.096927 (0.0065949) 
 ½ ln(PL)ln(PE)  0.014914 (0.0019469) 
 ln(PE)ln(PE)  0.019229 (0.0047603) 
 Constant  -0.16689  (0.010360) 
Log-Likelihood 344.56744 390.87112 

 
Based on the Likelihood Ratio statistic: -2(344.56744-390.87112) = 92.60736, 
compared with the critical value 18.31 (Chi-square distribution of 10 degrees of 
freedom at 95% significance level), the gain in efficiency of the parameter estimates 
using the full system, including the unit cost function and share equations, is 
obvious.  
 

Nonlinear Maximum Likelihood Estimation 

The method of full information maximum likelihood is intrinsically a nonlinear 
optimization method. We can write a general representation of a system of nonlinear 
equations as follows: 
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F(Y,X,β) = U 
 
Assuming N data observations, Y is an N by G data matrix of G endogenous 
variables, X is an N by K data matrix of K predetermined variables (including 
exogenous and lagged variables), β is the parameter matrix, and U is an N by G error 
matrix of G stochastic equations. Let  
 
F = [F1, F2, ..., FG]' 
Y = [Y1, Y2, ..., YG] 
X = [X1, X2, ..., XK] 
U = [U1, U2, ..., UG]' 
β = [β1, β2, ..., βG]'  
 
Then, the model can be rewritten in G separate stochastic equations as: 
 
F1(Y,X,β1) = U1 
F2(Y,X,β2) = U2 
… 
FG(Y,X,βG) = UG 
 
Note that identity equations are substituted out in order to avoid the complication of 
using constrained optimization. Also, not all the columns of data matrices Y and X 
are used in each equation of the system. However, there must be at least one distinct 
endogenous variable appearing in each equation. The parameter vector βj effectively 
selects the variables included in the equation j. 
 

Log-Likelihood Function of Nonlinear Equations System 

We now briefly describe the methodology of nonlinear FIML. Chapter VI covered 
the general framework of nonlinear optimization, and must be reviewed. Many 
econometrics textbooks and journal articles discuss the implementation in more 
detail. 
 
Assume U is normally independently distributed with mean 0 (a G-element zero 
vector) and covariance Σ⊗I. That is, Cov(Uj,Uk) = σjk, where σjk is an element of the 
G by G cross-equation covariance matrix Σ. For each equation j, Uj is zero in mean 
and it has homogeneous variance σjj or σj

2. 
 
Constructing from the joint normal probability density of Ui and the Jacobian factor  
Ji = Ji(β) = det(∂Ui./∂Yi.) for each observation i, the likelihood function is  
 
(2π)-G/2 |det(Σ)|-1/2 exp(-½UiΣ-1Ui') |det(Ji)|  
 
It follows immediately that the log-likelihood function ll(β,Σ|Y,X) for a sample of N 
observations is  
 
-NG/2 ln(2π) -N/2 ln|det(Σ)| -½ Σi=1,2,...,N UiΣ-1Ui' + Σi=1,2,...,N ln|det(Ji)|  
 
The concentrated log-likelihood function is obtained by substituting the estimated 
covariance matrix Σ = U'U/N as follows:  
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ll*(β|Y,X) = -NG/2 (1+ln(2π)) -N/2 ln(det(U'U/N)) + Σi=1,2,...,N ln|det(Ji)|  
 
The FIML estimator of the parameters vector β = [β1, β2, ..., βG]' is obtained by 
maximizing the above concentrated log-likelihood function. 
 

Special Case: Linear Equations System 

A linear equations system is typically represented with the matrix form YB + XΓ = 
U, where the sparse parameter matrices B and Γ are used to identify the variables 
included in the respective equations (and the identity restrictions, if any). We adopt 
the notation β to indicate the combined elements of estimated parameters in B and Γ. 
To estimate the linear model YB + XΓ = U, the Jacobian term is the same for each 
data observation. That is, Ji = det(∂Ui/∂Yi) = det(B) for all i = 1,2,…,N. Thus the 
corresponding concentrated log-likelihood function is 
 
ll*(β|Y,X) = -NG/2 (1+ln(2π)) -N/2 ln(det(U'U/N)) + N ln|det(B)|  
 

Lesson 13.5: Klein Model I Revisited 

We are now ready to estimate the Klein Model I using nonlinear FIML. First, we 
need to eliminate the three identities by substituting them into the stochastic 
equations so that there are three endogenous variables corresponding to the three 
stochastic equations in the original presentation of the model. One representation of 
the model (see Goldfeld and Quandt, 1972, p.34) is  
 
P = a0 + a1 (W1+W2) + a2 (K-K-1+G+W2-T) + a3 P-1 + u1 
W1 = b0 + b1 (P+T) + b2 X-1 + b3 A + u2 
K = r0 + r1 P + r2 P-1 + r3 K-1 + u3  
 
Note that the original Klein model (Klein, 1950) used a variable G' = G + W2, and 
many parameter restrictions have to be built into the system for correct estimation. 
To represent the model in the form YB + XΓ = U, we have 
 
Y = [P W1 K] 
 
X = [P1 K1 X1 W2 (G+W2) T A 1] 
 

B = 






-1 b1 r1

 a1 -1 0
 a1 0 -1

  

 
Γ = 











a3 0 r2
-a2 0 r3
 0 b2 0
 a1 0 0
 a2 0 0
-a2 b1 0
 0 b3 0
 1  1  1

  

 
 
 
 
 

1 
2 
3 
 

/* 
** Lesson 13.5: Klein Model I Revisited 
** Nonlinear FIML Estimation, Goldfeld-Quandt (1972), p.34 
*/ 
use gpe2; 
output file=gpe\output13.5 reset; 
load data[23,10]=gpe\klein.txt; 
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a=data[2:23,1]-1931;    @ time trend: 1931 = 0 @ 
c=data[2:23,2];         @ consumption @ 
p=data[2:23,3];         @ profit income @ 
w1=data[2:23,4];        @ private wage income @ 
i=data[2:23,5];         @ investment @ 
k1=data[2:23,6];        @ lagged capital stock @ 
x=data[2:23,7];         @ private total income @ 
w2=data[2:23,8];        @ public wage income @ 
g=data[2:23,9];         @ government spending @ 
t=data[2:23,10];        @ tax @ 
 
k=k1[2:22]|209.4;       @ capital stock @ 
w=w1+w2;                @ total wage income @ 
 
@ use klein original data @ 
data=packr(p~w1~k~lag1(p~k~x)~w2~(g+w2)~t~a); 
data=data-meanc(data)'; @ change data format to: @ 
                        @ deviation-from-mean form @ 
call reset;    @ reset default control variables @ 
_nlopt=1; 
_method=6;    @ modified quadratic hill climbing @ 
_iter=100;    @ set 50 maximal iterations @ 
_step=1; 
_tol=1.0e-4;    @ set tolerance level @ 
_conv=2;   @ set convergence 
criteria @ 
_vcov=1; 
_b={0.2041,0.1025,0.22967,    @ initial parameter values @ 
    0.72465,0.23273,0.28341,  @ for nonlinear FIML @ 
    0.23116,0.541,0.854}; 
 
_names={"a1","a2","a3","b1","b2","b3","r1","r2","r3"};      
call estimate(&klein,data);  
end; 
 
proc klein(x,c);   @ klein model 1 @ 
    local n,u,beta,gama,a,b,r,ll; 
    a=c[1 2 3]; b=c[4 5 6]; r=c[7 8 9]; 
    n=rows(x);           @ number of observations @ 
    beta=-eye(3);   @ initialize beta @ 
    gama=zeros(7,3);    @ initialize gama @ 
    beta[2,1]=a[1];     @ assign values to beta and gama @ 
    beta[3,1]=a[2];  
    gama[1,1]=a[3]; 
    beta[1,2]=b[1]; 
    gama[3,2]=b[2]; 
    gama[7,2]=b[3]; 
    beta[1,3]=r[1]; 
    gama[1,3]=r[2]; 
    gama[2,3]=r[3]; 
    gama[4,1]=a[1];     @ parameter restrictions @ 
    gama[5,1]=a[2]; 
    gama[6,1]=-a[2]; 
    gama[2,1]=-a[2]; 
    gama[6,2]=b[1]; 
    u=x[.,1:3]*beta+x[.,4:10]*gama;  @ stochastic errors @ 
    ll=-0.5*n*3*(1+ln(2*pi))+        @ log-likelihood value @ 
       -0.5*n*ln(det(u'u/n))+n*ln(abs(det(beta))); 
    retp(ll);  
endp; 

 

 

Gamma is a built-in function in GAUSS to compute the gamma function, therefore 
we use gama for the variable name in Lesson 13.5 above. It is not a typo. 
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The first part of the data manipulation is the same as in the linear system of Lesson 
13.1. The relevant input variables controlling nonlinear optimization are discussed in 
chapters VI and VII. The objective log-likelihood function is defined in lines 30 
through 53. For nonlinear maximum likelihood estimation, we reduce the size of the 
problem by using the deviation from the mean of the data series so that the constant 
terms of each equation are eliminated (see line 17). The following is the result of 
running lesson13.5: 
 

Non-Linear Optimization: Maximization Problem 
--------------------------------------------- 
Assuming Maximum Likelihood Function 
Number of Observations = 21           
Number of Parameters = 9            
 
Maximum Number of Iterations = 100          
Step Size Search Method = 1            
Convergence Criterion = 0            
Tolerance = 0.0001       
 
Initial Result: 
Function Value =      -116.37  
Parameters =      0.20410      0.10250      0.22967      0.72465      0.23273      
0.28341      0.23116      0.54100      0.85400  
 
Using Modified Quadratic Hill-Climbing Algorithm 
Iteration =  1   Step Size =  1.0000  Value =      -111.52  
Parameters =     0.076508      0.36162      0.45511      0.68255      0.31692      
0.22009     0.095885      0.41955      0.96932  
… 
Iteration =  19  Step Size =  1.0000  Value =      -83.324  
Parameters =     -0.16079      0.81143      0.31295      0.30568      0.37170      
0.30662     -0.80101       1.0519      0.85190  
 
Final Result: 
Iterations = 19          Evaluations = 1369         
Function Value =      -83.324  
Parameters =     -0.16079      0.81143      0.31295      0.30568      0.37170      
0.30662     -0.80101       1.0519      0.85190  
 
                            Asymptotic   Asymptotic 
                Parameter   Std. Error      t-Ratio 
A1               -0.16079     0.098663      -1.6297  
A2                0.81143      0.38368       2.1149  
A3                0.31295      0.11847       2.6417  
B1                0.30568      0.16223       1.8843  
B2                0.37170     0.049169       7.5596  
B3                0.30662     0.047628       6.4378  
R1               -0.80101      0.84311     -0.95007  
R2                 1.0519      0.42533       2.4730  
R3                0.85190     0.046840       18.187  
 
Asymptotic Variance-Covariance Matrix 
A1              0.0097344  
A2              -0.035851      0.14721  
A3              0.0064035    -0.031598     0.014034  
B1              -0.011472     0.041600   -0.0049678     0.026317  
B2              0.0017000   -0.0066728    0.0015841   -0.0038648    0.0024176  
B3             0.00042010   -0.0040841   0.00081371   -0.0036929  -0.00025486  
R1              -0.071452      0.30359    -0.066130     0.084909   -0.0091796  
R2               0.027921     -0.12886     0.043653    -0.020684    0.0067868  
R3              0.0029682    -0.010417    0.0014621   -0.0059803    0.0014133  
                       A1           A2           A3           B1           B2  
 
B3              0.0022684  
R1             -0.0095885      0.71083  
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R2            -0.00072454     -0.30500      0.18091  
R3             0.00081869    -0.015241    0.0034790    0.0021940  
                       B3           R1           R2           R3  

 
As a mathematical exercise, you may want to verify the relationships of parameters 
between the two representations of Klein Model I we discussed in Lesson 13.1 and 
13.5: 
 
a0 = α0/(1-α1) b0 = γ0/(1-γ1) r0 = β0 
a1 = (α2-1)/(1-α1) b1 = γ1/(1-γ1) r1 = β1 
a2 = 1/(1-α1) b2 = γ2/(1-γ1) r2 = β2 
a3 = α3/(1-α1) b3 = γ3/(1-γ1) r3 = β3+1 
 
The advantage of nonlinear FIML is to allow for nonlinear equations in a 
simultaneous system, but the computation becomes more involved in defining the 
nonlinear function for numerical optimization. Because the Klein Model includes 
only the linear equations, it is no surprise that the parameter estimates obtained from 
the nonlinear FIML method and from a variant of linear instrumental variable FIML 
method (using the option _method=4, as shown in the table at the end of Lesson 
13.1) are very close, if not numerically identical.  
 

 Nonlinear FIML FIML/IV 
α1 -0.2324 -0.23190 
α2 0.80184 0.80182 
α3 0.38568 0.38545 
α0  18.340 
β1 -0.801 -0.80082 
β2 1.0518 1.0516 
β3 -0.1481 -0.14811 
β0  27.267 
γ1 0.23412 0.23412 
γ2 0.28468 0.28464 
γ3 0.23483 0.23487 
γ0  5.7963 
Log-Likelihood -83.324 -83.32381 

 
 



 

 

XIV 
Unit Roots and Cointegration 

 
So far the econometric models we have constructed are mostly based on economic 
theory or empirical evidence. In many situations involving time series data, we will 
have to rely on information drawn from the data generating process (DGP) . An 
example of this would be a time series with an autocorrelated error structure. 
 
Considering a time series as a DGP, the data may possess a trend, cycle, or 
seasonality (or any combination). By removing these deterministic patterns, we 
would hope that the remaining DGP is stationary. However, most nonstationary data 
series are stochastic. “Spurious” regressions with a high R-square but a near-two 
Durbin-Watson statistic, often found in time series literature, are mainly due to the 
use of stochastic nonstationary data series. 
 
Given a time series DGP, testing for a random walk is a test of stationarity. It is also 
called a unit roots test. Testing for the problem of unit roots for each time series is 
more of a process than it is a step. This chapter will chart the procedure to test for 
unit roots. If a problem is identified, the original data are differenced and tested 
again. In this way, we are able to identify the order of the integrated process for each 
data series. Once all data series have completed this process, they are regressed 
together and tested for a cointegrating relationship.  
 
Since the tests we use, Dickey-Fuller (DF) and augmented Dickey-Fuller (ADF), 
require the model’s error structure to be individually independent and 
homogeneously distributed, anomalous serial correlation in time series must be 
treated before these tests can be applied. Therefore, serial correlation is tested and 
corrected as the pretest step of each unit root test. Instead of directly correcting the 
error structure through the integration process, we will modify the dynamics of the 
data generating process with lagged dependent variables. 
 
We follow the “top down” approach to carry out both the DF and ADF tests for unit 
roots, by testing for the most complicated problems first and then simplifying our 
model if problems are absent. We will formulate and test a hierarchy of three 
models. First, we estimate the Random Walk Model with trend and drift, or the 
Model III, as follows:  
 
∆Xt = α + β t + (ρ-1) Xt-1 + Σ

i=1,2,…
ρi ∆Xt-i + εt 

 
where the dependent variable ∆Xt = Xt-Xt-1 is the first difference of the data series 
Xt. Using augmented lags of dependent variable Σi=1,2,… ρi ∆Xt-i ensures a white noise 
εt for the unit root test. The optimal lag may be selected based on criteria such as AIC 
(Akaike Information Criterion) and BIC (Schwartz Baysian Information Criterion). 
Testing the hypothesis that ρ = 1 (so that the coefficient of Xt-1 is equal to zero) is the 
focus of the unit root tests. 
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If the unit root is not found in the Model III, we continue the process by estimating 
the Random Walk Model with Drift, or the Model II, as follows: 
 
∆Xt = α + (ρ-1) Xt-1 + Σ

i=1,2,…
ρi ∆Xt-i + εt 

 
And finally, if the unit root is not found in the Model II, we estimate the Random 
Walk Model, or Model I: 
 
∆Xt = (ρ-1) Xt-1 + Σ

i=1,2,…
ρi ∆Xt-i + εt 

 
Testing for unit roots is the first step of time series model building. For a univariate 
case, several versions of the DF and ADF tests are available. For multivariate time 
series, after unit root tests for each variable, a cointegration test should be carried out 
to ensure that the multiple regression model is not spurious. For testing cointegration 
of a set of variables, the necessary causal relationship among variables may not be 
available for the single equation ADF-type testing due to Engle and Granger (1987). 
Johansen’s vector autoregression (VAR) representation of the model and the relevant 
Likelihood Ratio tests are suggested for the multivariate case. 
 

Testing for Unit Roots  

The process of the augmented Dickey-Fuller (ADF) test starts from estimating 
Model III in which autocorrelation has been removed from the data series. The ADF 
test for unit roots then steps through three models, testing each model’s estimated 
coefficients to see if they are statistically significantly different from zero. Computed 
t- and F-statistics are compared against critical values from various Dickey-Fuller τ 
and φ distributions. Critical values of ADF τ and φ distributions for all three models 
are given in Appendix C, Statistical Table C-1 and C-2, respectively. We note that 
unit root tests have low power to reject the null hypothesis. Hence, if the null 
hypothesis of a unit root is rejected, there is no need to proceed further. 
 

Estimate and Test Model III 

∆Xt = α + β t + (ρ-1) Xt-1 + Σ
i=1,2,…

ρi ∆Xt-i + εt 

 
1. Test ρ = 1, using the ADF τρ distribution (t-statistic) for Model III. If the null 
hypothesis is rejected, we conclude that there are no unit roots in X. Otherwise, 
continue on to Step 2. 
 
2. Test β = 0 given ρ = 1, using the ADF τβ distribution (t-statistic) or the ADF φ3 
distribution (F-statistic) for Model III. If the null hypothesis is rejected, we need to 
test ρ = 1 again using the normal distribution as follows (see Step 3). Otherwise, go 
to Estimate and Test Model II. 
 
3. Test ρ = 1 using the normal distribution. If the null hypothesis is rejected, we 
conclude that there are no unit roots. Otherwise, we conclude that the data series is 
nonstationary, and restart the test process using the differenced data series. 
 

Estimate and Test Model II 

∆Xt = α + (ρ-1) Xt-1 + Σ
i=1,2,…

ρi ∆Xt-i + εt 
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1. Test ρ = 1, using the ADF τρ distribution (t-statistic) for Model II. If the null 
hypothesis is rejected, we conclude that there are no unit roots in X. Otherwise, 
continue on to Step 2. 
 
2. Test α = 0 given ρ = 1, using the ADF τα distribution (t-statistic) or the ADF φ1 
distribution (F-statistic) for Model II. If the null hypothesis is rejected, we need to 
test ρ = 1 again using the normal distribution as follows (see Step 3). Otherwise, go 
to Estimate and Test Model I. 
 
3. Test ρ = 1 using normal distribution. If the null hypothesis is rejected, we 
conclude that there are no unit roots. Otherwise, we conclude that data series is 
nonstationary, and restart the test process using the differenced data series. 
 

Estimate and Test Model I 

∆Xt = (ρ-1) Xt-1 + Σ
i=1,2,…

ρi ∆Xt-i + εt 

 
Test ρ = 1, using the ADF τρ distribution (t-statistic) for Model I. If the null 
hypothesis is rejected, we conclude that there are no unit roots in X. Otherwise, we 
conclude that the data series is nonstationary, and restart the test process using the 
differenced data series. 
 
Many macroeconomic time series have been scrutinized for unit roots and 
cointegration. In this chapter, two economic time series, Y (real personal disposable 
income) and C (real personal consumption expenditure), from usyc87.txt are used to 
illustrate the process of ADF tests for unit roots and cointegration. The same data 
series were used in the example of U.S. income-consumption relationship studied in 
Chapter XI. 
 

Lesson 14.1: Augmented Dickey-Fuller Test for Unit Roots  

Based on time series of personal consumption and personal disposable income from 
usyc87.txt, this lesson performs the ADF unit root test procedure. The program is 
written to allow straightforward testing of different variables or different 
transformations of the same variable. 
 

Personal Consumption Expenditure 

This program is designed to easily allow the testing of more than one data series. 
Starting at line 7, the variable X is tested for a unit root. To change data series to be 
tested, just assign a different data series in line 6 to the variable X. The level (not 
differenced) series of C, personal consumption, is examined first.  
 

 
 
 

1 
2 
3 
4 
5 
 
 

/* 
** Lesson 14.1: Unit Root Tests 
*/ 
use gpe2; 
output file = gpe\output14.1 reset; 
load z[67,3] = gpe\usyc87.txt; 
y = z[2:67,2]; 
c = z[2:67,3]; 
 
/* select one variable to work on */ 
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6 
 
 

7 
8 
9 

10 
11 
12 

 
13 
14 
15 

 
16 

 
17 
18 
19 

 
 

20 
 

21 
 

22 
23 

x = c; 
 
/* difference the data if needed */ 
diff = 0; 
j = 1; 
do until j > diff; 
 x = x-lagn(x,1); 
 j = j+1; 
endo; 
 
x1 = packr(lagn(x,1)); @ sample truncated @ 
dx = packr(x-lagn(x,1)); 
trend = seqa(1,1,rows(dx)); 
 
call reset; 
 
_names={"dx","trend","x1"}; 
_rstat = 1; 
_dlags = 3; @ augmented terms if needed @ 
 
/* Model III */ 
call estimate(dx,trend~x1); 
 
_restr = {0 0 0 1 0 0, 
          0 0 0 0 1 0};  @ DF joint test @ 
call estimate(dx,trend~x1); 
end; 
 
Let’s walk through the program. Lines 7 through 12 introduce a Do Loop to simplify 
taking the difference of our data, if needed. Line 7 specifies the number of 
differences diff on the data series. Then, from line 8 to 12, a Do Loop is used to 
transform the necessary differences for the data series when the variable diff is 
greater than 0. In line 7 we begin with the original data series in level: 
 
diff = 0; 
 
The next two lines (lines 13 and 14) work on the selected variable to compute the 
lagged and the differenced values necessary for the test specification. A GAUSS 
command packr is used to eliminate the initial observations of data which are lost 
due to the lag operation. Next, a trend variable is generated (line 15) and included for 
the estimation of Model III. 
 
Line 19 is the result of a pretest of the model to ensure a classical or white noise 
error structure, which is necessary for the ADF test of unit roots. Through a process 
of trial and error, we found that for the consumption series C, the addition of three 
lags of the dependent variable to the test equation is enough to remove 
autocorrelation and maintain the classical assumption for the model error.  
 
Model III is now estimated and tested for unit roots (line 20). Keep in mind that most 
computed t-statistics will fall in the left tail of the ADF τ distribution and will be 
negative. The second restricted least squares estimation (lines 21 to 22) is there to 
carry out the ADF φ-test (based on the F-statistic) for the joint hypotheses of unit 
root and no trend, provided that the first regression equation reveals a unit root. We 
note that the definition of the restriction matrix of _restr must take into account 
the three lags of dependent variables included in front of the explanatory 
independent variables. 
 
The following is the result of the estimated Model III in which three lags of the 
dependent variable are augmented for analyzing personal consumption. 
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Least Squares Estimation 
------------------------ 
Dependent Variable = DX       
Estimation Range =  4          65         
Number of Observations = 62           
Mean of Dependent Variable = 50.353       
Standard Error of Dependent Variable = 37.125       
 
NOTE: Estimation Range Has Been Adjusted. 
Lagged Dependent Variables Used = 3    
 
R-Square = 0.51348      R-Square Adjusted = 0.47004      
Standard Error of the Estimate = 27.026       
Log-Likelihood Function Value = -289.22      
Log Ammemiya Prediction Criterion (APC) =  6.6860       
Log Akaike Information Criterion (AIC) =  6.6854       
Log Schwarz Bayesian Information Criterion (BIC) =  6.8912       
 
Sum of Squares         SS           DF          MSS            F       Prob>F 
Explained          43171.            5       8634.1       11.821  7.9646E-008 
Residual           40904.           56       730.42  
Total              84074.           61       1378.3  
 
Variable        Estimated     Standard      t-Ratio         Prob      Partial 
Name          Coefficient        Error        56 DF         >|t|   Regression 
DX1               0.32414      0.12529       2.5872     0.012301      0.10676  
DX2              -0.16381      0.13150      -1.2457      0.21807     0.026963  
DX3              -0.25278      0.12477      -2.0260     0.047541     0.068291  
TREND              2.3924      0.98917       2.4186     0.018859     0.094575  
X1              -0.020042     0.018215      -1.1003      0.27590     0.021162  
CONSTANT           2.7427       7.8871      0.34775      0.72933    0.0021548  
 
Squared Correlation of Observed and Predicted = 0.51348      
Sum of Squared Residuals = 40904.       
Sum of Absolute Residuals = 1219.9       
Sum of Residuals = -6.69331E-012 
First-Order Rho = -0.031240    
Durbin-Watson Test Statistic = 2.0589       
Durbin-H Statistic = -1.4164      

 
Because of the use of lagged dependent variables, the sample range is adjusted. As a 
pretest, we see that the errors for the test model are not autocorrelated, therefore 
various ADF tests for unit roots are applicable. Starting at Step 1, with the estimated 
t-statistic of –1.10 for the coefficient of the lagged variable X1 in the test equation 
(vs. the τρ critical value of –3.5 at 5% level of significance, see Table C-1), the unit 
root problem is clearly shown. Given the unit root, we continue on to Step 2, testing 
the zero-value coefficient of the trend variable. Based on the ADF t-statistic for the 
variable TREND, the hypothesis of no trend is barely rejected at a 10% level of 
significance. Notice that, from Table C-1, the τβ critical value is 2.81 and 2.38 at 5% 
and 10% levels of significance, respectively. However, the joint hypotheses of unit 
root and no trend may be better served with the ADF φ-test based on the F-statistic.  
 
The following result of hypothesis testing is due to the restrictions specified in line 
21: 
 

WARNING: Linear Restrictions Imposed. 
R-Square, AOV, SE, and t may not be reliable! 
Wald F-Test for Linear Restrictions 
F(   2,  56)       Prob>F 

10.836 0.00010513 
Asymptotic Hypothesis Testing for Linear Restrictions 
                                Chi-Sq     DF  Prob>Chi-Sq 
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Wald Chi-Square Test            21.673      2  1.9669e-005  
Lagrange Multiplier Test        17.300      2   0.00017515  
Likelihood Ratio Test           20.284      2  3.9398e-005  
 

With the Wald F-test statistic of 10.836, compared with the critical value of the ADF 
φ3 distribution for Model III (6.73 at 5% significance, see Table C-2), the conclusion 
of unit root and no trend leads to the confirmation of unit root with a traditional 
normal test. Unit root for the variable C is confirmed, so the level series of C is 
nonstationary.  
 
Since the level data series is nonstationary, it must be differenced then estimated and 
tested again for unit roots. Based on the above program, it is easy to make changes to 
carry out the unit root test for the first differenced consumption series. First, line 7 
should read as: 
 
diff = 1; 
 
The Do Loop of lines 8 through 12 translates the original level series to the first 
difference series. From this point on, the program will evaluate the data series in the 
first difference. We also found that there is no need to augment the model with 
lagged dependent variables, since the model error is already free of correlation. 
Therefore, line 19 is changed to: 
 
_dlags = 0; 
 
Model III is estimated and tested for unit roots for the first difference of the 
consumption series. The ADF test for the joint hypotheses of unit root and no trend 
in lines 21 to 22 must be modified or deleted. A simple way to remove these lines 
from being “seen” by GAUSS is to comment them out in between “/*” and “*/”. 
Here is the output of the modified program running the unit root test on the first 
difference of the consumption series: 
 

Least Squares Estimation 
------------------------ 
Dependent Variable = DX       
Estimation Range =  1          64         
Number of Observations = 64           
Mean of Dependent Variable = 2.4109       
Standard Error of Dependent Variable = 34.561       
 
R-Square = 0.33553      R-Square Adjusted = 0.31374      
Standard Error of the Estimate = 28.630       
Log-Likelihood Function Value = -303.96      
Log Ammemiya Prediction Criterion (APC) =  6.7547       
Log Akaike Information Criterion (AIC) =  6.7547       
Log Schwarz Bayesian Information Criterion (BIC) =  6.8559       
 
Sum of Squares         SS           DF          MSS            F       Prob>F 
Explained          25248.            2       12624.       15.401  3.8510E-006 
Residual           50001.           61       819.69  
Total              75250.           63       1194.4  
 
Variable        Estimated     Standard      t-Ratio         Prob      Partial 
Name          Coefficient        Error        61 DF         >|t|   Regression 
TREND             0.91047      0.25521       3.5675   0.00070864      0.17262  
X1               -0.66639      0.12008      -5.5496  6.5763E-007      0.33550  
CONSTANT           3.0604       7.2425      0.42256      0.67410    0.0029186  
 
Squared Correlation of Observed and Predicted = 0.33553      
Sum of Squared Residuals = 50001.       
Sum of Absolute Residuals = 1373.6       
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Sum of Residuals = 3.12639E-013 
First-Order Rho = 0.069752     
Durbin-Watson Test Statistic = 1.8495       

 
Based on the ADF t-statistic –5.55 for the lagged variable X1, the conclusion of no 
unit root in the first difference data is immediate and obvious. Therefore, we 
conclude that the consumption series is an integrated series of order one. We know 
this because taking the first difference makes the data stationary.  
 

Personal Disposable Income 

We continue on to test the second data series, personal disposable income Y, for unit 
root. The original program for analyzing consumption level data is used, except the 
variable of interest now selected in line 6 is Y.  
 
x = y; 
 
Also, from the pretest for the classical error structure, it appears that augmenting the 
first lag of the dependent variable is necessary for “whitening” the error term. 
Therefore, in line 19: 
 
_dlags = 1; 
 
Accordingly, for computing the F-statistic from the second restricted least squares 
estimation, we also modify the restriction matrix in line 21: 
 
_restr = {0 1 0 0, 
          0 0 1 0}; 
 
Here is the estimation result of Model III for personal income level series: 
 

Least Squares Estimation 
------------------------ 
Dependent Variable = DX       
Estimation Range =  2          65         
Number of Observations = 64           
Mean of Dependent Variable = 51.456       
Standard Error of Dependent Variable = 46.141       
 
NOTE: Estimation Range Has Been Adjusted. 
Lagged Dependent Variables Used = 1    
 
R-Square = 0.33360      R-Square Adjusted = 0.30028      
Standard Error of the Estimate = 38.596       
Log-Likelihood Function Value = -322.55      
Log Ammemiya Prediction Criterion (APC) =  7.3669       
Log Akaike Information Criterion (AIC) =  7.3668       
Log Schwarz Bayesian Information Criterion (BIC) =  7.5017       
 
Sum of Squares         SS           DF          MSS            F       Prob>F 
Explained          44744.            3       14915.       10.012  1.9204E-005 
Residual           89380.           60       1489.7  
Total         1.3412E+005           63       2128.9  
 
Variable        Estimated     Standard      t-Ratio         Prob      Partial 
Name          Coefficient        Error        60 DF         >|t|   Regression 
DX1               0.13228      0.12474       1.0605      0.29318     0.018399  
TREND              3.2200       1.2776       2.5203     0.014404     0.095731  
X1              -0.038953     0.022835      -1.7059     0.093203     0.046257  
CONSTANT           3.8784       10.136      0.38263      0.70335    0.0024341  
 
Squared Correlation of Observed and Predicted = 0.33360      
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Sum of Squared Residuals = 89380.       
Sum of Absolute Residuals = 1827.4       
Sum of Residuals = 1.97531E-012 
First-Order Rho = -0.010452    
Durbin-Watson Test Statistic = 1.9860       
Durbin-H Statistic = 0.86308      

 
We see that by comparing the t-statistic of X1 (-1.71) with the corresponding ADF 
critical values (-3.50 at 5% significance, see Table C-1), there is a unit root. Based 
on the joint test for unit root and no trend hypotheses, a trend is also presented. This 
is the purpose of the second regression estimation. The following Wald F-test result 
should be checked with the critical values of the ADF φ3 distribution for Model III 
(6.73 at 5% significance, see Table C-2): 
 

WARNING: Linear Restrictions Imposed. 
R-Square, AOV, SE, and t may not be reliable! 
Wald F-Test for Linear Restrictions 
F(   2,  60)       Prob>F 
      7.8478   0.00093843 

 
The level series of personal disposable income is clearly nonstationary. By 
modifying the program again in line 7,  
 
diff = 1; 
 

and deleting the last part of the ADF joint F-test, the first difference of the income 
series augmented with one lag of dependent variable is reexamined as follows: 
 

Least Squares Estimation 
------------------------ 
Dependent Variable = DX       
Estimation Range =  2          64         
Number of Observations = 63           
Mean of Dependent Variable = 2.4413       
Standard Error of Dependent Variable = 51.142       
 
NOTE: Estimation Range Has Been Adjusted. 
Lagged Dependent Variables Used = 1    
 
R-Square = 0.42924      R-Square Adjusted = 0.40022      
Standard Error of the Estimate = 39.608       
Log-Likelihood Function Value = -319.11      
Log Ammemiya Prediction Criterion (APC) =  7.4196       
Log Akaike Information Criterion (AIC) =  7.4194       
Log Schwarz Bayesian Information Criterion (BIC) =  7.5555       
 
Sum of Squares         SS           DF          MSS            F       Prob>F 
Explained          69607.            3       23202.       14.790  2.7151E-007 
Residual           92557.           59       1568.8  
Total         1.6216E+005           62       2615.5Variable        Estimated     
Standard      t-Ratio         Prob      Partial 
Name          Coefficient        Error        59 DF         >|t|   Regression 
DX1             -0.073578      0.12989     -0.56648      0.57322    0.0054095  
TREND             0.99944      0.35282       2.8327    0.0063057      0.11972  
X1               -0.79417      0.16721      -4.7496  1.3442E-005      0.27660  
CONSTANT           9.4345       10.400      0.90713      0.36803     0.013755  
 
Squared Correlation of Observed and Predicted = 0.42924      
Sum of Squared Residuals = 92557.       
Sum of Absolute Residuals = 1849.6       
Sum of Residuals = 4.26326E-014 
First-Order Rho = -0.0057744   
Durbin-Watson Test Statistic = 1.9309       
Durbin-H Statistic = NA 
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Based on the ADF t-test statistic, -4.75, for the lagged variable X1, the first 
differenced income series is stationary and free of unit roots. As with consumption, 
personal income is an integrated series of order one. 

 

 

The above example of testing for unit roots in the personal consumption and income 
data series is carried out based on Model III. We did not go down the hierarchy 
further to test Model II or Model I since most of the test results are clear-cut at the 
level of Model III. For other macroeconomic time series, you may be required to test 
Model II or Model I as well. 
 
Below is the summarized result of the unit root tests: 
 
Series N Lags ρ-1 (τρ) β (τβ) φ3 

C 62 3 -0.02 (-1.10)     2.39 (2.42)   10.84* 
Y 64 1 -0.04 (-1.71)   3.22 (2.52)*   7.85* 
∆C 64 0 -0.67 (-5.55)*   
∆Y 63 1 -0.79 (-4.75)*   
 
All tests are based on Model III. The following annual data series from 1929 to 1994 
are tested (in rows): C = Personal consumption expenditure in billions of 1987 
dollars; Y = Personal disposable income in billions of 1987 dollars; ∆C = Annual 
change in personal consumption expenditure; ∆Y = Annual change in personal 
disposable income. Also the following notations are used (in columns): N = number 
of observations; Lags = augmented lag terms in the test equation; ρ-1 = estimated 
coefficient of the lag variable; β = estimated coefficient of the trend variable; τρ = t-
statistic hypothesis of unit root; τβ = t-statistic hypothesis of no trend, given unit 
root; and φ3 = F-statistic hypotheses of unit root and no trend.  The asterisk (*) 
indicates rejection of the null hypothesis at a 5% statistical significance level based 
on ADF distributions (see Table C-1 for critical values of t-statistics and Table C-2 
for critical values of F-statistics). 
 
As many previous studies have suggested, income and consumption data are 
nonstationary in level, but their first difference or change series are stationary. In 
summary, both income and consumption are of the first-order integrated series.  
 

Testing for Cointegrating Regression 

The next interesting question is, statistically, can we find a meaningful nonspurious 
income-consumption relationship as the classical Permanent Income Hypothesis 
claims? To answer this question, we need to look at the problem in a more general 
framework of multivariate regression.  
 
Suppose there are M variables, Z1, … , ZM. Let Yt = Zt1 and Xt = [Zt2, ..., ZtM]. 
Consider the following regression equation: 
 
Yt = α + Xtβ + εt 
 
In general, if Yt, Xt ~ I(1), then εt ~ I(1). But, if εt can be shown to be I(0), then the 
set of variables [Yt, Xt] is said to be cointegrated, and the vector [1 -β]' (or any 
multiple of it) is called a cointegrating vector. Depending on the number of variables 
M, there are up to M-1 linearly independent cointegrating vectors. The number of 
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linearly independent cointegrating vectors that exists in [Yt, Xt] is called the 
cointegrating rank. 
 
To test for the cointegration of the set of variables [Yt, Xt], two approaches are used. 
If the causality of Y on X is clear, then the Engle-Granger or ADF test based on the 
regression residuals may be applied. The alternative is to work with the VAR system 
of all variables under consideration. This is the Johansen approach to the 
cointegration test, to be discussed later. 
 

Cointegration Test: The Engle-Granger Approach 

Based on the regression model 
 
Yt = α + Xtβ + εt 
 
the Engle-Granger test for cointegration is to test for unit root for the residuals of the 
above regression model. That is, based on Model I, the auxiliary test equation is 
written as: 
 
∆εt = (ρ-1)εt-1 + ut 
 
where εt = Yt - α - Xtβ, and ∆εt is defined as εt - εt-1. The rationale is that if the 
residual εt has unit root, regressing Y on X may not completely capture the 
underlying (nonstationary) trends of all these variables. The estimated model does 
not reveal the meaningful relationship, although it may fit the data well. This is the 
crux of the spurious regression problem. However, if a cointegrating vector can be 
found among the variables that causes the error term εt to be stationary or I(0), then 
we can attach meaning to the estimated regression parameters. 
 
We note that the above unit root test equation on the regression residuals does not 
have a drift or trend. In order to apply ADF-type testing for a unit root, the model 
may be augmented with lagged dependent variables as needed: 
 
∆εt = (ρ-1)εt-1 + ∑j=1,2,... ρt-j∆εt-j + ut 
 
Alternatively, the cointegrating test regression may be expressed as the following 
Error Correction Model: 
 
∆Yt = ∆Xtβ + (ρ-1)(Yt-1 - α - Xt-1β) + ∑j=1,2,... ρt-j (∆Yt-j - ∆Xt-jβ) + ut 
 
If we can reject the null hypothesis of unit root on the residuals εt, we can say that 
variables [Yt, Xt] in the regression equation are cointegrated. The cointegrating 
regression model may be generalized to include trend as follows: 
 
Yt = α + γ t + Xtβ + εt  
 
Notice that the trend in the cointegrating regression equation may be the result of 
combined drifts in X and/or Y. Critical values of the ADF τρ distribution for spurious 
cointegrating regression are given in Table C-3 of Appendix C. These values are 
based on the work of Phillip and Ouliaris (1990), and depend on the number of 
cointegrating variables and their trending behaviors for large samples.  
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Furthermore, MacKinnon’s table of critical values of cointegration tests for 
cointegrating regression with and without trend (named Model 2 and Model 3, 
respectively) is given in Appendix C, Table C-4. It is based on simulation 
experiments by means of response surface regression in which critical values depend 
on the type of model, number of variables, and are adjusted for sample size. 
MacKinnon’s table is easier and more flexible to use than that of Phillip and 
Ouliaris. We note that the univariate case (K=1) of MacKinnon’s table (top portion) 
corresponds to the critical values of ADF distributions (testing unit roots for Models 
I, II, and III). 
 

Lesson 14.2: Cointegration Test: Engle-Granger Approach 

Given that both the income (Y) and consumption (C) series are integrated of order 
one (that is, I(1)), the long-run relationship: 
 
Ct = β0 + β1 Yt + εt 
 
will be meaningful only if the error εt is free of unit roots. The test for cointegration 
between C and Y thus becomes a unit root test on the regression residuals: 
 
∆εt = (ρ-1) εt-1 + Σ

j=1,2,…
 ρj ∆εt-j + ut 
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/* 
** Lesson 14.2: Cointegration Test 
** Engle-Granger Approach 
*/ 
use gpe2; 
output file = gpe\output14.2 reset; 
 
load z[67,3] = gpe\usyc87.txt; 
y = z[2:67,2]; 
c = z[2:67,3]; 
 
call reset;  
 
_names = {"c","y"}; 
call estimate(c,y); 
 
/* Unit Roots Test on Residuals */ 
x = __e;  @ set x to regression residuals @ 
x1 = packr(lagn(x,1)); @ sample truncated @ 
dx = packr(x-lagn(x,1)); 
_names = {"dx","x1"}; 
 
_rstat = 1; 
_dlags = 2; @ augmented terms if needed @ 
_const = 0; @ no intercept term @ 
call estimate(dx,x1); 
end; 
 
The program reads in and uses both income (Y) and consumption (C) data series, and 
runs a regression of the consumption-income relationship. Here, we are not 
interested in investigating or refining the error structure of the regression equation 
(though we must make sure that no autocorrelated structure exists in the error term of 
the cointegrating regression). Instead, we want to test the residuals for the presence 
of unit roots. In GPE, residuals are available as the output variable __e immediately 
after the regression equation is estimated. Line 9 sets the variable X to the vector of 
residuals: 
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x = __e; 
 
and prepares for unit root testing on this variable in the rest of the program. This later 
portion of codes (lines 10 through 16) is the same as that in lesson14.1 for testing 
unit roots of a single variable. Again, line 14 is the result of a pretest to ensure the 
white noise error structure for unit root test: 
 
_dlags = 2; 
 
It turns out that we need to have two lags of the dependent variable augmented to the 
test equation. We recall that both income (Y) and consumption (C) variables include 
linear trend from our earlier unit roots tests on the respective variable. This fact must 
be considered when we use the appropriate ADF τρ distribution for cointegration 
tests (using Model 2a or Model 3 of Table C-3). The alternative is to use 
MacKinnon’s table (Table C-4) for testing the cointegrating regression model. We 
present only the results relevant to the cointegration test in the following (see the 
generated output file output14.2 for more details): 
 

Least Squares Estimation 
------------------------ 
Dependent Variable = DX       
Estimation Range =  3          65         
Number of Observations = 63           
Mean of Dependent Variable = 0.70448      
Standard Error of Dependent Variable = 29.013       
 
NOTE: Estimation Range Has Been Adjusted. 
Lagged Dependent Variables Used = 2    
 
WARNING: Constant Term Suppressed. 
R-Square, AOV, SE, and t may not be reliable! 
 
R-Square = 0.20697      R-Square Adjusted = 0.16732      
Standard Error of the Estimate = 26.264       
Log-Likelihood Function Value = -293.75      
Log Ammemiya Prediction Criterion (APC) =  6.5829       
Log Akaike Information Criterion (AIC) =  6.5828       
Log Schwarz Bayesian Information Criterion (BIC) =  6.6849       
 
Sum of Squares         SS           DF          MSS            F       Prob>F 
Explained          10786.            3       3595.5       5.2123    0.0028932 
Residual           41388.           60       689.80  
Total              52190.           63       828.41  
 
Variable        Estimated     Standard      t-Ratio         Prob      Partial 
Name          Coefficient        Error        60 DF         >|t|   Regression 
DX1               0.33306      0.12268       2.7149    0.0086440      0.10941  
DX2               0.17315      0.13228       1.3089      0.19555     0.027762  
X1               -0.29001     0.082515      -3.5146   0.00084459      0.17073  
 
Squared Correlation of Observed and Predicted = 0.20700      
Sum of Squared Residuals = 41388.       
Sum of Absolute Residuals = 1118.1       
Sum of Residuals = -9.96447E+000 
First-Order Rho = -0.0042224   
Durbin-Watson Test Statistic = 1.9889       
Durbin-H Statistic = 0.19258      

 
Testing for the cointegration of two variables, C and Y with trend, the computed t-
statistic for the lagged variable X1 in the test equation is –3.52, which is right on the 
borderline of rejecting the null hypothesis of unit root at a 5% level of significance 
(looking at Table C-3, the critical value of ADF cointegration t-statistic τρ for K=2 at 
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5% is –3.42 for Model 2a). A similar conclusion is obtained by using the critical 
values of MacKinnon (Table C-4). Although these results do not give us 
overwhelming confidence that the long-run income-consumption relationship is 
legitimate, empirical studies based on the Permanent Income Hypothesis still stand.  

 

 

Single equation cointegration tests can only be valid when the specific causal 
relation of the underlying multiple regression is correct. If the causal relationship of 
C and Y is not as clean-cut as the Permanent Income Hypothesis suggests, we need 
to run and test the reverse regression equation. 
 

Cointegration Test: The Johansen Approach 

The Engle-Granger cointegration test discussed in the previous section is only 
appropriate when the direction of causality involved in the regression equation is 
clear. If there are more than two variables involved in a regression model, the 
direction of causality may not be clear, or one-sided. In this case, we turn to 
Johansen’s multivariate cointegration test.  
 
Given a set of M variables Zt=[Zt1, Zt2, ..., ZtM], and considering their feedback 
simultaneity, Johansen’s cointegration test based on FIML (full information 
maximum likelihood) is derived from the following: 
 
• VAR (vector autoregression) System Model Representation  
• FIML Estimation of the Linear Equations System  
• Canonical Correlations Analysis  
 
Similar to the random walk (unit roots) hypothesis testing for a single variable with 
augmented lags, we write a VAR(p) linear system for the M variables Zt:  
 
Zt = Zt-1Π1 + Zt-2Π2 + ... + Zt-pΠp + Π0 + Ut  
 
where Πj, j=1,2,...M, are the MxM parameter matrices, Π0 is a 1xM vector of 
deterministic factors (drifts and trends). Moreover, we assume the 1xM error vector 
Ut is independently normally distributed with a zero mean and a constant covariance 
matrix Σ = Var(Ut) = E(Ut'Ut) across M variables.  
 
The VAR(p) system can be transformed using the difference series of the variables, 
resembling the error correction model, as follows:  
 

∆Zt = ∆Zt-1Γ1 + ∆Zt-2Γ2 + ... + ∆Zt-(p-1)Γp-1 + Zt-1Π + Γ0 + Ut  
 

where I denotes the identity matrix, Π = ∑j=1,2,...,pΠj - I, Γ1 = Π1 - Π - I , Γ2 = Π2 + Γ1, 
Γ3 = Π3 + Γ2, … , and Γ0 = Π0 for notational convenience. Recall that Γ0 is a vector 
of deterministic factors including drifts and trends. If both drift and trend (µ0 + µ1t) 
exist in Zt, then Γ0 = -µ0 Π + µ1(Γ+Π) - µ1Π t where Γ = I - ∑j=1,2,...,p-1Γj. 
 

 

A few words about the vector Γ0 (or Π0) of the deterministic factors. We consider 
only the case of constant vector Γ0 that is restricted such that µ1Π = 0 (no trend), 
then Γ0 = -µ0 Π + µ1 Γ. It is easy to see that (1) if µ1 = 0, µ0 is the only deterministic 
factor (drift) for Zt, or Γ0 = -µ0 Π; (2) if µ1 ≠ 0, then the VAR(p) model consists of 
drift and linear trend components, or Γ0 = -µ0 Π + µ1 Γ. 
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If Zt ~ I(1), then ∆Zt ~ I(0). In order for the variables in Zt to be cointegrated, we 
must have Ut ~ I(0). That is, we must show the last term in the error correction 
equation:  Zt-1Π ~ I(0). By definition of cointegration, the parameter matrix Π must 
contain r (0<r<M) linearly independent cointegrating vectors such that ZtΠ ~ I(0). 
Therefore, the cointegration test for Zt amounts to checking the rank of matrix Π, 
denoted Rank(Π). If Rank(Π) = r > 0, we may impose parameter restrictions Π = -
BA' where A and B are Mxr matrices. Given the existence of the constant vector Γ0, 
there can be up to M-r random walks or drift trends. Such common trends in the 
variables may be removed in the case of Model II below. We consider the following 
three models:  
 
• Model I: VAR(p) representation without constant vector, i.e., Γ0 = 0. 
• Model II: VAR(p) representation with constant vector but the trend removed 

(drift only, i.e., Γ0 = -µ0 Π). 
• Model III: VAR(p) representation with constant vector (drift trend, i.e.,  

Γ0 = -µ0Π + µ1Γ). 
 
For model estimation of the above VAR(p) system, where Ut is independently 
normally distributed with zero mean and constant covariance matrix Σ, we derive the 
log-likelihood function for Model III: 
 
ll(Γ1,Γ2,..., Γp-1,Γ0,Π,Σ) = - MN/2 ln(2π) - N/2 ln|det(Σ)| - ½ ∑t=1,2,...,NUtΣ-1Ut'  
 
Since the maximum likelihood estimate of Σ is U'U/N, the concentrated log-
likelihood function is written as:  
 
ll*(Γ1,Γ2,..., Γp-1,Γ0,Π) = - NM/2 (1+ln(2π)-ln(N)) - N/2 ln|det(U'U)|  
 
The actual maximum likelihood estimation can be simplified by considering the 
following two auxiliary regressions:  
 
1. ∆Zt = ∆Zt-1Φ1 + ∆Zt-2Φ2 + ... + ∆Zt-(p-1)Φp-1 + Φ0 + Wt  
2. Zt-1 = ∆Zt-1Ψ1 + ∆Zt-2Ψ2 + ... + ∆Zt-(p-1)Ψp-1 + Ψ0 + Vt  
 
We see that Γj = Φj-ΨjΠ, for j=0,1,2,...,p-1, and Ut = Wt - VtΠ. If Φ0 = Ψ0 = 0, then 
Γ0 = 0, implying no drift in the VAR(p) model. However, Γ0 = 0 needs only the 
restriction that Φ0 = Ψ0Π.  
 
Plugging in the auxiliary regressions, we can now write the concentrated log-
likelihood function as  
 
ll*(W(Φ1,Φ2,...,Φp-1,Φ0), V(Ψ1,Ψ2,...,Ψp-1,Ψ0),Π) 
= - NM/2 (1+ln(2π)-ln(N)) - N/2 ln|det((W-VΠ)'(W-VΠ))| 
 
Maximizing the above concentrated log-likelihood function is equivalent to 
minimizing the sum-of-squares term det((W-VΠ)'(W-VΠ)). Conditional on 
W(Φ1,Φ2,...,Φp-1,Φ0) and V(Ψ1,Ψ2,...,Ψp-1,Ψ0), the least squares estimate of Π is 
(V'V)-1V'W. Thus,  
 
det((W-VΠ)'(W-VΠ)) = det(W(I-V(V'V)-1V')W') 
 = det((W'W)(I-(W'W)-1(W'V)(V'V)-1(V'W)) 
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= 
= 

det(W'W) det(I-(W'W)-1(W'V)(V'V)-1(V'W))
det(W'W) (∏i=1,2,...,M(1-λi)) 

 
where λ1, λ2, ..., λM are the ascending ordered eigenvalues of the matrix  
(W'W)-1(W'V)(V'V)-1(V'W). Therefore the resulting double concentrated log-
likelihood function (concentrating on both Σ = U'U/N and Π = (V'V)-1V'W) is 
  
ll**(W(Φ1,Φ2,...,Φp-1,Φ0), V(Ψ1,Ψ2,...,Ψp-1,Ψ0)) 
= - NM/2 (1+ln(2π)-ln(N)) - N/2 ln|det(W'W)| - N/2 ∑i=1,2,...,M ln(1-λi)  
 
Given the parameter constraints that there are 0<r<M cointegrating vectors, that is Π 
= -BA' where A and B are Mxr matrices, the restricted concentrated log-likelihood 
function is similarly derived as follows:  
 
llr**(W(Φ1,Φ2,...,Φp-1,Φ0), V(Ψ1,Ψ2,...,Ψp-1,Ψ0)) 
= - NM/2 (1+ln(2π)-ln(N)) - N/2 ln|det(W'W)| - N/2 ∑i=1,2,...,rln(1-λi)  
 
Therefore, with the degree of freedom M-r, the Likelihood Ratio test statistic for at 
least r cointegrating vectors is  
 
-2(llr** - ll**) = -N ∑i=r+1,r+2,...,Mln(1-λi)  
 
Similarly the Likelihood Ratio test statistic for r cointegrating vectors against r+1 
vectors is  
 
-2(llr** - llr+1**) = -N ln(1-λr+1)  
 
A more general form of the Likelihood Ratio test statistic for r1 cointegrating vectors 
against r2 vectors (0 ≤ r1 ≤ r2 ≤ M) is  
 
-2(llr1** - llr2**) = -N ∑i=r1+1,r1+2,...,r2ln(1-λi)  
 
The following table summarizes the two popular cointegration test statistics: the 
maximal eigenvalue test statistic λmax(r) and the trace test statistic λtrace(r). By 
definition, λtrace(r) = ∑r1=r,r+1,…,Mλmax(r1). For the case of r = 0, they are the tests for no 
cointegration. If M=r+1, the two tests are identical. 
 

Cointegrating  
Rank (r) 

H0: r1 = r 
H1: r2 = r+1  

H0: r1 = r 
H1: r2 = M  

0 -N ln(1-λ1)  -N ∑i=1,2,...,Mln(1-λi)  
1 -N ln(1-λ2)  -N ∑i=2,3,...,Mln(1-λi)  
... ... ...  
M-1 -N ln(1-λM)  -N ln(1-λM)  
Test Statistics λmax(r)  λtrace(r)  

 
The critical values of λmax(r) and λtrace(r) for testing the specific number of 
cointegrating vectors or rank r are given in Statistical Table C-5. Three models (no 
constant, drift only, and trend drift) are presented. 
 
The procedure of Johansen’s cointegration Likelihood Ratio tests is implemented as 
the GPE module program JOHANSEN.GPE. The module is located in the GPE 



GAUSS PROGRAMMING FOR ECONOMETRICIANS AND FINANCIAL ANALYSTS 

 

 

230 

subdirectory (see also Appendix B-2). Interested readers can study the details of 
implementation of the Likelihood Ratio test we outline above. To perform the 
Johansen’s cointegration test, in lesson14.3, we include the module at the end of the 
program (line 17). The test is done by calling the procedure johansen with three 
input arguments: z = data matrix, p = lags of VAR structure, and c is the model or 
constant (0=no, 1=drift only, 2=trend drift): 
 
call johansen(z,p,c); 
 
The lengthy implementation closely follows the theoretical discussion above. We 
will concentrate on the application of cointegration test statistics, and leave the 
programming details of the procedure to you. 
 

Lesson 14.3: Cointegration Test: Johansen Approach 

Returning to the data series of income (Y) and consumption (C) we have studied so 
far, the Johansen cointegration test considers a VAR representation of the data 
matrix, and estimates the model as a simultaneous linear equations system. In 
lesson14.3, line 7 defines the data matrix consisting of two variables: y (income) and 
c (consumption). A VAR model with 3 lags (i.e., _dlags=3 of line 11) has been 
shown to best describe the data series under consideration (that is, to “whiten” the 
residuals). This can be verified by checking the estimation result of the VAR system 
as specified from line 9 through line 12. Although the estimation is carried out with 
the system method of 3SLS (line 10), it should be the same as any limited 
information estimation method (why?). 
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/* 
** Lesson 14.3: Cointegration Test 
** Johansen Approach 
*/ 
use gpe2; 
output file = gpe\output14.3 reset; 
 
load z[67,3] = gpe\usyc87.txt; 
y = z[2:67,2]; 
c = z[2:67,3]; 
ns = {"c","y"}; 
 
data = y~c;  @ data matrix for cointegration test @ 
 
call reset; 
_rstat=1; 
_method=3; 
_dlags=3;                @ find the proper order p @ 
call estimate(data,0);   @ for VAR(p) model estimation @ 
 
@ Johansen cointegration test based on VAR(3) model @ 
call johansen(data,3,2); @ model with trend drift @        
call johansen(data,3,1); @ model with drift only @ 
call johansen(data,3,0); @ model with no drift @ 
end; 
#include gpe\johansen.gpe; 
 
We present only the summary of the estimation results, and leave out the details of 
each equation. We note that the model estimation is used to determine the lag 
structure of the VAR system. In this example, VAR(3) has been shown to be the 
appropriate model.  
 

Simultaneous Linear Equations Estimation 
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---------------------------------------- 
Number of Endogenous Variables = 2            
Number of Predetermined Variables = 7            
Number of Stochastic Equations = 2            
Number of Observations = 63           
Estimation Range =  4          66         
 
NOTE: Estimation Range Has Been Adjusted. 
Lagged Endogenous Variables Used = 6    
 
Three Stages Least Squares Estimation 
 
System R-Square = 0.99841      
Log-Likelihood = -593.32619   
 
Equation   Variable      Estimated          Asymptotic 
Name       Name        Coefficient    Std Error      t-Ratio 
Y1         Y1-1            0.88597      0.16655       5.3196  
           Y1-2            0.29313      0.24559       1.1935  
           Y1-3           -0.36656      0.18016      -2.0346  
           Y2-1            0.59551      0.23153       2.5720  
           Y2-2           -0.74215      0.35751      -2.0759  
           Y2-3            0.36302      0.23135       1.5691  
           CONSTANT         13.691       9.4196       1.4535  
Y2         Y1-1           -0.12601      0.12090      -1.0423  
           Y1-2            0.36104      0.17828       2.0251  
           Y1-3           -0.11330      0.13079     -0.86627  
           Y2-1             1.5421      0.16808       9.1748  
           Y2-2           -0.93942      0.25952      -3.6198  
           Y2-3            0.28254      0.16795       1.6823  
           CONSTANT         7.4753       6.8380       1.0932  
 
Asymptotic Variance-Covariance Matrix of Equations 
Y1                 1367.7  
Y2                 683.05       720.74  
                       Y1           Y2  
 
 
Cointegration Test (Model 3): 
Cointegrating  Eigv. Test  Trace Test 
    Rank   DF   Statistic   Statistic 
       0    2      18.958      25.103 
       1    1      6.1456      6.1456 
 
Cointegration Test (Model 2): 
Cointegrating  Eigv. Test  Trace Test 
    Rank   DF   Statistic   Statistic 
       0    2      23.890      35.150 
       1    1      11.260      11.260 
 
Cointegration Test (Model 1): 
Cointegrating  Eigv. Test  Trace Test 
    Rank   DF   Statistic   Statistic 
       0    2      23.547      33.056 
       1    1      9.5092      9.5092 

 
Most importantly, cointegration tests based on eigenvalue and trace statistics are 
given for each of the three models: trend drift (Model 3), drift only (Model 2), and 
no constant (Model 1), in that order. These computed test statistics are compared 
with the critical values of Statistical Table C-5 in Appendix C. Consider the case of 
no cointegration (that is, cointegrating rank equals 0 with 2 degrees of freedom): 
both λmax(0) and λtrace(0) statistics are statistically greater than the corresponding 
critical values at a 5% level significance. We reject the null hypothesis of no 
cointegration for the data series under consideration. Therefore, the time series 
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income (Y) and consumption (C) are cointegrated, confirming the previous Engle-
Granger or ADF test result based on the cointegrating regression residuals.  

 



 

 

XV 
Time Series Analysis 

 
Continuing from the previous chapter in which we discussed a stationary vs. 
nonstationary data generating process, in this chapter, we focus on the modeling of 
stationary time series data. If the data series under consideration is nonstationary, we 
assume that it is an integrated process and can be made stationary with the proper 
amount of differencing. A random data generating process which is difference 
stationary is the subject of modern time series analysis.  
 
Autocorrelation occurs when previous and current observations of a random variable 
are correlated. Chapter X discussed autocorrelation in detail. Serial correlation in the 
mean is common in many economic time series, with the simplest case being first-
order correlation. More complicated model structures can include autoregressive and 
moving average terms, known as ARMA processes. However, serial correlation in 
the mean is not the only problem of autocorrelation in time series. Conditional to the 
information available, the variance of a data generating process may not be constant 
for all observations. Nonconstant variance, or heteroscedasticity, was studied in 
Chapter IX. Even worse is serial correlation in the conditional variance. The 
phenomenon of conditional variance correlation is often found in high-frequency 
observations such as those studied in financial economics. Autoregressive 
conditional heteroscedasticity, or the ARCH process, is another important time series 
model structure to be studied in this chapter.  
 
Typically, time series analysis is carried out in several steps: model identification, 
estimation, diagnostic checking, and prediction. In this chapter we emphasize model 
identification and estimation. Diagnostic checking is the repetition of the 
identification step on the estimated model. Prediction is taken up later in Chapter 
XVII. In many circumstances, economic theory offers no a priori data generating 
process for a given variable, so model identification is often a trial and error process. 
To extract structural information from a random variable, the process of model 
identification consists of testing and estimation for the mean and variance of the 
variable under consideration. In Chapter X, we used several procedures to test for 
autocorrelation in an ARMA model. These tests include the Durbin-Watson bounds 
test for first-order serial correlation, the Breusch-Godfrey LM test for higher-order 
autocorrelation, and Box-Pierce and Ljung-Box Q test statistics based on different 
lags of autocorrelation coefficients. In addition, the autocorrelation function (ACF)  
and partial autocorrelation function (PACF) gave us useful clues as to the model’s 
structure. Many examples shown in Chapter X demonstrated the use of a 
combination of the above-mentioned testing procedures and statistics to study the 
time series. 
 
For ARCH modeling, the idea of variance correlation is new but the mechanics are 
similar to ARMA analysis. Working on the squares of mean-deviation (or 
regression) residuals, the corresponding ACF and PACF can assist in detecting the 
autocorrelation in the variance. The associated Box-Pierce and Ljung-Box statistics 
are useful to test the potential ARCH process. Analogous to the Breusch-Godfrey 
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LM test for autocorrelation in the mean, the Engle-Bollerslev LM test statistic is 
used for testing autocorrelation in the variance. 
 
In the following, we present the basic formulation of ARMA and ARCH models. 
GPE implementation of model identification and estimation for regression models 
with ARMA and ARCH effects are illustrated by examples. 
 

Autoregressive and Moving Average Models 

Consider a stationary data generating process ARMA(p,q) for a random variable Y: 
 
Yt = δ + ρ1Yt-1 + ρ2Yt-2 + ... + ρpYt-p - θ1εt-1 - θ2εt-2 - ... - θqεt-q + εt  
 
where εt is independently distributed with zero mean and constant variance σ2, or εt ~ 
ii(0,σ2), t = 1,2,...,N. As described in Chapter X, ARMA(p,q) is a mixed process of 
AR(p) and MA(q), where p and q represent the highest order of autoregressive and 
moving average parameters in the model, respectively. The model may also be 
written as a general linear stochastic process:  
 
Yt = µ + εt + ψ1εt-1 + ψ2εt-2 + ...  
 
Recall that stationarity requirements for the process imply that the mean, variance, 
and autocovariances of the variable must be finite constants:  
 
Mean  µ = E(Yt) < ∞   
Variance  γ0 = σ2∑i=0,...,∞ψi

2 < ∞ ψ0 = 1 
Autocovariance  γj = σ2∑i=0,...,∞ψiψj+i < ∞  
 
The coefficient of autocorrelation defined by φj = γj / γ0 serves as the foundation for 
model identification. We have seen examples in chapters X and XI of using 
autocorrelation and partial autocorrelation coefficients to model the ARMA error 
structure. In particular, the Box-Pierce and Ljung-Box Q test statistics derived from 
the autocorrelation coefficients are useful in identifying the autoregressive and 
moving average time series. For details of model identification, we refer readers to 
standard econometrics textbooks on time series analysis. 
 
For parameter estimation, the ARMA(p,q) model may be written in the “inverted” 
form as follows: 
 
ρ(B)Yt = δ + θ(B)εt 
 
or,  
 
θ(B)-1[-δ+ρ(B)Yt] = εt 
 
where B is the backshift operator, ρ(B) = 1 - ρ1B - ρ2B2 - ... - ρpBp, and θ(B) = 1 - 
θ1B - θ2B2 - ... - θqBq. Conditional to the historical information (YN, ..., Y1), and data 
initialization (Y0, ..., Y-p+1) and (ε0, ..., ε-q+1), the error sum-of-squares is defined by  
 
S = ∑t=1,2,...,Nεt

2  
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In order to utilize all N data observations, data initialization may be needed for the 
observations Y0, Y-1, ..., Y-p+1 with E(Yt) = δ / (1-ρ1-...-ρp), and ε0, ε-1, ..., ε-q+1 with 
E(εt) = 0.14 In GPE, the data initialization used for the pre-sample observations is 
simply the sample mean of the series. 
 
Techniques of nonlinear optimization may be applied directly to minimize the sum-
of-squares objective function. The alternative is the maximum likelihood method, for 
which we need to make additional assumptions about the probability distribution of 
the error term. For each independent observation t, we assume the model error εt is 
normally distributed with zero mean and constant variance σ2, that is εt ~ nii(0,σ2). 
Then the concentrated log-likelihood objective function is  
 
ll = -N/2 [1+ln(2π)-ln(N)+ln(∑t=1,2,...,Nεt

2)]  
 
Using nonlinear optimization methods, maximizing the above function with respect 
to the parameters ρs, θs, and δ is straightforward (see Chapter VII for more details 
on maximum likelihood estimation of a nonlinear regression model). The GPE 
package implements the nonlinear maximum likelihood estimation for the ARMA 
error structure in a linear regression framework.  
 
Note that the model specification posited above is only tentative, pending diagnostic 
checking on the estimated residuals. We do not know whether or not we have 
included sufficiently high orders of AR and MA terms in the model specification. In 
other words, we do not know whether our choice of orders, p for AR and q for MA, 
were adequate. The “correct” p and q are usually determined through an iterative 
process. We choose an initial number of AR and MA terms (usually at low values, 
zero or one) and estimate the model. We then use the diagnostic tests on the 
estimated residuals (e.g., Durbin-Watson, Breusch-Godfrey, Box-Pierce, and Ljung-
Box) to determine if serial correlation is still present in the model. If we still have 
problems with serial correlation, we add AR or MA terms (i.e., increase the values of 
p and q), re-estimate the model and rerun the diagnostic tests on the “new” residuals. 
This process continues until the error term has been sufficiently “whitened.” In so 
doing, we find the combination of AR and MA terms that removes the serial 
correlation from the model. Note that when performing the diagnostic checking on 
the estimated residuals, the degrees of freedom used to choose the critical value for 
each test statistic is N-(K+p+q), where K is the number of regression parameters. 
 

Lesson 15.1: ARMA Analysis of Bond Yields 

This example demonstrates univariate time series analysis. bonds.txt is a data file 
consisting of 5 years of monthly average yields on a Moody's Aaa rated corporate 
bond (see also Greene, 1999, Example 18.1). The original level series is 
nonstationary, but it can be shown to be an integrated process of the first order (or 
I(1)) with no augmented lags (we leave this as an exercise, see Chapter XIV). Since 
the first difference of an I(1) process is stationary, deriving from the unit roots test 
equation, we will estimate the following second order autoregressive model:  
 
Yt = ρ0 + ρ1 Yt-1 + ρ2 Yt-2 + ut  

                                                           
14 The alternative to data initialization is to estimate the unknown pre-sample observations of 
ε0, ε-1, ..., ε-q+1 together with the model parameters. The problem becomes highly nonlinear 
and complicated. 
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where ut ~ ii(0,σ2) or nii(0,σ2). We may examine the data series Yt by plotting the 
correlogram of its autocorrelation and partial autocorrelation coefficients. For 
univariate analysis, the ACF and PACF of the time series will be identical to those of 
the residuals obtained from the mean-deviation regression. Up to the maximum 
number of lags specified for the ACF and PACF, Box-Pierce and Ljung-Box test 
statistics are useful for identifying the proper order of AR(p), MA(q), or ARMA(p,q) 
process. In addition, the Breusch-Godfrey LM test may be used to verify higher 
orders of autocorrelation, if any exist. 
 
Although the entire diagnostic checking procedure is not shown here, by examining 
the autocorrelation and partial autocorrelation coefficients as well as the relevant 
diagnostic test statistics, we can show that an AR(2) specification is sufficient for the 
bond yield model. The result is consistent with that of the stationarity test. Using a 
time series of bond yields, a regression model with two (first and second) lagged 
dependent variables is estimated in the following program lesson15.1. 
 

 
 
 

1 
2 
 

3 
4 
 

5 
 

6 
7 
8 
9 
 

10 
 
 
 
 

11 
12 
13 

 
14 

/* 
** Lesson 15.1: ARMA Analysis of Bond Yields 
*/ 
use gpe2; 
output file=gpe\output15.1 reset; 
 
n=61;  @ 1990.01 - 1994.12 @ 
load bonds[n,2]=gpe\bonds.txt; 
 
y=bonds[2:n,2]; 
 
call reset; 
_names={"yields"}; 
_rstat=1; 
_rplot=2; 
 
_dlags=2; 
/* 
_ar=2; 
_iter=50; 
*/ 
_bgtest=4; 
_acf=12; 
call estimate(y,0); 
 
end; 
 
The estimated model is summarized as follows (standard errors are in parentheses): 
 
Yt =  0.4068   +  1.1566 Yt-1   –  0.2083 Yt-2 
s.e. (0.2107)  (0.1107)  (0.1102) 
 
Further study of the regression residuals using the ACF and PACF up to 12 lags does 
not reveal higher-order autocorrelated structure in this model. The other tests 
(Durbin-Watson test for the first lag and Breusch-Godfrey LM test up to the fourth 
lags) suggest that a structure beyond AR(2) may be presented. But if such structure 
does exist in this model, it is not reflected in the ACF and PACF. Conflicting results 
from the use of different diagnostic tests are not unusual in empirical analysis. Run 
this program, and see the output file output15.1 for details. 
 
An alternative to including two lagged dependent variables in the model is to express 
residuals of the mean-deviation model as an AR(2) process:  
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Yt = µ + εt 
εt = φ1 εt-1 + φ2 εt-2 + ut  
 
Or, equivalently 
 
Yt = µ + φ1 εt-1 + φ2 εt-2 + ut  
 
We note that µ = ρ0 /(1- ρ1 - ρ2) from the earlier specification with lagged dependent 
variables. We now modify Lesson 15.1 by replacing line 10 of the program 
(_dlags=2) with the following two statements: 
 
_ar=2; 
_iter=50; 
 
Estimation of autocorrelated error structures is inherently nonlinear, so we will need 
to ensure that the number of iterations is sufficient to converge on a solution. We 
note that the control variable _ar is used to specify the autocorrelation order of the 
model error. For a more general autoregressive and moving average model, the GPE 
control variable _arma should be used instead. _arma is a column vector with the 
first element being the autoregressive order, and the second being the moving 
average order of the model structure. In this example, _ar=2 is equivalent to 
_arma={2,0}. For a pure moving average model, you would set the first element 
of _arma to zero. For example, _arma={0,1} defines the first-order moving 
average process. See Appendix A for more information about the use of the GPE 
control variable _arma. 
 
Running the revised lesson15.1, we obtain the following result (standard errors are in 
parentheses): 
 
Yt =  7.877 +   1.1566 εt-1 -  0.2083 εt-2 
s.e. (0.3882)   (0.08597)  (0.08654) 
 
Comparing the estimated autoregressive parameters with those of Lesson 15.1, we 
find the two sets of coefficients are very similar. In addition, diagnostic checking 
indicates that AR(2) is a sufficient specification for this model. We note that the 
divisor N (N=58 in this example) is used in calculating the standard errors for a 
nonlinear model.15 Therefore, the resulting standard errors of the parameters are 
smaller in this model, as compared with the lagged dependent variables specification 
of Lesson 15.1. 
 
The classical univariate ARMA analysis is easily extended to a more general 
regression model with multiple regressors. There are two approaches, as shown 
below. 
 

ARMA Analysis for Regression Residuals 

The full model consists of the following two equations: 
 

                                                           
15 With the model of Lesson 15.1, the divisor used is N-K where K is 3. 



GAUSS PROGRAMMING FOR ECONOMETRICIANS AND FINANCIAL ANALYSTS 

 

 

238 

Yt = Xtβ + εt 
φ(B)εt = θ(B)ut 
 
Or, equivalently 
 
Yt = Xtβ + φ1εt-1 + φ2εt-2 + ... + φpεt-p - θ1ut-1 - θ2ut-2 - ... - θqut-q + ut  
 
where ut ~ ii(0,σ2) or nii(0,σ2), t = 1,2,...,N. The model identification and estimation 
proceeds in the same way as univariate ARMA analysis. Regression parameters (βs) 
and ARMA parameters (φs and θs) must be simultaneously estimated through 
iterations of nonlinear functional (sum-of-squares or log-likelihood) optimization. 
For statistical inference, the degrees of freedom must account for all the unknown 
parameters in the model. 
 

ARMAX Regression Model: Transfer Function Approach 

The model to be estimated is 
 
ρ(B)Yt = Xtβ + εt 
εt = θ(B)ut 
 
Or, equivalently 
 
Yt = Xtβ + ρ1Yt-1 + ρ2Yt-2 + ... + ρpYt-p - θ1ut-1 - θ2ut-2 - ... - θqut-q + ut  
 
where ut ~ ii(0,σ2) or nii(0,σ2), t = 1,2,...,N. We identify the proper autoregressive 
and moving average orders and estimate the model in a similar fashion to the 
classical univariate ARMA analysis. The difference between ARMA and ARMAX 
model specification lies in the treatment of autoregressive components of the error 
structure. For the former, the model error is specified solely by an ARMA 
representation. On the other hand, in an ARMAX model, lagged dependent variables 
are used in conjunction with only the moving averages of errors. In GPE, however, it 
is possible to include the autoregressive error terms in an ARMAX model for 
estimating non-stationary time series with ARMA error structure. 
 
As mentioned earlier, in GPE, ARMA analysis is called with the input control 
variable _arma. _arma is a column vector containing at least two elements 
specifying the type of ARMA model to be estimated. The first element of _arma 
denotes autoregressive order of the ARMA process, while the second element 
denotes the moving average order. Specifying only the autoregressive portion and 
including a zero for the moving average portion yields a pure AR specification (vice 
versa for a pure MA specification). Optional initial values of the autoregressive and 
moving average coefficients may be appended to the vector _arma along with their 
respective orders. Supplying the initial values is useful for starting the iterative 
estimation process from non-zero values of ARMA coefficients. For example, 
 
_arma = {1,1,0.5,0.1}; 
 
The model ARMA(1,1) is specified, with the initial values 0.5 for the AR(1) 
coefficient and 0.1 for the MA(1) coefficient. Nonlinear estimation of this model will 
begin from the specified set of starting values. 
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Lesson 15.2: ARMA Analysis of U.S. Inflation 

In this example we will identify and estimate a time series regression model of U.S. 
inflation. The inflation rate in this example is measured as the quarterly rate of 
percent change in price:  
 
∆Pt = 100 [ln(Pt) - ln(Pt-1)] 
 
Inflation is believed to be affected by excess monetary growth (i.e., monetary growth 
that is faster than the growth of real output) and by external economic shocks. Excess 
monetary growth is defined as ∆Mt - ∆Yt, where  
 
∆Mt = 100 [ln(M1t) - ln(M1t-1)] 
∆Yt = 100 [ln(GNPt) - ln(GNPt-1)]  
 
The basic regression model of inflation is presented as follows:  
 
∆Pt = β0 + β1(∆Mt-1-∆Yt-1) + εt  
 
The lagged values of the inflation rate (or the disturbance term) will serve to model 
the effects of external shocks to the economy. The data file usinf.txt consists of 136 
quarterly observations (from 1950 Q1 to 1984 Q4) of data for price (implicit GNP 
deflator) Pt, money stock M1t, and output (GNP) Yt. 
 
To keep the model simple, we include the first lag of the dependent variable in the 
regression and examine the patterns of ACF and PACF. Significant spikes (or non-
zero values of autocorrelation and partial autocorrelation coefficients) appear up to 
the third or fourth lags for both functions, indicating a complicated structure in the 
model’s error term. We will not go through the entire identification process here. 
Interested readers can “comment out” lines 15 to 18 in the program lesson15.2 
below, and decide the proper ARMA or ARMAX specification for themselves based 
on their observations of the behavior of the ACF and PACF. 
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/* 
** Lesson 15.2: ARMA Analysis of U.S. Inflation 
** Greene (1999), Example 18.11 
*/ 
use gpe2; 
output file=gpe\output15.2 reset; 
 
n=137; 
load data[n,4]=gpe\usinf.txt; 
 
y=ln(data[2:n,2]);  
m=ln(data[2:n,3]); 
p=ln(data[2:n,4]); 
dp=packr(100*(p-lagn(p,1))); 
dm=packr(100*(m-lagn(m,1))); 
dy=packr(100*(y-lagn(y,1))); 
 
call reset; 
_rstat=1; 
_rplot=2; 
_acf=12; 
 
_dlags=1; 
_arma={0,3}; 
_method=5; 
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18 
19 

 
20 

_iter=100; 
call estimate(dp,lagn(dm-dy,1)); 
 
end; 
 
The final model for estimation is a lagged dependent variable model (line 15) with a 
third-order moving average specification (line 16). Maximum likelihood estimation 
of the model is carried out using the QHC optimization method (line 17). The output 
of running lesson15.2 is stored in the file output15.2. 
 
In summary, the estimated model (with standard errors in parentheses) is 
 
∆Pt =  0.1008 +   0.0146 (∆Mt-∆Yt) + 0.9151∆Pt-1  
s.e. (0.0516)   (0.0199)   (0.0429) 
 - 0.505εt-1 +   0.0232εt-2 + 0.204εt-3 
  (0.093)   (0.0986)   (0.0884) 
 
The lag of the dependent variable (∆Pt-1) plays an important role in the regression 
equation. Although the second lag of the moving average is insignificant, the first 
and third are significant. Further analysis of the ACF and PACF does not show 
autocorrelation in the regression residuals. 
 

Autoregressive Conditional Heteroscedasticity 

We have thus far concentrated on the classical time series modeling, which focuses 
on the expected value (mean) of the variable. In many financial and monetary 
economic applications, serial correlation over time is characterized not only in the 
mean but also in the conditional variance. The latter is the so-called autoregressive 
conditional heteroscedasticity or ARCH model. It is possible that the variance is 
unconditionally homogeneous in spite of the presence of conditional 
heteroscedasticity. Using GPE, analysis of ARCH effects is no more complicated 
than setting a few input control variables. 
 
Consider the time series linear regression model:  
 
Yt = Xtβ + εt  
 
At time t, conditional to the available historical information Ht, we assume that the 
error structure follows a normal distribution: εt|Ht ~ nii(0,σ2

t) where the variance is 
written as: 
 
σ2

t  = α0 + δ1σ2
t-1 + ... + δpσ2

t-p + α1ε2
t-1 + ... + αqε2

t-q  
 = α0 + Σj=1,2,...pδjσ2

t-j + Σi=1,2,...qαiε2
t-i 

 
Let υt = ε2

t-σ2
t, αi = 0 for i > q, δj = 0 for j > p, and m = max(p,q). Then, the above 

serially correlated variance process may be conveniently rewritten as an 
ARMA(m,p) model for ε2

t. That is,  
 
ε2

t = α0 + Σi=1,2,...m(αi+δi)ε2
t-i - Σj=1,2,...pδjυt-j + υt  

 
By assuming E(υt) =0, E(ε2

t) is the estimated variance of σ2
t. This is the general 

specification of autoregressive conditional heteroscedasticity, or GARCH(p,q), 
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according to Bollerslev (1986). If p = 0, this GARCH(0,q) process simply reduces to 
an ARCH(q) process:  
 
σ2

t = α0 + Σi=1,2,...qαiε2
t-i  

 

ARCH(1) Process  

The simplest case, pioneered by Engle (1982) sets q = 1 (while p = 0). This 
ARCH(1) process can be written as:  
 
σ2

t = α0 + α1ε2
t-1 

 
The ARCH(1) model can be summarized as follows:  
 
Yt = Xtβ + εt 
εt = ut(α0 + α1ε2

t-1)½  where ut ~ nii(0,1)  
 
This specification gives us the conditional mean and variance, E(εt|εt-1) = 0 and σ2

t = 
E(ε2

t|εt-1) = α0 + α1ε2
t-1, respectively. Note that the unconditional variance of εt is 

E(ε2
t) = E[E(ε2

t|εt-1)] = α0 + α1E(ε2
t-1). If σ2 = E(ε2

t) = E(ε2
t-1), then σ2 = α0/(1-α1), 

provided that |α1| < 1. In other words, the model may be free of general 
heteroscedasticity even when we assume that conditional heteroscedasticity is 
present.  
 

ARCH-M(1) Model  

An extension of the ARCH(1) model is ARCH(1) in mean, or ARCH-M(1) model, 
which adds the heterogeneous variance term directly into the regression equation 
(assuming a linear model):  
 
Yt = Xtβ + γσ2

t + εt 
σ2

t = α0 + α1 ε2
t-1  

 
The last variance term of the regression may be expressed in log form ln(σ2

t) or in 
standard error σt. For example, Yt = Xtβ + γln(σ2

t) + εt. Moreover, to ensure the 
model stability and positive values of variances, we will need to constrain σ2

t by 
forcing α0 > 0 and 0 ≤ α1 < 1.  
 

Hypothesis Testing for ARCH and GARCH Processes 

As with ARMA modeling, specifying the correct order of the model is an important 
step in estimating the ARCH and GARCH processes. Luckily, the close connection 
between GARCH and ARMA allows us to compute the ARMA autocorrelation and 
partial autocorrelation coefficients based on the squares of standardized regression 
residuals (εt/σt)2 . The GPE control input variable _acf2 calculates the ACF, PACF, 
and the associated diagnostic test statistics on (εt/σt)2 up to the number of lags we 
specified. For example, to examine 12 lags of ACF and PACF of (εt/σt)2, use the 
statement: 
 
_acf2 = 12; 
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The other testing procedure involves checking ARCH(q) against ARCH(0), or 
GARCH (p,q) against GARCH(p,0) for a given p. The Engle-Bollerslev LM Test of 
ARCH effects (Bollerslev, 1986) is carried out using the test statistic NR2, where N 
is the sample size and R2 (R-square statistic) is obtained from the ARCH(q) 
regression. The Engle-Bollerslev test statistic is distributed as a Chi-square with q 
degrees of freedom. The Engle-Bollerslev LM test of ARCH effects resembles the 
Breusch-Godfrey LM test for AR effects. This is a cumulative test for no ARCH 
effects up to the order specified. Therefore, we need only to test for ARCH effects at 
a low order to confirm their existence. In GPE, the Engle-Bollerslev LM test 
procedure is called using the control variable _ebtest in a similar fashion to 
_acf2. For example, to test for ARCH effects up to the 6th order, use the statement: 
 
_ebtest = 6; 
 
For more information about the use of _acf2 and _ebtest, see Appendix A. 
 

ARCH Model Estimation 

Recall the normal log-likelihood function of a heteroscedastic regression model 
 
ll = -½ N ln(2π) – ½ Σt=1,2,...,Nln(σ2

t) – ½ Σt=1,2,...,N(ε2
t/σ2

t)  
 
with the general conditional heteroscedastic variance GARCH(p,q) process:  
 
σ2

t = α0 + δ1σ2
t-1 + δ2σ2

t-2 + ... + δpσ2
t-p + α1ε2

t-1 + α2ε2
t-2 + ... + αqε2

t-q 
 
The parameter vector (α,δ) is estimated together with the regression parameters (e.g., 
ε = Y - Xβ) by maximizing the log-likelihood function, conditional to the data 
initialization ε2

0, ε2
-1, ..., ε2

-q, σ2
0, σ2

-1, ..., σ2
-p. In GPE, the data initialization used for 

the pre-sample observations is simply the sample variance of the error series E(ε2
t) = 

Σt=1,2,...,N ε2
t/N. 

  
In estimating a GARCH model, the estimated variance for each observation must be 
positive. We could assume the following parameter restrictions: 
 
α0 > 0; αi≥0, i=1,2,...q; δj≥0, j=1,2,...,p 
 
However, this set of restrictions is sufficient but not necessary (see Nelson and Cao, 
1992) for the positive values of variances. 
 
To estimate a model with ARCH or GARCH effects, we introduce the input control 
variable _garch. _garch is a column vector with at least two elements. The first 
element defines the autoregressive order of the GARCH model, while the second 
element is the moving average order of the model. The rest of components in the 
vector _garch, if given, specify the initial values of the GARCH parameters in 
accordance with the orders given, as well as the initial value of the constant term. 
The constant term in the variance equation is important because it may indicate a 
homoscedastic structure if all the other slope parameters are insignificant. For 
example, 
 
_garch = {1,1}; 
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specifies a GARCH(1,1) model. If we write instead, 
 
_garch = {1,1,0.1,0.1,0.5}; 
 
then the initial values of the GARCH(1,1) are also given. The first two values of 0.1 
are the initial values of autoregressive and moving average components of the 
GARCH (1,1) process, respectively. The last element, 0.5, is the constant. The 
nonlinear model estimation will begin from this set of starting values. Finally, we 
remark that GPE implementation of the GARCH model estimation includes another 
input variable _garchx to allow for external effects in the variance equation: 
 
σ2

t = α0 + Σj=1,2,...pδjσ2
t-j + Σi=1,2,...qαiε2

t-i + Xtγ 
 
where Xt is a data matrix of external variables which may influence the variances. γ 
is the corresponding parameter vector. Setting the data matrix to the variable 
_garchx will do the trick. For example, 
 
_garchx = x; 
 
where x is the data matrix of the external variables already in place, which must have 
the same number of observations as the residual variances. For more information 
about the use of _garch and _garchx, see Appendix A. 
  

Lesson 15.3 ARCH Model of U.S. Inflation 

In this example, we focus on univariate ARCH analysis of U.S. inflation. We have 
seen the ARMA regression analysis of U.S. inflation rate in Lesson 15.2. The data 
are read from the file usinf.txt as in Lesson 15.2, but we use only the price variable. 
Our study is based on the example given in Bollerslev (1986) and Greene (1999, 
Example 18.2). 
 
We will test, identify, and estimate the appropriate GARCH variance structure for 
the variable ∆Pt, defined as the percentage change of implicit price GNP deflator. We 
specify 12 lags of ACF and PACF for the squared mean-deviation residuals and 
compute Engle-Bollerslev LM test statistics up to the sixth lag: 
 
_acf2 = 12; 
_ebtest = 6; 
 
Just to be sure, the ARMA structure in the mean is also investigated by examining 12 
lags of ACF and PACF for the mean-deviation residuals and 6 lags for Breusch-
Godfrey LM test statistics:  
 
_acf = 12; 
_bgtest = 6; 
 

We consider a three-lag autoregressive model of ∆Pt in conjunction with a 
GARCH(1,1) error process. If you would like to go through the model identification 
process, simply comment out lines 14 through 17 in the following lesson15.3. 
 

 
 
 
 

1 
2 

/* 
** Lesson 15.3: ARCH Analysis of U.S. Inflation 
** Greene (1999), Example 18.12 
*/ 
use gpe2; 
output file=gpe\output15.3 reset; 
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3 
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5 
6 
 

7 
8 
9 
 

10 
11 
12 
13 

 
14 
15 
16 
17 

 
18 

 
19 

 
n=137; 
load data[n,4]=gpe\usinf.txt; 
p=ln(data[2:n,4]); 
dp=packr(100*(p-lagn(p,1))); 
 
call reset; 
_rstat=1; 
_rplot=2; 
 
_acf=12; 
_bgtest=6; 
_acf2=12; 
_ebtest=6; 
 
_dlags=3; 
_garch={1,1,0.5,0.5,0.1}; 
_method=5; 
_iter=100; 
 
call estimate(dp,0); 
 
end; 
  
We note that the initial values of the GARCH(1,1) parameters are used in order to 
successfully estimate the model (see line 15). Running lesson15.3, we obtain the 
following result (see the generated output file output15.3 for details):16 
 
∆Pt =  0.119 +  0.341 ∆Pt-1  +  0.214 ∆Pt-2 +  0.325 ∆Pt-3  
s.e. (0.056)  (0.088)  (0.088)  (0.087) 
        
σ2

t = 0.00573 + 0.882 σ2
t-1 +  0.0799 ε2

t-1   
s.e. (0.0066)  (0.056)  (0.0496)   
 
Based on the standard normal test, we see that σ2

t-1 is statistically different from zero, 
but the constant term and ε2

t-1 are not. The model may be re-estimated with 
GARCH(1,0) specification. 
 
To be sure that the estimated GARCH(1,1) model does not have higher-order 
structures in either the ARMA or GARCH specifications, the following extract of 
output on diagnostic checking of the estimated model consists of: (1) ACF and 
PACF for the estimated residuals and Breusch-Godfrey LM test for ARMA 
specification; (2) ACF and PACF for the squared estimated standardized residuals 
and Engle-Bollerslev LM test for ARCH specification. With an exception at the 
twelfth lag of ACF and PACF for GARCH specification (possibly an outlier), the 
estimated GARCH(1,1) model is acceptable for describing the U.S. inflation rate. 
 

Breusch-Godfrey LM Test for Autocorrelation 
                   Chi-Sq           DF  Prob>Chi-Sq 
AR(   1)          0.66868            1      0.41351  
AR(   2)          0.79698            2      0.67133  
AR(   3)          0.82301            3      0.84396  
AR(   4)           1.5805            4      0.81229  
AR(   5)           1.7334            5      0.88467  
AR(   6)           2.3775            6      0.88192  
Engle-Bollerslev LM Test for Autoregressive Conditional Heteroscedasticity 

                                                           
16 Because we use a different set of U.S. inflation rate data, the estimated model does not 
match with the Example 18.2 of Greene (1999). 
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Based on Squared Standardized Residuals 
                   Chi-Sq           DF  Prob>Chi-Sq 
ARCH(   1)         1.3974            1      0.23716  
ARCH(   2)         2.0844            2      0.35269  
ARCH(   3)         2.4708            3      0.48060  
ARCH(   4)         3.5246            4      0.47415  
ARCH(   5)         3.5422            5      0.61702  
ARCH(   6)         3.8524            6      0.69665  
 
Autocorrelation and Partial Autocorrelation Functions 
ARMA Model Specification 
Mean = 0.010305     Standard Error = 0.3924        
   Lag         AR    S.E.(AR)         PAR   S.E.(PAR)  Box-Pierce   Ljung-Box 
    1    0.065389    0.087410    0.065389    0.087039     0.56439     0.57732  
    2    0.034597    0.087514    0.030451    0.087039     0.72238     0.74017  
    3    0.031536    0.087600    0.027494    0.087039     0.85366     0.87653  
    4    0.041261    0.087747    0.036716    0.087039      1.0784      1.1118  
    5    0.012524    0.087761   0.0058822    0.087039      1.0991      1.1336  
    6   0.0021592    0.087761  -0.0021918    0.087039      1.0997      1.1343  
    7    -0.12321    0.089062    -0.12686    0.087039      3.1034      3.2823  
    8   -0.080462    0.089611   -0.068807    0.087039      3.9580      4.2058  
    9   -0.019052    0.089641  -0.0039795    0.087039      4.0059      4.2580  
   10   -0.011847    0.089653   0.0011377    0.087039      4.0245      4.2784  
   11   -0.095777    0.090425   -0.082072    0.087039      5.2353      5.6193  
   12   -0.067064    0.090801   -0.049412    0.087039      5.8290      6.2823  
 
GARCH Model Specification based on Squared Standardized Residuals 
Mean = 1.0197       Standard Error = 1.4008        
   Lag         AR    S.E.(AR)         PAR   S.E.(PAR)  Box-Pierce   Ljung-Box 
    1    -0.10274    0.087953    -0.10274    0.087039      1.3933      1.4252  
    2    0.082417    0.088536    0.072628    0.087039      2.2899      2.3494  
    3   -0.069017    0.088943   -0.054563    0.087039      2.9186      3.0025  
    4     0.10580    0.089891    0.090016    0.087039      4.3961      4.5492  
    5   -0.015788    0.089912    0.010947    0.087039      4.4290      4.5839  
    6   -0.030121    0.089988   -0.048974    0.087039      4.5488      4.7113  
    7   -0.050698    0.090204   -0.047526    0.087039      4.8880      5.0750  
    8    0.095577    0.090968    0.085506    0.087039      6.0939      6.3781  
    9  0.00024805    0.090968    0.019248    0.087039      6.0939      6.3781  
   10   -0.056418    0.091233   -0.067360    0.087039      6.5140      6.8396  
   11    -0.12419    0.092505    -0.12321    0.087039      8.5499      9.0942  
   12     0.21915    0.096358     0.20097    0.087039      14.889      16.173  

 
At this point, you may be wondering whether there exist ARCH effects for the 
inflation rate model we considered earlier in Lesson 15.2. The mixture of ARMA 
and ARCH effects may be identified and estimated for the model. We leave the 
validation of ARCH effects in Lesson 15.2 to interested readers. 
 

Lesson 15.4 ARCH Model of Deutschemark-British Pound Exchange Rate 

This example investigates the “long-run volatility” persistence of the Deutschemark-
British pound exchange rate (see Bollerslev and Ghysels, 1986). Daily exchange rate 
data from January 3, 1984 to December 31, 1991 (1974 observations) are used (see 
data text file dmbp.txt). The model of interest is  
 
Yt = 100 [ln(Pt) - ln(Pt-1)] = µ + εt  
 
where Pt is the bilateral spot Deutschemark-British pound exchange rate. Thus Yt is 
the daily nominal percentage returns from exchanging the two currencies. Similar to 
the testing procedure carried out in Lesson 15.3, we will identify and estimate the 
appropriate GARCH variance structure for the variable Yt. Because of the large data 
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sample, longer lags may be used for the tests with ACF and PACF.17 We leave out 
the details of identification and report only the chosen model for estimation.  
 
We find that the mean returns of Deutschemark-British pound exchange are 
essentially zero, and there is no evidence of ARMA structure. However, a high order 
ARCH or a mixed GARCH process is suggested. Therefore, in lesson15.4, the model 
is estimated with GARCH(1,1) effects (see line 14). We keep the code section of 
model identification (lines 10 through 13) for the purpose of performing diagnostic 
tests on the estimated model.  
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/* 
** Lesson 15.4: GARCH(1,1) Model of DM/BP Exchange Rate 
** Bollerslev and Ghysels (1996), JBES, 307-327. 
*/ 
use gpe2; 
output file=gpe\output15.4 reset; 
 
@ Deutschemark/British Pound Exchange Rate @ 
n=1974; @ 1-3-1984 to 12-31-1991 @ 
load data[n,2]=gpe\dmbp.txt;   
 
x=data[.,1]; 
 
call reset; 
_names={"xrate"}; 
_rstat=1; 
_rplot=2; 
 
@ model identification @ 
_acf2=12; 
_ebtest=6; 
_acf=12; 
_bgtest=6; 
 
@ model estimation @ 
_garch={1,1}; 
_method=6; 
_iter=100; 
 
call estimate(x,0); 
 
end; 
 
Using the modified QHC method (line 15), the result of maximum likelihood 
estimation of the GARCH(1,1) model is given below: 
  

Least Squares Estimation 
------------------------ 
Dependent Variable = XRATE    
Estimation Range =  1          1974       
Number of Observations = 1974         
Mean of Dependent Variable = -0.016427    
Standard Error of Dependent Variable = 0.47024      
 
Maximum Likelihood Estimation for Nonlinear Error Structure 
GARCH( 1, 1) Autoregressive Conditional Heteroscedasticity Process 
 
Maximum Number of Iterations = 100          
Step Size Search Method = 0            

                                                           
17 As the size of the data is beyond the limit of GAUSS Light, the professional version of 
GAUSS should be used. 
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Convergence Criterion = 0            
Tolerance = 0.001        
 
Initial Result: 
Log Likelihood =      -1722.8  
Parameters =    -0.016427      0.00000      0.00000      0.10000  
 
Using Modified Quadratic Hill-Climbing Algorithm 
Iteration =  1   Step Size =  2.3579  Log Likelihood =      -1305.1  
Parameters =    -0.013777     0.072340     0.015314      0.16692  
… 
Iteration =  11  Step Size =  1.0000  Log Likelihood =      -1106.6  
Parameters =   -0.0061905      0.80598      0.15313     0.010761  
 
Final Result: 
Iterations = 11          Evaluations = 596148       
Log Likelihood =      -1106.6  
Parameters =   -0.0061905      0.80598      0.15313     0.010761  
Gradient Vector =     0.067109      -3.2813      -2.7642      -17.896  
 
 
                Parameter    Std.Error      t-Ratio 
HAR( 1)           0.80598     0.073406       10.980  
HMA( 1)           0.15313     0.054232       2.8236  
CONSTANT         0.010761    0.0065879       1.6334  
 
NOTE: R-Square, AOV are computed from original series. 
 
R-Square = -0.00047409  R-Square Adjusted = -0.00047409  
Standard Error of the Estimate = 0.47036      
Log-Likelihood = -1106.6      
Log Ammemiya Prediction Criterion (APC) =  -1.5080      
Log Akaike Information Criterion (AIC) =  -1.5080      
Log Schwarz Bayesian Information Criterion (BIC) =  -1.5052      
 
Sum of Squares         SS           DF          MSS            F       Prob>F 
Explained     3.7079E-029            0  
Residual           436.50         1973      0.22123  
Total              436.29         1973      0.22113  
 
Variable        Estimated     Standard      t-Ratio         Prob      Partial 
Name          Coefficient        Error      1973 DF         >|t|   Regression 
CONSTANT       -0.0061905    0.0091932     -0.67338      0.50079   0.00022977  
 
 
Variance-Covariance Matrix of Coefficients 
CONSTANT      8.4515E-005  
                 CONSTANT  
 
Correlation Matrix of Coefficients 
CONSTANT           1.0000  
                 CONSTANT  
 
Squared Correlation of Observed and Predicted = 5.3640E-006  
Sum of Squared Residuals = 436.50       
Sum of Absolute Residuals = 647.59       
Sum of Residuals = -2.02064E+001 
First-Order Rho = 0.0098581    
Durbin-Watson Test Statistic = 1.9796 

 
The GARCH(1,1) model is summarized as follows: 
 
σt

2 = 0.01076  +  0.80598 σ2
t-1 +  0.15313 εt-1

2 
s.e. (0.0066)  (0.0734)  (0.0542) 
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With the exception of the constant term, all other parameters are significantly 
different from zero based on the standard normal test.  
 

 

If the underlying assumption of normal distribution for the model is questionable, 
the estimated variance-covariance matrix may be adjusted. This is easily done by 
setting the control variable _vcov=3 before calling the estimate statement (line 
17). As the result of quasi-maximum likelihood estimation, the robust standard 
errors for the parameters are computed. See Appendix A for more details. 
 
Diagnostic checking on the estimated GARCH(1,1) model does not suggest a higher-
order ARMA or GARCH specification. All the statistical tests presented below 
confirm that the estimated GARCH(1,1) model describes the volatility of the returns 
of the Deutschemark-British pound exchange rate reasonably well. 
 

Breusch-Godfrey LM Test for Autocorrelation 
                   Chi-Sq           DF  Prob>Chi-Sq 
AR(   1)          0.17342            1      0.67709  
AR(   2)           1.4489            2      0.48458  
AR(   3)           3.8242            3      0.28109  
AR(   4)           4.5111            4      0.34124  
AR(   5)           5.2147            5      0.39025  
AR(   6)           5.2316            6      0.51447  
 
Engle-Bollerslev LM Test for Autoregressive Conditional Heteroscedasticity 
Based on Squared Standardized Residuals 
                   Chi-Sq           DF  Prob>Chi-Sq 
ARCH(   1)         2.5119            1      0.11299  
ARCH(   2)         2.6312            2      0.26832  
ARCH(   3)         4.2403            3      0.23666  
ARCH(   4)         4.2406            4      0.37442  
ARCH(   5)         4.2422            5      0.51510  
ARCH(   6)         6.7980            6      0.33993  
 
Autocorrelation and Partial Autocorrelation Functions 
ARMA Model Specification 
Mean = -0.010236    Standard Error = 0.47024       
   Lag         AR    S.E.(AR)         PAR   S.E.(PAR)  Box-Pierce   Ljung-Box 
    1   0.0093663    0.022509   0.0093663    0.022507     0.17318     0.17344  
    2   -0.025323    0.022524   -0.025413    0.022507      1.4390      1.4418  
    3    0.034169    0.022550    0.034675    0.022507      3.7436      3.7523  
    4    0.019958    0.022559    0.018659    0.022507      4.5299      4.5409  
    5    0.017487    0.022566    0.018896    0.022507      5.1335      5.1468  
    6  -0.0023945    0.022566  -0.0029546    0.022507      5.1449      5.1581  
    7   -0.016242    0.022572   -0.016632    0.022507      5.6656      5.6812  
    8    0.016314    0.022578    0.014906    0.022507      6.1910      6.2093  
    9    0.016177    0.022584    0.014567    0.022507      6.7076      6.7288  
   10    0.011128    0.022587    0.012590    0.022507      6.9520      6.9747  
   11   -0.037358    0.022618   -0.037292    0.022507      9.7069      9.7478  
   12  -0.0013434    0.022618  -0.0011303    0.022507      9.7105      9.7514  
 
GARCH Model Specification based on Squared Standardized Residuals 
Mean = 0.99779      Standard Error = 2.35          
   Lag         AR    S.E.(AR)         PAR   S.E.(PAR)  Box-Pierce   Ljung-Box 
    1    0.035668    0.022536    0.035668    0.022507      2.5113      2.5152  
    2  -0.0064933    0.022537  -0.0077754    0.022507      2.5946      2.5986  
    3   -0.029035    0.022556   -0.028562    0.022507      4.2587      4.2669  
    4  -0.0016120    0.022556  0.00040097    0.022507      4.2638      4.2720  
    5 -0.00056223    0.022556 -0.00090229    0.022507      4.2644      4.2726  
    6   -0.035159    0.022584   -0.036022    0.022507      6.7046      6.7228  
    7   -0.025093    0.022598   -0.022674    0.022507      7.9475      7.9714  
    8   -0.013861    0.022602   -0.012704    0.022507      8.3268      8.3526  
    9  -0.0019132    0.022602  -0.0033856    0.022507      8.3340      8.3598  
   10    0.018812    0.022610    0.017422    0.022507      9.0326      9.0627  
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   11   -0.013855    0.022615   -0.016063    0.022507      9.4116      9.4441  
   12   -0.016590    0.022621   -0.016835    0.022507      9.9548      9.9913  
 
 





 

 

XVI 
Panel Data Analysis 
 

We have seen two popular types of data used in econometric analysis: time-series 
and cross-sectional data. However, in some circumstances, the economic data may 
be a composition of time series and cross sections (i.e., the observations of several 
individuals over time). International statistics, company surveys, and longitudinal 
data sets are common examples. Modeling these panel data sets calls for some quite 
complex stochastic specifications. In this chapter, we introduce the basic 
programming techniques for panel data analysis. 
 
For each cross section (individual) i=1,2,...N and each time period (time) t=1,2,...T, 
we write the regression equation as follows: 
 
Yit = Xitβit + εit  
 
Suppose that the regressors Xit include a constant term. Let βit = β and assume εit = ui 
+ vt + eit. Note that we assume the identical β for all i and t, and consider their 
differences in the components of the error term εit. Here ui represents the individual 
difference in intercept (so that the individual effect is β0+ui, where β0 is the intercept 
parameter in β) and vt is the time difference in intercept (so that the time effect is 
β0+vt). Two-way analysis includes both time and individual effects. Throughout 
much of this chapter, however, we will assume vt = 0. That is, there is no time effect 
and only the one-way individual effects will be analyzed. 
 
We further assume that eit is a classical error term, with zero mean, homogeneous 
variance, and there is neither serial correlation nor contemporaneous correlation. 
That is, the error term is not correlated across individuals or time periods. Also, eit is 
assumed to be uncorrelated with the regressors Xit. That is,  
 
E(eit) = 0  
E(eit

2) = σ2
e  

E(eitejt) = 0, for i≠j  
E(eiteiτ) = 0, for t≠τ  
E(Xiteit) = 0  
 

Fixed Effects Model  

Assume that the error component ui, the individual difference, is fixed (or 
nonstochastic), but varies across individuals. In this case, the model error simply 
reduces to εit = eit. The model is expressed as:  
 
Yit = (Xitβ + ui) + eit  
 
where ui is interpreted to be the change in the intercept from individual to individual. 
As defined earlier, the individual effect is ui plus the intercept, and this model is 



GAUSS PROGRAMMING FOR ECONOMETRICIANS AND FINANCIAL ANALYSTS 

 

 

252 

known as the fixed effects model. To estimate a model with individual fixed effects, 
consider the following equation:  
 
Yit = (Xitβ + ui) + εit (i=1,2,...,N; t=1,2,...,T) 
 
Let Yi = [Yi1, Yi2, ..., YiT]', Xi = [Xi1, Xi2, ..., XiT]', εi = [εi1, εi2, ..., εiT]', and υi = [ui, 
ui, ..., ui]' (a column vector of T elements of ui). The pooled (stacked) model is  
 









Y1

Y2
 …
YN

 = 








X1

X2
 …
XN

 β + 






υ1

υ2
 …
υN

 + 






ε1

ε2
 …
εN

, or  

 
Y = Xβ + υ + ε 
 

Dummy Variables Approach  

For each i, define NT×1 vector Di with the element:  
 
Dit =  1 if (i-1)×T+1 ≤ i×t ≤ i×T  
 0 otherwise  
 
Then D = [D1, D2, ..., DN-1] is NT×(N-1) matrix of N-1 dummy variables. 
Mathematically, D is the first N-1 columns of the matrix I⊗ι where I is NxN identity 
matrix and ι is Tx1 column vector of ones.  
 
Ordinary least squares can be used to estimate the model with dummy variables as 
follows:  
 
Y = Xβ + Dδ +ε  
 
Since X includes a constant term, we will only need N-1 dummy variables for 
estimation and the estimated δ measures the individual change from the intercept. 
The individual effects are then computed as the sum of the intercept coefficient and 
the estimated dummy variable parameter for each individual. 
 

Deviation Approach 

Although the dummy variable approach is simple, the size of the problem may 
become difficult to handle if the number of cross sections (individuals) is large. An 
alternative is the deviation approach.  
 
Let Ym

i = (Σt=1,2,...,TYit)/T, Xm
i = (Σt=1,2,...,TXit)/T, and em

i = (Σt=1,2,...,Teit)/T. By 
estimating the following mean deviation model, we can obtain within-estimates of 
the parameters:  
 
(Yit - Ym

i) = (Xit - Xm
i)β + (eit - em

i)  
 
Or, equivalently  
 
Yit = Xitβ + (Ym

i - Xm
iβ) + (eit - em

i)  
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Note that the constant term drops out due to the deviation transformation. As a result, 
we can conclude the individual effects as ui = Ym

i - Xm
iβ. The variance-covariance 

matrix of individual effects can be estimated as follows:  
 
Var(ui) = v/T + Xm

i [Var(β)] Xm
i'  

 
where v is the estimated variance of the mean deviation regression with NT-N-K 
degrees of freedom. Note that K is the number of explanatory variables not counting 
the constant term. 
  
We can also estimate the model by using only the calculated individual means (as 
opposed to the deviations from the mean): 
  
Ym

i = Xm
iβ + ui + em

i  
 
The parameter estimates produced from this specification are referred to as the 
between-estimates, and are related to the within-estimates of the parameters.  
 

Hypothesis Testing for Fixed Effects 

With the dummy variable model, we can test the null hypothesis that δ = 0 (i.e., that 
there are no fixed effects) using the standard Wald F-test. The equivalent test statistic 
for the deviation model is computed from the restricted (pooled model) and 
unrestricted (mean deviation model) sum-of-squared residuals. That is, the statistic 
 

K-N-NT
RSS

1N
RSSRSS

U

UR

−
−

 

 
follows an F distribution with N-1 and NT-N-K degrees of freedom. 
 

Lesson 16.1: One-Way Panel Data Analysis: Dummy Variable Approach 

As an example of one-way panel data analysis, we will duplicate a study of 
efficiency in production of airline services presented in Greene (1999), Chapter 14. 
The data file airline.txt consists of 6 firms for 15 years (1970 to 1984) with the 
following variables: 
 
I Cross section index: 6 airline firms 
T Time index: 15 years from 1970 to 1984 
C Cost (total cost of services) 
Q Output (revenue passenger miles) 
PF Fuel price 
LF Load factor (rate of capacity utilization, measured as the average rate at 

which seats on the airline’s planes are filled) 
 
For panel data analysis, allowing for individual effects, the model for the total cost of 
production is: 
 
ln(Cit) = αi + β1 ln(Qit) + β2 ln(PFit) + β3 ln(LFit) + εit 
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We notice that the intercept αi is taken to be constant over time t and specific to the 
individual firm i. The interpretation of slope parameters is straightforward in that    

β1 > 0, β2 > 0, and β3 < 0. Moreover, the economies of scale defined as 



1

β1
 -1  , 

measures the efficiency of production.  
 
The following program implements the fixed effects analysis using dummy 
variables. For a typical regression, we need only to include five dummy variables for 
the case of six firms. The estimated parameters associated with dummy variables 
represent the change from the intercept (or the base case). If you are interested in the 
fixed effects for each individual firm, you may use the full set of 6 dummy variables 
in the regression equation without including the intercept. Since the use of dummy 
variables in the regression was explained earlier in Chapter IV, this program is easy 
to follow. In passing, note the use of a GAUSS built-in command dummybr to 
generate the necessary dummy variables (see line 18).  
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/* 
Lesson 16.1: One-Way Panel Data Analysis, Dummy Variable Approach 
Cost of Production for Airline Services I 
*/ 
use gpe2; 
output file = gpe\output16.1 reset; 
load data[91,6] = gpe\airline.txt; 
panel=data[2:91,1:2];   @ panel definition @ 
n=6; 
t=15; 
 
@ stacked data series, by sections @ 
cs=ln(data[2:91,3]);    @ log cost (stacked) @ 
qs=ln(data[2:91,4]);    @ log output (stacked) @ 
pfs=ln(data[2:91,5]);   @ log fuel price (stacked) @ 
lfs=data[2:91,6];       @ load factor (stacked) @ 
 
call reset; 
_names = {"c","q","pf","lf","d1","d2","d3","d4","d5","d6"}; 
 
/* pooled estimates */ 
ys=cs; 
xs=qs~pfs~lfs; 
call estimate(ys,xs); 
rssr=__rss; 
dfr=__df; 
 
@ use one less dummy variables with intercept @ 
d=dummybr(panel[.,1],seqa(1,1,n-1)); 
call estimate(ys,xs~d); 
rssur=__rss; 
dfur=__df; 
 
f=((rssr-rssur)/(dfr-dfur))/(rssur/dfur); 
print "Wald F Test Statistic"; 
print "for No Fixed Individual Effects = " f; 
 
end; 
 
The estimation results include the pooled regression and the dummy variable 
regression. The Wald F-test statistic for fixed effects is computed from the estimated 
sum-of-squares of the restricted (pooled) and unrestricted (dummy variables) 
regressions (see line 22 in the program). Here is the output of running lesson16.1: 
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Least Squares Estimation 
------------------------ 
Dependent Variable = C        
Estimation Range =  1          90         
Number of Observations = 90           
Mean of Dependent Variable = 13.366       
Standard Error of Dependent Variable = 1.1320       
 
R-Square = 0.98829      R-Square Adjusted = 0.98788      
Standard Error of the Estimate = 0.12461      
Log-Likelihood = 61.770       
Log Ammemiya Prediction Criterion (APC) =  -4.1216      
Log Akaike Information Criterion (AIC) =  -4.1217      
Log Schwarz Bayesian Information Criterion (BIC) =  -4.0106      
 
Sum of Squares         SS           DF          MSS            F       Prob>F 
Explained          112.71            3       37.568       2419.3  6.5875E-083 
Residual           1.3354           86     0.015528  
Total              114.04           89       1.2814  
 
Variable        Estimated     Standard      t-Ratio         Prob      Partial 
Name          Coefficient        Error        86 DF         >|t|   Regression 
Q                 0.88274     0.013255       66.599  8.7911E-076      0.98098  
PF                0.45398     0.020304       22.359  1.3601E-037      0.85322  
LF                -1.6275      0.34530      -4.7133  9.3090E-006      0.20529  
CONSTANT           9.5169      0.22924       41.514  1.1294E-058      0.95247  
 
Least Squares Estimation 
------------------------ 
Dependent Variable = C        
Estimation Range =  1          90         
Number of Observations = 90           
Mean of Dependent Variable = 13.366       
Standard Error of Dependent Variable = 1.1320       
 
R-Square = 0.99743      R-Square Adjusted = 0.99718      
Standard Error of the Estimate = 0.060105     
Log-Likelihood = 130.09       
Log Ammemiya Prediction Criterion (APC) =  -5.5280      
Log Akaike Information Criterion (AIC) =  -5.5287      
Log Schwarz Bayesian Information Criterion (BIC) =  -5.2787      
 
Sum of Squares         SS           DF          MSS            F       Prob>F 
Explained          113.75            8       14.219       3935.8  1.5066E-101 
Residual          0.29262           81    0.0036126  
Total              114.04           89       1.2814  
 
Variable        Estimated     Standard      t-Ratio         Prob      Partial 
Name          Coefficient        Error        81 DF         >|t|   Regression 
Q                 0.91928     0.029890       30.756  1.9519E-046      0.92112  
PF                0.41749     0.015199       27.468  8.3708E-043      0.90305  
LF                -1.0704      0.20169      -5.3071  9.5003E-007      0.25801  
D1              -0.087062     0.084199      -1.0340      0.30421     0.013027  
D2               -0.12830     0.075728      -1.6942     0.094071     0.034223  
D3               -0.29598     0.050023      -5.9169  7.5281E-008      0.30179  
D4               0.097494     0.033009       2.9535    0.0041106     0.097225  
D5              -0.063007     0.023892      -2.6372     0.010020     0.079071  
CONSTANT           9.7930      0.26366       37.142  1.2279E-052      0.94454  
 
Wald F Test Statistic 
for No Fixed Individual Effects =       57.732  

 
Given the critical value of the distribution F(5, 81) at 5% level of significance, it is 
clear that the cost structures among the six airline firms are somewhat different. In 
other words, we reject the null hypothesis that there are no fixed effects. The fixed 
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effects are calculated by adding the parameters of the dummy variables to the 
intercept.  
 

 

Remember that an alternative is to include all six dummy variables and estimate the 
model without an intercept. That is, replace line 18 with the following two 
statements: 
 
_const=0; 
d=dummybr(panel[.,1],seqa(1,1,n)); 
 
The individual fixed effects are summarized in the following table (numbers in 
parentheses are the estimated standard errors): 
 

Firm Individual Effect 
1 9.7059 (0.19312) 
2 9.6647 (0.19898) 
3 9.4970 (0.22496) 
4 9.8905 (0.24176) 
5 9.7300 (0.26094) 
6 9.7930 (0.26366) 

 

Random Effects Model  

Consider the model with individual effects: Yit = Xitβit + ui + eit. We now assume that 
the error component ui, the individual difference, is random (or stochastic) and 
satisfies the following assumptions:  
 
E(ui) = 0 (zero mean)  
E(ui

2) = σ2
u (homoscedasticity)  

E(uiuj) = 0 for i≠j (no cross-section correlation)  
E(uieit) = E(uiejt) = 0 (independent from each eit or ejt)  
 
Then, the model error is εit = ui + eit, which has the following structure:  
 
E(εit) = E(ui + eit) = 0  
E(εit

2) = E((ui + eit)2) = σ2
u + σ2

e  
E(εitεiτ) = E((ui + eit)(ui + eiτ)) = σ2

u, for t≠τ  
E(εitεjt) = E((ui + eit)(uj + ejt)) = 0, for i≠j  
 
In other words, for each cross section i, the variance-covariance matrix of the model 
error εi = [εi1, εi2, ...,εiT]' is the following T×T matrix:  
 

Σ = 






σ2

e + σ2
u  σ2

u …  σ2
u

 σ2
u σ2

e + σ2
u …  σ2

u
 …  … …  …
 σ2

u  σ2
u … σ2

e + σ2
u

  = σ2
eI + σ2

u  

 
If we let ε be an NT-element vector of the stacked errors ε1, ε2, ..., εN, then E(ε) = 0 
and E(εε') = Σ⊗I, where I is an N×N identity matrix and Σ is the T×T variance-
covariance matrix defined above.  
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Recall the pooled model for estimation, Y = Xβ + ε, where ε = [ε1,ε2,...,εN], εi = 
[εi1,εi2,...,εiT]', and the random error has two components: εit = ui + eit. By 
assumption, E(ε) = 0, and E(εε') = Σ⊗I. The generalized least squares estimate of β 
is  
 
β = [X'(Σ−1⊗I)X]-1X'(Σ−1⊗I)y  
 
Since Σ-1 can be derived from the estimated variance components σ2

e and σ2
u, in 

practice the model is estimated using the following partial deviation approach.  
 
1. Estimate the model Y = Xβ + ε as a fixed effects model, using the dummy 

variable approach, to obtain the estimated variance σ2
e.  

 
2. Assuming the randomness of ui, estimate the between parameters of the model:  

 
Ym

i = Xm
iβ + (ui + em

i)  
 
where the error structure of ui + em

i satisfies:  
 
E(ui + em

i) = 0 
E((ui + em

i)2) = σ2
u + (σ2

e/T) 
E((ui + em

i)(uj + em
j)) = 0, for i≠j  

 
Let v = σ2

e and v1 = T σ2
u + σ2

e. Define w = 1 - (v/v1)½.  
 
3. Use w to transform (partial deviations) the data as follows:  

 
Y*it = Yit - w Ym

i 
X*it = Xit - w Xm

i  
 
Then the model for estimation becomes:  
 
Y*it = X*itβ + ε*it  
 
where ε*it = (1-w) ui + eit - w em

i. Or, equivalently  
 
Yit = Xitβ + w (ym

i - Xm
iβ) + ε*it  

 
It is easy to validate that  
 
E(ε*it) = 0 
E(ε*2

it) = σ2
e 

E(ε*itε*iτ) = 0 for t≠τ 
E(ε*itε*jt) = 0 for i≠j  
 
The least squares estimate of [w (Ym

i - Xm
iβ)] is interpreted as the change in the 

individual effects.  
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Hypothesis Testing for Random Effects  

To test the null hypothesis of no correlation between the error terms ui + eit and ui + 
eiτ, we will use the following Breusch-Pagan LM test statistic based on the estimated 
residuals of the restricted (pooled) model, εit (i=1,2,...N, t=1,2,...,T). The LM test 
statistic is distributed as a Chi-square with one degree of freedom (note that εm

i = 
Σt=1,2,...,Tεit/T):  
 

( ) ( )( ) ( )[ ]2
N1,2,...,i T1,2,...,t

2
itN1,2,...,i

2

1,2,...Tt it 1
1-T2

NT
−∑ ∑∑ ∑ = == =

εε  

 

or, 
 

( ) ( )( ) ( )[ ]2
N1,2,...,i T1,2,...,t

2
itN1,2,...,i

2m
i 1T

1-T2
NT

−∑ ∑∑ = ==
εε  

 

Hausman Specification Test for Fixed or Random Effects 

We have discussed the fixed and random effects models, and now you may be 
wondering exactly what the difference is between the two models. How does one 
decide to estimate a fixed vs. random effects model? The Hausman specification test 
answers this question. It tests the null hypothesis that there is no difference between 
the fixed and random effects models. Failure to reject the null hypothesis usually 
implies that the fixed effects model is safe to use. 
 
The Hausman test begins by noting that the difference between the fixed and random 
effects models is in their respective covariance matrices. Let bfixed be the estimated 
slope parameters of the fixed effects model (using the dummy variable approach), 
and let brandom be the estimated slope parameters of the random effects model. 
Similarly, let Var(bfixed) and Var(brandom) be the estimated covariance matrices for the 
fixed and random effects models, respectively. The Hausman specification test 
statistic is: 
 
(brandom-bfixed)'[Var(brandom)-Var(bfixed)]-1(brandom-bfixed)  
 
The Hausman test statistic is distributed as a Chi-square with degrees of freedom 
equal to the number of slope parameters. 
 

Lesson 16.2: One-Way Panel Data Analysis: Deviation Approach 

We continue the previous example on the cost of airline services production. Instead 
of using the dummy variable approach, we apply the deviation approach to 
investigate the fixed effects and random effects. Recall that the main difference 
between fixed and random effects lies in the assumption of the covariance structure 
of the model. For the fixed effects model, total deviations of the data series from the 
group means are used. For the random effects model, on the other hand, partial 
deviations are employed. The deviation approach for one-way panel data analysis is 
implemented in a GPE module program: PANEL1.GPE. In order to compute the 
fixed effects and random effects, we run four regressions: pooled regression, 
between-groups or means regression, within-groups full deviations regression, and 
within-groups partial deviations regression. Three sets of hypothesis testing are 
performed: Wald F-test for fixed effects, LM test for random effects, and Hausman 
specification test comparing fixed and random effects. At the end, a summary of the 
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panel data analysis is presented, including the estimated individual intercept 
parameters for both the fixed and random effects models. PANEL1.GPE is installed 
in the GPE subdirectory. The interested reader can examine the code to make sense 
of the implementation (see also Appendix B-3). PANEL1.GPE can be included in 
any part of your program with a compiler directive #include such as: 
 
#include gpe\panel1.gpe; 
 
We put the include directive at the end of program (see line 15 of lesson16.2). Then 
one-way panel data analysis is called with the statement: 
 
call panel1(y,x,n,t); 
 

where y is the dependent variable and x is the data matrix of explanatory variables. 
Both y and x are stacked according to the panel definition of n blocks (cross 
sections) of t observations (time periods). To analyze fixed and random effects for 
the airline services example, the program of Lesson 16.2 is given below: 
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/* 
Lesson 16.2: One-Way Panel Data Analysis, Deviation Approach 
Cost of Production for Airline Services II 
*/ 
use gpe2; 
output file = gpe\output16.2 reset; 
load data[91,6] = gpe\airline.txt; 
panel=data[2:91,1:2];   @ panel definition @ 
n=6; 
t=15; 
 
/* stacked data series, by sections */ 
cs=ln(data[2:91,3]);    @ log cost (stacked) @ 
qs=ln(data[2:91,4]);    @ log output (stacked) @ 
pfs=ln(data[2:91,5]);   @ log fuel price (stacked) @ 
lfs=data[2:91,6];       @ load factor (stacked) @ 
call reset; 
_names = {"c","q","pf","lf"}; 
call panel1(cs,qs~pfs~lfs,n,t); 
 
end; 
 
#include gpe\panel1.gpe; 
 
There are four sets of regression output, but we will present only the important 
results of fixed effects and random effects models here:  
 

Least Squares Estimation 
------------------------ 
Dependent Variable = C        
Estimation Range =  1          90         
Number of Observations = 90           
Mean of Dependent Variable = -6.3159E-016 
Standard Error of Dependent Variable = 0.66503      
 
R-Square = 0.99257      R-Square Adjusted = 0.99231      
Standard Error of the Estimate = 0.058332     
Log-Likelihood = 130.09       
Log Ammemiya Prediction Criterion (APC) =  -5.6397      
Log Akaike Information Criterion (AIC) =  -5.6398      
Log Schwarz Bayesian Information Criterion (BIC) =  -5.5287      
 
Sum of Squares         SS           DF          MSS            F       Prob>F 
Explained          39.068            3       13.023       3827.3  2.1614E-091 
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Residual          0.29262           86    0.0034026  
Total              39.361           89      0.44226  
 
Variable        Estimated     Standard      t-Ratio         Prob      Partial 
Name          Coefficient        Error        86 DF         >|t|   Regression 
Q                 0.91928     0.029008       31.691  3.3110E-049      0.92112  
PF                0.41749     0.014751       28.303  2.3780E-045      0.90305  
LF                -1.0704      0.19574      -5.4685  4.3807E-007      0.25801  
CONSTANT     -6.1586E-016    0.0061487 -1.0016E-013       1.0000  1.1666E-028  
 
Least Squares Estimation 
------------------------ 
Dependent Variable = C        
Estimation Range =  1          90         
Number of Observations = 90           
Mean of Dependent Variable = 1.6482       
Standard Error of Dependent Variable = 0.67455      
 
R-Square = 0.99231      R-Square Adjusted = 0.99204      
Standard Error of the Estimate = 0.060192     
Log-Likelihood = 127.26       
Log Ammemiya Prediction Criterion (APC) =  -5.5769      
Log Akaike Information Criterion (AIC) =  -5.5770      
Log Schwarz Bayesian Information Criterion (BIC) =  -5.4659      
 
Sum of Squares         SS           DF          MSS            F       Prob>F 
Explained          40.185            3       13.395       3697.1  9.4659E-091 
Residual          0.31159           86    0.0036231  
Total              40.497           89      0.45502  
 
Variable        Estimated     Standard      t-Ratio         Prob      Partial 
Name          Coefficient        Error        86 DF         >|t|   Regression 
Q                 0.90668     0.025625       35.383  4.9455E-053      0.93572  
PF                0.42278     0.014025       30.145  1.7169E-047      0.91354  
LF                -1.0645      0.20007      -5.3206  8.1016E-007      0.24765  
CONSTANT           1.1873     0.025916       45.811  3.4012E-062      0.96064  

 
The end of the estimation output produces a summary of the panel data analysis. 
Three sets of hypothesis testing for fixed and random effects are given. Based on the 
Wald F-test and the Breusch-Pagan LM test, it is clear that there exist both fixed 
effects and random effects for this model. Based on the Hausman specification test, 
however, there is no significant difference between the fixed and random effects.  
 

 
Panel Data Model Estimation Procedure: 
(1) Pooled Regression 
(2) Between-Groups Regression 
(3) Fixed Effects (Within-Groups) Regression 
(4) Random Effects (Weighted Within-Groups) Regression 
 
Wald F Test Statistic for Fixed Effects 
F(   5,  81) =       57.732  
 
Breusch-Pagan LM Test Statistic for Random Effects 
Chi-Sq(   1) =       334.85  
 
Hausman’s Test for Fixed and Random Effects 
Chi-Sq(   3) =      0.75471  
 
Within-Groups Estimates: 
       Fixed         S.E.       Random         S.E. 
     0.91928     0.029890      0.90668     0.026404  
     0.41749     0.015199      0.42278     0.014451  
     -1.0704      0.20169      -1.0645      0.20615  
-6.1586e-016    0.0063356       1.1873     0.026704  
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One-Way Effects: 
Section/Period      Fixed         S.E.       Random         S.E. 
      1.0000       9.7059      0.19323       9.6378      0.18313  
      2.0000       9.6647      0.19908       9.5979      0.18716  
      3.0000       9.4970      0.22505       9.4408      0.20686  
      4.0000       9.8905      0.24185       9.7780      0.21918  
      5.0000       9.7300      0.26102       9.6299      0.23371  
      6.0000       9.7930      0.26374       9.6831      0.23544 

 
Finally, within-groups estimates of the slope parameters and the individual intercept 
parameters are presented for the fixed effects and random effects models, 
respectively. Note that the estimated fixed effects, derived from the deviation 
approach, are the same as those of dummy variables approach. Furthermore, the 
random effects are similar to the fixed effects, reinforcing the result of the Hausman 
specification test that there is no significant difference between the two models. 
 

 
Notice that the procedure panel1 is designed for study of individual (cross-
section) effects. To study the time effects, swap the panel definition n and t and 
rearrange the stacked data series accordingly. For example, in lesson16.2, you can 
insert the following statements (with comments for clarity) between lines 10 and 11: 
 
@ re-arrange data, then swap n and t @ 
cs=vec(reshape(cs,n,t)); 
qs=vec(reshape(qs,n,t)); 
pfs=vec(reshape(pfs,n,t)); 
lfs=vec(reshape(lfs,n,t)); 
n=15; 
t=6; 
 
We leave the estimation and interpretation of the time period effects as an exercise. 
 
Once you understand and master the idea of one-way panel data analysis, it is 
straightforward to extend it to two-way analysis. Both cross-section and time period 
effects are analyzed simultaneously under the respective assumptions of fixed effects 
and random effects. Greene (1999) presented such an extension as two exercises in 
Chapter 14. We implement the two-way analysis in the module program 
PANEL2.GPE, which extends the module PANEL1.GPE for one-way analysis 
used in Lesson 16.2. You may want to examine the code of PANEL2.GPE in 
comparison with the outlined formula of Greene (1999), pp. 587-589. In essence, the 
two-way analysis runs five regressions: a pooled regression, two between-groups 
(time periods and cross sections) regressions, and two within-groups (full deviations 
and partial deviations) regressions. From these regression estimations, we calculate 
overall, cross section, and time period effects. As with one-way analysis, statistics 
for testing fixed effects, random effects, and for comparing fixed and random effects 
are computed. The module program PANEL2.GPE hides the details of 
implementation from all but the most curious eyes. PANEL2.GPE can be found in 
Appendix B-4 and it is installed in the GPE subdirectory.  
 

Lesson 16.3: Two-Way Panel Data Analysis 

Extending the analysis of one-way effects, in this example we re-estimate the airline 
services production model to consider the two-way effects. We include 
PANEL2.GPE at the end of the program. Similar to the one-way analysis, two-way 
analysis is done with the statement (see line 14 of lesson16.3 below): 
 
call panel2(y,x,n,t); 
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where y, the dependent variable, and x, the independent variables, are stacked 
according to the panel definition of n blocks (cross sections) of t observations (time 
periods). The rest of the program for two-way analysis is identical to the previous 
lesson for one-way analysis.  
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/* 
Lesson 16.3: Two-Way Panel Data Analysis 
Cost of Production for Airline Services III 
*/ 
use gpe2; 
output file = gpe\output16.3 reset; 
load data[91,6] = gpe\airline.txt; 
panel = data[2:91,1:2];   @ panel definition @ 
n=6; 
t=15; 
 
/* stacked data series, by sections */ 
cs = ln(data[2:91,3]);    @ log cost (stacked) @ 
qs = ln(data[2:91,4]);    @ log output (stacked) @ 
pfs = ln(data[2:91,5]);   @ log fuel price (stacked) @ 
lfs = data[2:91,6];       @ load factor (stacked) @ 
xs = qs~pfs~lfs; 
 
call reset; 
_names = {"c","q","pf","lf"}; 
 
call panel2(cs,xs,n,t); 
 
end; 
 
#include gpe\panel2.gpe; 
 
It takes five regression estimations to carry out two-way panel data analysis. To save 
space, we will report only the summary information as follows: 
 

Panel Data Model Estimation Procedure: 
(1) Pooled Regression 
(2) Between-Groups (Cross Sections) Regression 
(3) Between-Groups (Time Periods) Regression 
(4) Fixed Effects (Within-Groups) Regression 
(5) Random Effects (Weighted Within-Groups) Regression 
 
Wald F Test Statistic for Fixed Effects 
F(  19,  67) =       23.102  
 
Breusch-Pagan LM Test Statistic for Random Effects 
Chi-Sq(   2) =       336.40  
 
Hausman’s Test for Fixed and Random Effects 
Chi-Sq(   3) =       183.54  
 
Within-Groups Estimates: 
       Fixed         S.E.       Random         S.E. 
     0.81725     0.031851      0.90237     0.029742  
     0.16861      0.16348      0.42418     0.016306  
    -0.88281      0.26174      -1.0531      0.22948  
 6.1829e-016    0.0054155       1.0109     0.025968  
 
Two-Way Effects: 
                    Fixed       Random 
     Overall       12.667       1.6784  
 
Cross Sections Effects: 
    Sections        Fixed       Random 
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      1.0000      0.12833       7.9348  
      2.0000     0.065495       7.8933  
      3.0000     -0.18947       7.7292  
      4.0000      0.13425       8.0709  
      5.0000    -0.092650       7.9171  
      6.0000    -0.045956       7.9710  
 
Time Periods Effects: 
     Periods        Fixed       Random 
      1.0000     -0.37402   -0.0023032  
      2.0000     -0.31932   0.00074765  
      3.0000     -0.27669    0.0030529  
      4.0000     -0.22304    0.0049901  
      5.0000     -0.15393   0.00044843  
      6.0000     -0.10809   -0.0013027  
      7.0000    -0.076864   -0.0011691  
      8.0000    -0.020733  -0.00015766  
      9.0000     0.047220    0.0025912  
      10.000     0.091728   -0.0018190  
      11.000      0.20731   -0.0018378  
      12.000      0.28547   0.00047461  
      13.000      0.30138    0.0022213  
      14.000      0.30047    0.0027990  
      15.000      0.31911    0.0043389 

 
From the two-way analysis, we can see that the model exhibits significant fixed 
effects and random effects. The magnitude and the pattern of the two effects are 
different. From examining the “Time Periods Effects” in the output, we see that the 
fixed effects are larger than the random effects. On the other hand, we see that for 
the “Cross Sections Effects,” the magnitude of the random effects is greater than that 
of the fixed effects. 
 

 

Remember that to analyze one-way (time or individual) effects, PANEL1.GPE 
should be included. PANEL2.GPE is used for analyzing two-way (time and 
individual) effects. Furthermore, both modules are capable of dealing with missing 
observations or unbalanced panels. The missing data observations must be 
identified with GAUSS internal notation of missing value. See example lessons of 
Chapter 9 for more details. 
 

Seemingly Unrelated Regression System 

The classical panel data analysis investigates only the intercept difference across 
individuals or time periods. Consider a more general specification of the model:  
 
Yit = Xitβi + εit (i=1,2,...,N; t=1,2,...,T) 
 
Let Yi = [Yi1,Yi2,...,YiT]', Xi = [Xi1,Xi2,...,XiT]', and εi = [εi1,εi2,...,εiT]'. The stacked N 
equations (T observations each) system is Y = Xβ + ε, or  
 









Y1

Y2
 …
YN

 = 








X1  0 …  0

  0 X2 …  0
 … … …  …
 0  0 … XN

 β + 






ε1

ε2
 …
εN

  

 
Notice that not only the intercept but also the slope terms of the estimated parameters 
are different across individuals. Of course, the restrictions of identical slope terms 
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across individuals may be imposed for direct comparison with the classical methods. 
The error structure of the model is summarized as follows:  
 
E(ε) = 0  
E(Xε) = 0  
E(εε') = Σ⊗I 
 
where Σ = [σij, i,j=1,2,...N] is the NxN variance-covariance matrix and I is a T×T 
identity matrix. Notice that contemporaneous correlation across individuals is 
assumed, although the assumption of no serial correlation is implied. The error 
structure of this model is different than that of the random effects model described 
above.  
 
System estimation techniques such as 3SLS and FIML should be used for parameter 
estimation in this kind of model, which is seemingly unrelated regression estimation 
in the current context. The SUR estimation method was discussed in Chapter XIII. 
Denote b and S as the estimated β and Σ, respectively. Then,  
 
b = [X'(S-1⊗I)X]-1X'(S-1⊗I)y 
Var(b) = [X'(S-1⊗I)X]-1 

 

and S = ee'/T, where e = y-Xb is the estimated error ε.  
 
The advantage of the SUR estimation method for panel data analysis is that it not 
only allows the intercept difference between individuals (as in the fixed and random 
effects models), but also allows the slope to vary among individuals. If the slope 
parameters are assumed to be constant across individuals, the method differs from 
the random effects model in the fundamental assumption of the covariance structure. 
By allowing cross-section correlation, the restricted SUR method is more general 
than the classical random effects model. 
 

Lesson 16.4: Panel Data Analysis for Investment Demand: Deviation Approach 

To demonstrate the different approaches for panel data analysis, we consider the 
following classical example of investment demand (Greene, 1999, Chap. 15; 
Grunfeld and Griliches, 1960; Boot and deWitt, 1960): 
 
Iit = αi + β1i Fit + β2i Cit + εit 
 
Where i = 5 firms: General Motors, Chrysler, General Electric, 

Westinghouse, and United Steel. 
 t = 20 years: 1935-1954. 
 Iit = Gross investment. 
 Fit = Market value. 
 Cit = Value of the stock of plant and equipment. 
 
The panel data of 20 years for 5 companies are available in 5 separate files, one for 
each company. The data files used are: ifcgm.txt (General Motor), ifcch.txt 
(Chrysler), ifcge.txt (General Electric), ifcwe.txt (Westinghouse), ifcus.txt (United 
Steel). 
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First we assume that β1i = β1 and β2i = β2 for all firms. In other words, we are 
estimating the restricted SUR model by assuming that the slope parameters do not 
vary across firms. To estimate and compare the fixed effects and random effects for 
the model, we use the following program which is essentially the same as that of 
lesson16.2. Since the five company data sets are read in separately as time series, 
some manipulation is necessary to convert them into a stacked vector of dependent 
variables and a stacked matrix of independent variables (see lines 8 through 14 in 
lesson16.4 below). The stacked data format is required in order to use the 
PANEL1.GPE module program. 
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/* 
Lesson 16.4: Panel Data Analysis for Investment Demand 
Deviation Approach 
*/ 
use gpe2; 
output file = gpe\output16.4 reset; 
 
load gmc[21,4] = gpe\ifcgm.txt; 
load chc[21,4] = gpe\ifcch.txt; 
load gec[21,4] = gpe\ifcge.txt; 
load wec[21,4] = gpe\ifcwe.txt; 
load usc[21,4] = gpe\ifcus.txt; 
i=gmc[2:21,2]~chc[2:21,2]~gec[2:21,2]~wec[2:21,2]~usc[2:21,2]; 
f=gmc[2:21,3]~chc[2:21,3]~gec[2:21,3]~wec[2:21,3]~usc[2:21,3]; 
c=gmc[2:21,4]~chc[2:21,4]~gec[2:21,4]~wec[2:21,4]~usc[2:21,4]; 
 
n=5;    @ 5 cross sections (firms) @ 
t=20;   @ 20 time periods (years) @ 
 
@ stacked data series, by firms @ 
ys = vec(i);  
xs = vec(f)~vec(c); 
 
call reset; 
_names={"i","f","c"}; 
 
call panel1(ys,xs,n,t); 
 
end; 
 
#include gpe\panel1.gpe; 
 
As described earlier, using the module PANEL1.GPE to estimate the one-way fixed 
and random effects gives us four sets of regression output: the pooled regression, 
between-groups means regression, within-groups full deviations regression, and 
within-groups partial deviations regression. You should check the details of each 
regression output. We present only the summary results of the analysis.  
 

Panel Data Model Estimation Procedure: 
(1) Pooled Regression 
(2) Between-Groups Regression 
(3) Fixed Effects (Within-Groups) Regression 
(4) Random Effects (Weighted Within-Groups) Regression 
 
Wald F Test Statistic for Fixed Effects 
F(   4,  93) =       58.956  
 
Breusch-Pagan LM Test Statistic for Random Effects 
Chi-Sq(   1) =       453.82  
 
Hausman’s Test for Fixed and Random Effects 
Chi-Sq(   2) =     0.033043  
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Within-Groups Estimates: 
       Fixed         S.E.       Random         S.E. 
     0.10598     0.015891      0.10489     0.015112  
     0.34666     0.024161      0.34602     0.024770  
-1.6507e-014       6.9118      -8.8082       8.1293  
 
One-Way Effects: 
Section/Period      Fixed         S.E.       Random         S.E. 
      1.0000      -76.067       66.886      -69.356       58.234  
      2.0000      -29.374       19.814      -33.176       19.376  
      3.0000      -242.17       33.321      -213.56       31.028  
      4.0000      -57.899       19.703      -57.575       19.263  
      5.0000       92.539       33.947       72.218       31.535 

 
It is interesting to find the classical estimates of fixed effects and random effects are 
similar. This is consistent with the very small Hausman specification test statistic 
shown in the output. 
 

Lesson 16.5: Panel Data Analysis for Investment Demand: SUR Method 

By restricting β1i = β1 and β2i = β2 for all firms, the restricted SUR estimation 
method is used in direct comparison with the classical methods of panel data 
analysis. In Chapter XIII we implemented and estimated a system of linear demand 
equations using the SUR estimation method. The use of the input control variable 
_eq in estimating the simultaneous linear equations system was discussed in detail 
in Chapter XIII. In Chapter III we introduced the implementation of restricted least 
squares with the use of input control variable _restr. Parameter restrictions across 
equations in a linear equations system were again discussed in Chapter XIII. You 
may want to review these chapters and the relevant examples before working on this 
lesson. 
 
In Lesson 16.5, the restricted SUR method is estimated using iterative three-stage 
least squares (_method=3). The result is the same as full information maximum 
likelihood.  
 

 
 
 
 

1 
2 
 

3 
4 
5 
6 
7 
8 
9 

10 
 

11 
12 

 
13 

 
14 

 
 
 

/* 
Lesson 16.5: Panel Data Analysis for Investment Demand Function 
Seemingly Unrelated Regression Estimation 
*/ 
use gpe2; 
output file = gpe\output16.5 reset; 
 
load gmc[21,4] = gpe\ifcgm.txt; 
load chc[21,4] = gpe\ifcch.txt; 
load gec[21,4] = gpe\ifcge.txt; 
load wec[21,4] = gpe\ifcwe.txt; 
load usc[21,4] = gpe\ifcus.txt; 
i=gmc[2:21,2]~chc[2:21,2]~gec[2:21,2]~wec[2:21,2]~usc[2:21,2]; 
f=gmc[2:21,3]~chc[2:21,3]~gec[2:21,3]~wec[2:21,3]~usc[2:21,3]; 
c=gmc[2:21,4]~chc[2:21,4]~gec[2:21,4]~wec[2:21,4]~usc[2:21,4]; 
 
yvar=i; 
xvar=f~c; 
 
call reset; 
 
_names={"i-gm","i-ch","i-ge","i-we","i-us", 
        "f-gm","f-ch","f-ge","f-we","f-us", 
        "c-gm","c-ch","c-ge","c-we","c-us"}; 
      @ I  I  I  I  I  F F F F F C C C C C 1@ 
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15 
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_eq = {-1  0  0  0  0  1 0 0 0 0 1 0 0 0 0, 
        0 -1  0  0  0  0 1 0 0 0 0 1 0 0 0, 
        0  0 -1  0  0  0 0 1 0 0 0 0 1 0 0, 
        0  0  0 -1  0  0 0 0 1 0 0 0 0 1 0, 
        0  0  0  0 -1  0 0 0 0 1 0 0 0 0 1}; 
 
         @ F C|F C|F C|F C|F C|q @ 
_restr = {-1 0 1 0 0 0 0 0 0 0 0, 
          -1 0 0 0 1 0 0 0 0 0 0, 
          -1 0 0 0 0 0 1 0 0 0 0, 
          -1 0 0 0 0 0 0 0 1 0 0, 
          0 -1 0 1 0 0 0 0 0 0 0, 
          0 -1 0 0 0 1 0 0 0 0 0, 
          0 -1 0 0 0 0 0 1 0 0 0, 
          0 -1 0 0 0 0 0 0 0 1 0}; 
 
_iter=200; 
_method=3; 
call estimate(yvar,xvar); 
 
end; 
 
You should run the program to get the full report of the estimation results. The 
output of the restricted SUR estimation is lengthy, but can be summarized as 
follows: 
 

Simultaneous Linear Equations Estimation 
---------------------------------------- 
Number of Endogenous Variables = 5            
Number of Predetermined Variables = 11           
Number of Stochastic Equations = 5            
Number of Observations = 20           
Estimation Range =  1          20         
 
Three Stages Least Squares Estimation 
Maximum Number of Iterations = 200          
Tolerance = 0.001 
… 
System R-Square = 0.59471      
Log-Likelihood = -490.75300   
 
Equation     Variable        Estimated           Asymptotic 
Name         Name          Coefficient    Std Error      t-Ratio 
I-GM         F-GM             0.033825    0.0063427       5.3330  
             C-GM              0.15536     0.016608       9.3541  
             CONSTANT           360.69       51.871       6.9536  
I-CH         F-CH             0.033825    0.0063427       5.3330  
             C-CH              0.15536     0.016608       9.3541  
             CONSTANT           43.839       6.9344       6.3220  
I-GE         F-GE             0.033825    0.0063427       5.3330  
             C-GE              0.15536     0.016608       9.3541  
             CONSTANT          -25.543       13.842      -1.8454  
I-WE         F-WE             0.033825    0.0063427       5.3330  
             C-WE              0.15536     0.016608       9.3541  
             CONSTANT           6.8931       4.7102       1.4634  
I-US         F-US             0.033825    0.0063427       5.3330  
             C-US              0.15536     0.016608       9.3541  
             CONSTANT           292.18       27.650       10.567  
 
Asymptotic Variance-Covariance Matrix of Equations 
I-GM               39110.  
I-CH               3359.9       575.64  
I-GE               312.36      -49.662       670.86  
I-WE               317.11       30.538       178.24       96.919  
I-US               9742.5       1695.0       919.47       622.51       12240.  
                     I-GM         I-CH         I-GE         I-WE         I-US  
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To compare the fixed effects, random effects, and SUR method, the estimated 
parameters of the investment function are tabled together. The individual effects for 
three methods (under different covariance assumptions) are shown in the rows of 
intercept terms for each firm. Numbers in parentheses are the estimated standard 
errors. 
 
  Fixed Effects Random Effects SUR Method 
Slope F 0.10598 (0.01589) 0.10489 (0.01511) 0.033825 (0.006343) 
 C 0.34666 (0.02416) 0.34602 (0.02477)  0.15536 (0.01661) 
Intercept GM -76.067 (66.886)      -69.356 (58.234) 360.69 (51.871) 
 CH -29.374 (19.814)      -33.176 (19.376) 43.839 (6.9344) 
 GE -242.17 (33.321)      -213.56 (31.028) -25.543 (13.842) 
 WE -57.899 (19.703)      -57.575 (19.263) 6.8931 (4.7102) 
 US 92.539 (33.947)       72.218 (31.535) 292.18 (27.650) 
 
Although the estimates from the models of fixed effects and random effects are 
similar, the parameter estimates obtained from the SUR estimation method are quite 
different. The impact of different covariance assumptions when estimating the model 
is obvious. Since the SUR method is typically applied to estimating a model with 
varying slope as well as intercept terms, we can easily estimate the unrestricted 
model by removing (or commenting out) the restriction statement in line 16 of 
lesson16.5 above. By comparing the results to those of the restricted model, the 
validity of the assumption of constant slopes may be tested. The following table 
presents the comparison results of restricted and unrestricted estimates (standard 
errors are in parentheses). The large Likelihood Ratio statistic of the two models, 
calculated as 2 × [-459.092 -(-490.753)] = 63.322, leads us to the conclusion that the 
slope parameters are not the same across the five firms under consideration. 
 

Eq. Variable Unrestricted Model Restricted Model 
I-GM F 0.12195 (0.020243) 0.033825 (0.006343) 
 C 0.38945 (0.031852) 0.15536 (0.01661) 
 Constant -173.04 (84.280) 360.69 (51.871) 
I-CH F 0.067451 (0.017102) 0.033825 (0.006343) 
 C 0.30507 (0.026067) 0.15536 (0.01661) 
 Constant 2.3783 (11.631) 43.839 (6.9344) 
I-GE F 0.037019 (0.01177) 0.033825 (0.006343) 
 C 0.11695 (0.021731) 0.15536 (0.01661) 
 Constant -16.376 (24.961) -25.543 (13.842) 
I-WE F 0.053861 (0.010294) 0.033825 (0.006343) 
 C 0.026469 (0.037038) 0.15536 (0.01661) 
 Constant 4.4891 (6.0221) 6.8931 (4.7102) 
I-US F 0.0886 (0.045278) 0.033825 (0.006343) 
 C 0.3093 (0.11783) 0.15536 (0.01661) 
 Constant 138.01 (94.608) 292.18 (27.650) 
Log-Likelihood -459.092 -490.753 

 
In summary, we have presented the classical methods of panel data analysis: fixed 
effects and random effects. A more general SUR approach was introduced, which 
allowed us to consider contemporaneous correlation across individuals, which the 
classical methods ignore. Misspecification issues such as autocorrelation and 
heteroscedasticity in panel data are important. In Chapter X we discussed the 
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problem of autocorrelation associated with time series, while heteroscedasticity in 
cross-sectional models was covered in Chapter IX. The combination of 
autocorrelation and heteroscedasticity is common in models for panel data. The 
treatment of autocorrelation for time-period effects and heteroscedasticity for cross-
section effects would be an integrated and complicated application of this and the 
two aforementioned chapters, which we will not discuss here. 





 

 

XVII 
Least Squares Prediction  

 
The art of forecasting lies in building a practical model for real world application, 
and in the preceding chapters, we have presented all the tools necessary to do so in 
GPE. This chapter introduces the few remaining GPE control variables dedicated 
solely to least squares prediction and time series forecasting. 
 
Least squares prediction is nothing more than the extrapolation of the estimated 
regression model from a set of historical observations into the unknown future. It is 
assumed that given the stable model structure, the future state is predictable from the 
replication of history. 
 

Predicting Economic Growth 

In this chapter, we will consider a “conventional wisdom” that the future state of the 
economy (measured in terms of real GDP growth) is predictable by an index called 
the Composite Economic Leading Indicator, which is assembled and updated 
monthly by the Conference Board and U.S. Department of Commerce. The Indicator 
is a weighted average of 10 short-run economic factors, such as stock prices and 
average hours worked. It is often reported in the media that this Leading Indicator 
can predict the direction of the economy 3 to 9 months into the future.  
 
The lessons in this chapter use the data file gdp96.txt. It consists of four variables: 
QUARTER (quarterly index), GDP (Gross Domestic Product in billions of dollars), 
PGDP (Implicit Price Deflator of GDP, 2000 = 100), and LEADING (Composite 
Economic Leading Indicator, 1996 = 100). We note that the quarterly series 
LEADING is the last month of the quarter. 
 
The target variable is the annual growth rate of real GDP. The following GAUSS 
statements generate the required data series of GDP growth: 
 
rgdp = 100*gdp./pgdp; 
growth = 100*(rgdp-lagn(rgdp,4))./lagn(rgdp,4); 
 
First, Real Gross Domestic Product is expressed in billions of 2000 dollars. Then, 
GDP growth is measured as the annual percentage rate of change in real GDP from 
the same quarter last year. Although the causal relationship of the variables 
LEADING and GROWTH is well grounded, we have to make sure that these two 
variables are cointegrated. It turns out that both variables are stationary or I(0) 
processes and thus do not have unit roots. Moreover, the two variables are 
cointegrated. We leave the details of the unit roots and cointegration tests of 
LEADING and GROWTH as exercises. See also Chapter XVI for a thorough 
review. 
 
We are now ready to construct a working model suitable for short-run structural 
estimation and prediction. Since forecasting is a time-sensitive business, we reserve 
the last two years of data for ex-post forecast evaluation. In other words, we are 
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going to estimate the model using data through 2001, and see how well the model 
predicts real GDP growth in 2002 and 2003. We need to construct a working model 
not only for historical estimation but also for forecasting18.  
 
If the variable LEADING can actually predict GROWTH several quarters ahead, 
then a distributed lag structure must be specified. As a result of trial and error, we 
have found that both the first and  fifth quarters lag of LEADING are useful in 
explaining historical GROWTH. In addition, the momentum effect of GDP growth is 
captured with a lagged dependent variable. The model error is identified to be a 
MA(4) process. By construction, the dependent variable GROWTH is the annual rate 
of GDP growth based on the same quarter in the previous year. The specification of 
fourth-order moving average for the model error term should not, therefore, be 
surprising. Of course, this may not be the only working specification of the model 
you can construct. Throughout this book we have given examples of model building. 
We leave the process of finding the best model for forecasting to you. However, we 
emphasize the importance of using GPE variables such as _pdl and _dlags to 
determine the short-run dynamics of the model structure.  
 
We now turn to new forecasting features of the GPE package. In GPE, the work of 
least squares prediction is done by a procedure called forecast. Forecasts are 
usually computed after the estimation of the model. Calling forecast is similar to 
calling estimate. In calling forecast, you need to specify only the dependent 
and independent variables (in that order). The estimated parameters and the 
associated covariance matrix of the regression model in the immediately preceeding 
estimate statement are used to compute the forecasts for the same model. The 
forecasting period defaults to begin one observation after the estimation period ends 
and continues to the end of the data series. If future observations of the dependent 
variable become available, ex-post forecast error statistics based on the results of 
least squares prediction can be used for model evaluation.  
 
If there are longer series of right-hand side explanatory variables, ex-ante forecasts 
can be computed upon request. The GPE control variables _fbegin and _fend are 
used to specify the beginning and ending of the multiple steps ahead of forecasts. In 
most cases, ex-ante forecasting depends on the forecasts or scenario assumptions 
made regarding the explanatory independent variables. If the Composite Economic 
Leading Indicator can predict the economy three to nine months ahead as claimed, 
our model certainly can point out the direction of GROWTH about one year in 
advance of current Leading Indicator. Furthermore, by making scenario assumptions 
about the variable LEADING (for example assuming no change in LEADING for 
the next year or so) we can predict the future value of GROWTH even further out on 
the horizon. 
 

Lesson 17.1: Ex-Post Forecasts and Forecast Error Statistics 

Here is the program predicting economic growth with the Composite Economic 
Leading Indicator: 
 
 

                                                           
18 This chapter is printed based on the 2004 forecasts, and it is subject to annual revision and 
updates. The latest version of forecasts can be found in the e-book copy of this chapter on the 
CD-ROM.  
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/* 
** Lesson 17.1: Ex-Post Forecasts and 
** Forecast Error Statistics 
*/ 
use gpe2; 
output file = gpe\output17.1 reset; 
 
n=181;  @ 1959.1 to 2003.4 @ 
load z[n,4] = gpe\gdp96.txt; 
gdp = z[2:n,2]; 
pgdp = z[2:n,3]; 
leading = z[2:n,4]; 
rgdp = 100*gdp./pgdp; 
growth = 100*(rgdp-lagn(rgdp,4))./lagn(rgdp,4); 
xvar = lagn(leading,1)~lagn(leading,5); 
 
/* Model Estimation */ 
call reset; 
_rstat=1; 
_dlags=1; 
/* 
_bgtest=4; 
_ebtest=4; 
_acf=12; 
_acf2=12; 
*/ 
_arma={0,4}; 
_iter=100; 
_method=5; 
 
_begin=9;  @ 1961Q1 @ 
_end=172;  @ 2001Q4 @ 
call estimate(growth,xvar); 
 
/* Forecasting */ 
_fstat=1; 
_fplot=1; 
@ _dynamic=1; @ 
call forecast(growth,xvar); 
 
end; 
 
The program is divided into two main sections: estimation and forecasting. Notice 
that line 10 assigns the matrix of independent variables to the variable XVAR. 
XVAR is then passed to both estimate (line 19) and forecast (line 22). 
Modifying the independent variable matrix can quickly be done by editing only line 
10.  
 
The distributed lag structure of the model includes the first and fifth quarters lags of 
the independent variable LEADING (line 10) and a one quarter lag of the dependent 
variable GROWTH (line 13). The first five quarters of data series are lost due to 
variable transformation. Through model identification, we determine that the error 
structure follows an MA(4) process. Using the QHC method for maximum 
likelihood estimation (lines 15-16), the model is estimated from the first quarter of 
1961 (or the 9th observation) to the fourth quarter of 2001 (or the 172nd 
observation): 
 
_begin = 9; 
_end = 172; 
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The _begin statement (line 17) safely blocks out the unusable data series for 
estimation, while _end statement (line 18) reserves the rest of the data series (the 
last two years of 2002 and 2003) for ex-post forecast evaluation. The output of the 
estimated model follows: 
 

Least Squares Estimation 
------------------------ 
Dependent Variable = Y        
Estimation Range =  9          172        
Number of Observations = 164          
Mean of Dependent Variable = 3.4310       
Standard Error of Dependent Variable = 2.3724       
 
Maximum Likelihood Estimation for Nonlinear Error Structure 
ARMA( 0, 4) Autoregressive Moving Average Process 
Maximum Number of Iterations = 100          
Step Size Search Method = 0            
Convergence Criterion = 0            
Tolerance = 0.001        
 
Initial Result: 
Log Likelihood =      -220.68  
Parameters =      0.64250      0.32175     -0.33188       1.6991      0.00000      
0.00000      0.00000      0.00000  
 
Using Quadratic Hill-Climbing Algorithm 
Iteration =  1   Step Size =  1.3310  Log Likelihood =      -194.00  
Parameters =      0.65828      0.30965     -0.32007       1.6881    -0.093052     
-0.32130    -0.098387      0.49620  
… 
Iteration =  23  Step Size =  1.0000  Log Likelihood =      -190.95  
Parameters =      0.70158      0.29521     -0.30270       1.3044     -0.14822     
-0.18625    -0.049189      0.66183  
 
Final Result: 
Iterations = 23          Evaluations = 241900       
Log Likelihood =      -190.95  
Parameters =      0.70158      0.29521     -0.30270       1.3044     -0.14822     
-0.18625    -0.049189      0.66183  
Gradient Vector =     -0.24025      -5.8682      -5.7777    -0.070409    
0.0014879  -0.00099907  -0.00010876    0.0028283  
 
 
                Parameter    Std.Error      t-Ratio 
MA(1)            -0.14822     0.080464      -1.8421  
MA(2)            -0.18625     0.078709      -2.3663  
MA(3)           -0.049189     0.089459     -0.54985  
MA(4)             0.66183     0.081899       8.0810  
 
NOTE: R-Square, AOV are computed from original series. 
 
R-Square = 0.89257      R-Square Adjusted = 0.89055      
Standard Error of the Estimate = 0.77522      
Log-Likelihood = -190.95      
Log Ammemiya Prediction Criterion (APC) =  -0.46042     
Log Akaike Information Criterion (AIC) =  -0.46043     
Log Schwarz Bayesian Information Criterion (BIC) =  -0.38483     
 
Sum of Squares         SS           DF          MSS            F       Prob>F 
Explained          849.84            3       283.28       459.88  2.0835E-078 
Residual           98.559          160      0.61599  
Total              917.39          163       5.6281  
 
Variable        Estimated     Standard      t-Ratio         Prob      Partial 
Name          Coefficient        Error       160 DF         >|t|   Regression 
Y-1               0.70158     0.050990       13.759  6.3428E-029      0.54196  
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X1                0.29521     0.038418       7.6842  1.4572E-012      0.26956  
X2               -0.30270     0.038370      -7.8889  4.5030E-013      0.28004  
CONSTANT           1.3044      0.35681       3.6557   0.00034744     0.077088  
 
Squared Correlation of Observed and Predicted = 0.89288      
Sum of Squared Residuals = 98.559       
Sum of Absolute Residuals = 95.131       
Sum of Residuals = 6.87950E-001 
First-Order Rho = -0.021073    
Durbin-Watson Test Statistic = 1.9992       
Durbin-H Statistic = 0.0071582    

 

 

Although the estimated model with MA(4) error structure looks satisfactory, add the 
following few lines before the estimation call (line 19): 
 
_bgtest = 4; 
_ebtest = 4; 
_acf = 12; 
_acf2 = 12; 
 
and rerun the model to verify the serial correlation problem in the conditional mean 
and variance,19 if any.  
 
The next section of the program (lines 20 to 22), calls for least squares prediction 
based on the immediate previously estimated model. Simply calling forecast 
specifies the default prediction period, which begins after the last observation used in 
the regression estimation, and ends with the end of the sample. We note that the 
beginning and end of the prediction period can be controlled by two GPE input 
variables, _fbegin and _fend, respectively.  
 
Ex-post forecast error statistics are computed by setting the input control variable 
_fstat=1 (line 20). This control variable is similar to its counterpart, _rstat, 
used for estimate. In addition, plotting of the forecasts and actuals can provide a 
visual clues as to the model’s performance. This is done in line 21 by setting the 
input control variable _fplot = 1. 
 
Here is the forecast output: 
 

Least Squares Prediction 
------------------------ 
Dependent Variable = Y        
Prediction Range =  173        180         
Using Regression Coefficients: 
     0.70158      0.29521     -0.30270       1.3044     -0.14822     -0.18625    
-0.049189      0.66183  
 
 Observation     Observed    Predicted     Residual    Std.Error 
         173      1.15838      0.97517      0.18321      0.81319  
         174      1.90558      2.34159     -0.43601      1.04541  
         175      2.97348      2.95954      0.01393      1.20889  
         176      2.73318      3.31610     -0.58292      1.29304  
         177      2.16124      2.60103     -0.43979      1.30589  
         178      2.34095      1.81225      0.52870      1.31317  
         179      3.61795      2.29109      1.32686      1.31651  
         180      4.29540      3.78341      0.51199      1.31871  
 
R-Square Between Observed and Predicted = 0.59083      

                                                           
19 The dynamic model may be correlated in terms of conditional variance, identifiable with 
ARCH or GARCH specification. 
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Mean Error (ME) = 0.13825      
Mean Absolute Error (MAE) = 0.50293      
Mean Squared Error (MSE) = 0.38241      
Root Mean Squared Error (RMSE) = 0.61839      
Mean Absolute Percent Error (MAPE) = 19.003       
Mean Squared Percent Error (MSPE) = 455.00       
Root Mean Squared Percent Error (RMSPE) = 21.331       
Theil Inequality Coefficient = 0.11353      
Decomposition: 
  Proportion Due to Bias = 0.049978     
  Proportion Due to Variance = 0.028836     
  Proportion Due to Covariance = 0.92119      
  Proportion Due to Regression = 0.031276     
  Proportion Due to Disturbance = 0.91875      

 
Each observation in the forecast period is listed, complete with observed and 
predicted values. Residuals (or forecast errors) and their standard errors are also 
given. Since we have put aside the last two years (eight quarters) of the GROWTH 
data series to be compared with the forecasts, ex-post forecast error statistics, 
including mean squared error and its components, are computed from the last eight 
quarters of GDP growth. Moreover, forecasts in pairs with actuals are plotted 
together with the band of two standard errors. We note that the upper and lower 
bounds of forecast are the minimal spread of the prediction. In reality, the forecast 
interval tends to be much wider due to additional non-sampling errors. Econometrics 
texts describe the model evaluation based on this set of forecast error statistics in 
detail. We leave judgment of the model’s performance to you.  
 
It can be shown that the method of least squares yields the best, linear, and unbiased 
predictor. Since the model is dynamic in nature (with a lagged dependent variable), 
we have an option to perform a dynamic forecast. A dynamic forecast is obtained by 
using the predicted lagged dependent variable on the right-hand side of the 
forecasting equation, instead of the actual lagged dependent variable. Let’s turn on 
the dynamic option of least squares prediction: 
 
_dynamic = 1; 
 

Make sure that the dynamic option is added before calling forecast, and run the 
program to see the result: 
 

Least Squares Prediction 
------------------------ 
Dependent Variable = Y        
Prediction Range =  173        180         
 
NOTE: Dynamic Prediction Computed. 
Using Regression Coefficients: 
     0.70158      0.29521     -0.30270       1.3044     -0.14822     -0.18625    
-0.049189      0.66183  
 
 Observation     Observed    Predicted     Residual    Std.Error 
         173      1.15838      0.97517      0.18321      0.81319  
         174      1.90558      2.28693     -0.38135      1.04597  
         175      2.97348      2.99605     -0.02257      1.20865  
         176      2.73318      3.05532     -0.32214      1.29393  
         177      2.16124      2.80886     -0.64762      1.30580  
         178      2.34095      2.26661      0.07434      1.31338  
         179      3.61795      2.23893      1.37902      1.31661  
         180      4.29540      2.81592      1.47948      1.32184  
 
R-Square Between Observed and Predicted = 0.36312      
Mean Error (ME) = 0.21780      
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Mean Absolute Error (MAE) = 0.56122      
Mean Squared Error (MSE) = 0.59985      
Root Mean Squared Error (RMSE) = 0.77450      
Mean Absolute Percent Error (MAPE) = 19.259       
Mean Squared Percent Error (MSPE) = 542.16       
Root Mean Squared Percent Error (RMSPE) = 23.284       
Theil Inequality Coefficient = 0.14566      
Decomposition: 
  Proportion Due to Bias = 0.079079     
  Proportion Due to Variance = 0.14388      
  Proportion Due to Covariance = 0.77704      
  Proportion Due to Regression = 0.0092461    
  Proportion Due to Disturbance = 0.91168      

 
As expected, the model performance deteriorates when we forecast farther ahead into 
the future. This is because the predicted value of the lagged dependent variable is 
used in place of the actual value of the lagged dependent variable. Including the 
predicted value of the lagged dependent variable simply means that each forecast 
error is compounded over the forecast period. One important characteristic of the 
dynamic forecast is that the further in the future we try to predict, the less reliable the 
forecasts we get. 
 

Lesson 17.2: Ex-Ante Forecasts  

Forecasting is a time sensitive business. At the time of this writing, new information 
on the Composite Economic Leading Indicator may become available. We could 
modify the data file gdp96.txt, or just add the new data into the program. The latter 
is especially helpful to carry out scenario ex-ante forecasts. That is, we extend the 
data further by making a scenario assumption about the Leading Indicator to predict 
GDP growth in accordance with the assumption. For example, a “constant scenario” 
would assume no change (from the last quarter of historical data) in the variable 
LEADING for the next year or so. Then, in line 7 of lesson17.2, the hypothesized 
observations of LEADING are appended at the end of historical data series as 
follows: 
 
leading = z[2:n,4]|115.0|115.0|115.0|115.0|115.0; 
 

Recall that the variable z is the original data matrix read from the data file 
gdp96.txt. Similarly, we could create a “pessimistic scenario” similar to the 
following, in which the variable LEADING declines at 2 percent over the next year: 
 
leading = z[2:n,4]|115.0|114.4|113.8|113.2|112.6; 
 
Or, we could assume an “optimistic scenario” (2 percent annual growth rate) as well:  
 
leading = z[2:n,4]|115.0|115.6|116.2|116.8|117.4; 
 
In other words, ex-ante forecasts are nothing but a crystal-ball prediction about 
uncertain future conditions. To keep the model performance in line with the available 
information, we do not use the dynamic features of the least squares prediction 
during the ex-post forecast periods. Dynamic forecast is automatic anyway, during 
the ex-ante forecast periods, since the value of the lagged dependent variable is not 
available and must first be predicted for the period that follows. 
 
The following program is almost identical to that of Lesson 17.1. Pay attention to the 
change we made in line 7 assuming a scenario for ex-ante forecast: 
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/* 
** Lesson 17.2: Ex-Ante Forecasts 
*/ 
use gpe2; 
output file = gpe\output17.2 reset; 
 
n=181;  @ 1959.1 to 2003.4 @ 
load z[n,4] = gpe\gdp96.txt; 
gdp = z[2:n,2]; 
pgdp = z[2:n,3]; 
 
/* pessimistic scenario (-2% AGR) */ 
@ leading = z[2:n,4]|115.0|114.4|113.8|113.2|112.6; @ 
/* constant scenario (0% AGR) */ 
leading = z[2:n,4]|115.0|115.0|115.0|115.0|115.0; 
/* optimistic scenario (+2% AGR) */ 
@ leading = z[2:n,4]|115.0|115.6|116.2|116.8|117.4; @ 
 
rgdp = 100*gdp./pgdp; 
growth = 100*(rgdp-lagn(rgdp,4))./lagn(rgdp,4); 
xvar = lagn(leading,1)~lagn(leading,5); 
 
/* Model Estimation */ 
call reset; 
_rstat=1; 
_dlags=1; 
_arma={0,4}; 
_iter=100; 
_method=5; 
_begin=9;  @ 1961Q1 @ 
_end=172;  @ 2001Q4 @ 
call estimate(growth,xvar); 
 
/* Forecasting */ 
_fstat=1; 
_fplot=1; 
@ _dynamic=1; @ 
call forecast(growth,xvar); 
 
end; 
 
Here is the forecasting output of the “constant scenario”: 
 

Least Squares Prediction 
------------------------ 
Dependent Variable = Y        
Prediction Range =  173        185         
 
NOTE: Dynamic Prediction Computed. 
Using Regression Coefficients: 
     0.70158      0.29521     -0.30270       1.3044     -0.14822     -0.18625    
-0.049189      0.66183  
 
 Observation     Observed    Predicted     Residual    Std.Error 
         173      1.15838      0.97517      0.18321      0.81319  
         174      1.90558      2.34159     -0.43601      1.04541  
         175      2.97348      2.95954      0.01393      1.20889  
         176      2.73318      3.31610     -0.58292      1.29304  
         177      2.16124      2.60103     -0.43979      1.30589  
         178      2.34095      1.81225      0.52870      1.31317  
         179      3.61795      2.29109      1.32686      1.31651  
         180      4.29540      3.78341      0.51199      1.31871  
         181            .      4.40031            .      1.32010  
         182            .      4.92272            .      1.32335  
         183            .      4.86545            .      1.32125  
         184            .      4.46203            .      1.32145  
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         185            .      3.78549            .      1.32217  
 
R-Square Between Observed and Predicted = 0.59083      
Mean Error (ME) = 0.13825      
Mean Absolute Error (MAE) = 0.50293      
Mean Squared Error (MSE) = 0.38241      
Root Mean Squared Error (RMSE) = 0.61839      
Mean Absolute Percent Error (MAPE) = 19.003       
Mean Squared Percent Error (MSPE) = 455.00       
Root Mean Squared Percent Error (RMSPE) = 21.331       
Theil Inequality Coefficient = 0.11353      
Decomposition: 
  Proportion Due to Bias = 0.049978     
  Proportion Due to Variance = 0.028836     
  Proportion Due to Covariance = 0.92119      
  Proportion Due to Regression = 0.031276     
  Proportion Due to Disturbance = 0.91875      

 
Similarly, we run the other two scenarios, pessimistic (LEADING decreases) and 
optimistic (LEADING increases), respectively. Instead of listing each of the 
forecasting results, we compare the respective ex-ante forecasts in the following 
table: 
 
Predicted  
GDP Growth 
(%, annual rate) 

Pessimistic (low) 
Scenario 

Constant 
Scenario 

Optimistic (high)
Scenario 

2004.1 4.41 4.41 4.41 
2004.2 4.93 4.93 4.93 
2004.3 4.69 4.87 5.05 
2004.4 3.99 4.46 4.94 
2005.1 2.92 3.79 4.65 
 
Furthermore, the following graph summarizes the ex-post and ex-ante forecasts for 
three different scenarios. The picture can tell a complicate story more clearly. 

 
What you can say about the predictability of the Composite Economic Leading 
Indicator? No matter which scenario is used the economy appears to be heading 
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towards a so-called “jobless recovery”. Will the recovery continue? Even under the 
optimistic view, the growth may not sustain by the end of 2004. It will certainly 
depend on an effective government policy to revive the growth. Only time will tell!  



 

 

Epilogue 
 

 

This is not the end of Gauss Programming for Econometricians and 
Financial Analysts! 

 
It is just the beginning. Many extensions of econometric estimation, testing, and 
forecasting techniques discussed in this book can be done with GPE. Taking 
advantage of GPE output variables for each call to the main routine estimate or 
forecast, you can write add-on programs to do advanced applications as we did 
with the GPE application modules in Appendix B. Within the scope of econometric 
models we have discussed so far, you can experiment with the following extensions: 
 
• Nonlinear ARCH-M Model Estimation and Prediction 
• Qualitative Choice Model with Heteroscedasticity 
• Panel Data Analysis with Heteroscedasticity and Autocorrelation 
 
Many important topics in econometrics we did not cover here would certainly be 
good candidates for GAUSS implementation. To name a few examples: 
 
• Monte Carlo Simulations and Bootstrapping Methods 
• Nonparametric Regression Analysis  
• Baysian Estimation and Inference 
• Benchmarking Econometric Computation 
 
Beyond GPE, you may feel ready to write your own codes for econometric and 
statistical applications. More than 400 GAUSS commands, procedures, and functions 
are available at your disposal as part of the GAUSS programming environment. As a 
consequence, we have seen powerful procedures being developed over the past 
years.  
 
Whatever your eventual goals, you will probably agree that learning econometrics 
with GPE is certainly the right first step. We have demonstrated that GAUSS is a 
programming environment built on the convenient syntax and operations of matrix 
algebra. As you step through each lesson, learning to master GPE, you also learn 
GAUSS and econometrics. From here, the next step is up to you! 
 





 

 

Appendix A  
GPE Control Variables 
 

There are two types of global control variables in GPE: input control variables and 
output control variables. For reference purposes, consider the following general 
regression equation: 
 
F(Z, β) = ε 
 
where Z is the data matrix of variables and β is the vector of parameters, which 
define the functional form F. ε is the error structure of the model. Z can be further 
decomposed as Z = [Y, X] with Y denoting the endogenous (dependent) variables 
and X the predetermined (independent) variables. If Y consists of more than one 
column, it is a system of linear equations. For a classical regression model, Y = 
f(X, β) + ε or F(Z, β) = Y - f(X, β) = ε. The simple case of single linear regression 
equation is written as: 
 
Y = Xβ + ε  
 
where Y is the left-hand side (LHS) or dependent variable, and X denotes the right-
hand side (RHS) explanatory or independent variables. β is the vector of estimated 
parameters, and ε is the vector of estimated residuals. 
 

Input Control Variables 

Input control variables must be initialized before calling one of the main econometric 
routines: estimate, optimize, or forecast. To initialize all the global 
control variables, call reset. 
 
Three categories of input control variables are listed below: general-purpose input 
control variables, estimate (and optimize) input control variables, and 
forecast input control variables. Unless otherwise specified, setting each variable 
to 1 (that is, true or yes) activates or turns on the optional behavior specified. If the 
variable is not defined or specified, then its default value is assumed. 
 

General Purpose Input Control Variables 

Variable Description 
 
_cmplx 

 
Complex number computation. 
_cmplx = 0 (default): Do not allow for complex number computation, 
therefore negative argument for LN, LOG, and SQRT is not permitted; 
_cmplx =1: Allow for complex number computation. 
 

_legend When a graph is requested (_rplot>0, see below), 
_legend = 1 (default): Show legends for graph plots; 
_legend = 0: No legends will be shown. 
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_pause Pause the output before displaying graphs. 

_pause = 0 (default): No waiting prompt; 
_pause = 1: Wait for a keystroke to display graphs. 
 

_print  Controls screen output. 
_print = 1 (default): Direct full output to screen; 
_print = 0: Direct partial output to screen. Verbose iteration outputs 
from a nonlinear or iterative model are suppressed; 
_print = -1: Suppress all screen output.  Suppressing the screen output 
will force _rplot = 0 and _fplot = 0 (see below), but it will have no 
effect on sending output to a file or printer if requested. 

 

ESTIMATE and OPTIMIZE Input Control Variables 

Variable Description 
 
_acf 

 
Specify the number of lags for computing autocorrelation and partial 
autocorrelation coefficients from the estimated regression residuals. 
Useful for testing the ARMA error structure. Display and plot the 
functions if _rplot > 0 (see below). In addition, standard errors of 
coefficients and Box-Pierece and Ljung-Box portmanteau test statistics 
are presented up to the number of lags specified in _acf. For example, 
12 lags of autocorrelation and partial autocorrelation functions are 
requested by setting: 
_acf = 12; 
_acf = 0; (default) 
As an option for computing autocorrelation coefficients and the 
associated standard errors using regression method, the second element 
of the vector _acf may be set to a positive value, with the first element 
indicating the number of lags requested. For example: 
_acf = {12,1}; 
 

_acf2 Same as _acf except that the autocorrelation and partial autocorrelation 
coefficients are computed from the squared standardized residuals. 
Useful for testing the GARCH error structure. 
_acf2 = 0; (default) 
 

_ar 
 

Specify the order of an autoregressive (AR) error structure. If an 
additional moving average process is desired for anautoregressive 
moving average  ARMA structure, use the variable _arma instead (see 
below). Optional initial values of the autocorrelation coefficients may 
be appended at the end of _ar for estimation. Providing the initial values 
is useful for starting a search from non-zero values of autocorrelation 
coefficients. For example: 
_ar = 1; 
_ar = {1, 0.5}; (with initial value of AR(1) parameter) 
_ar = 0; (default) 
 

_arma Specify the orders of an autoregressive moving average (ARMA) error 
structure. It is a column vector consisting of at least two elements. The 
first element denotes the order of autoregressive portion of the ARMA 
process, while the second element is the order of moving average 
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portion. If only the autoregressive portion is given, it is exactly the AR 
model (see _ar above). The model is estimated using maximum 
likelihood method conditional to the initialization of pre-sample series, 
which is the sample mean of the error series. Optional initial values of 
the autoregressive and moving average coefficients may be appended at 
the end of _arma for estimation. Giving the initial values is useful for 
starting a search from non-zero values of ARMA coefficients. For 
example: 
_arma = {1, 0}; (this is identical to: _ar = 1;) 
_arma = {0, 1}; 
_arma = {1, 1, 0.5, -0.5}; (initial values of ARMA(1,1) parameters) 
_arma = {0, 0}; (default) 
 

_b A column vector of initial parameter values for nonlinear model 
estimation. 
 

_begin 
 

Specify the starting observation number for estimation. 
_begin = 1; (default) 
 

_bjtest Bera-Jarque test for residual normality. 
_bjtest = 0 (default): Skip the test; 
_bjtest = 1: Perform the test. 
 

_bgtest  Breusch-Godfrey test for higher-order autocorrelation. 
_bgtest = 0 (default): Skip the test; 
_bgtest = p (>0): Perform the test for autocorrelation up to the p-th 
order. The number p (>0) is the highest order tested. 
 

_bptest Breusch-Pagan and White tests for heteroscedasticity. 
_bptest = 0 (default): Skip the test; 
_bptest = 1: Perform Breusch-Pagan and White tests for general 
heteroscedasticity. For the Breusch-Pagan test, all explanatory variables 
including constant term (i.e., X) are the RHS variables of the auxiliary 
test regression. For the White test, all explanatory variables and their 
squares and cross product including constant term are the RHS variables 
of the auxilary test regression. Alternatively, _bptest can be set to a data 
matrix (a subset of X or including other variables) in place of X for use 
with the test for heteroscedasticity. 
 

_const Specify a constant term for a regression model. 
_const = 1 (default): Constant term is added in the regression; 
_const = 0: No constant is added. 
 
For a system model, this is a column vector of 0 (no constant) or 1 (with 
constant) associated with each equation. 
 

_conv Convergence criteria for nonlinear model estimation. 
_conv = 0 (default): Convergence in function value and solution; 
_conv = 1: Convergence in function value, solution, and zero gradient. 
All convergence criteria are checked relative to the tolerance level _tol 
(see below). 
 

_corr Compute condition number of explanatory variables and correlation 
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matrix of dependent and explanatory variables, useful for 
multicollinearity analysis. 
_corr = 0 (default): Do not compute the statistics; 
_corr = 1: Compute and show the statistics. 
 

_deriv For a nonlinear optimization problem, if the first analytical derivative 
function is defined and used, _deriv is set to the location (address) of the 
function. If the second analytical derivative function is also given, its 
location is vertically concanated with the first. If analytical derivative 
functions are not used, the numerical derivatives are computed instead. 
That is, 
_deriv = 0; (default) 
 

_dlags A scalar or a 2x1 column vector to specify the use of lagged dependent 
variables.  As a scalar, it is the order of the regular lagged dependent 
variables in use. As a 2x1 column vector, a seasonal lagged dependent 
variables model is identified with order _dlags[1] and seasonal span 
_dlags[2] (require _dlags[2]>0).  Normally, _dlags[2] = 4 for a model 
with quarterly data series, while _dlags[2] = 12 for the monthly case.  
_dlags[1] or the scalar _dlags is always the order number. For a pure 
(regular or seasonal) lagged dependent variables model, set RHS 
variable X = 0 in calling ESTIMATE procedure and specify the column 
vector _dlags accordingly. For example: 
_dlags = q; (or equivalently, _dlags = {q,1};) 
_dlags = {q,s}; 
Where q is the order of autocorrelation and s is the seasonal span. 
_dlags = 0; (default) 
 
For a system model, _dlags is a gxg matrix with the value of its entry 
indicating the number of lags for each endogenous variable (column) in 
each equation (row). A zero ij-element of _dlags signifies that no lag is 
used for the j-th variable in the i-th equation. Here, g is the number of 
endogenous variables or equations. 
  

_drop Drop the first few observations for model estimation. Depending on the 
method of estimation, initial unusable observations may be dropped 
automatically. 
_drop =1: Drop the first observation or the first seasonal span of 
observations for AR model estimation; 
_drop =0 (default): Keep the first observation or the first seasonal span 
of observations for AR model estimation with appropriate data 
transformation. 
 

_ebtest 
 

Engle-Bollerslev test for higher-order autoregressive conditional 
heteroscedasticity (ARCH). 
_ebtest = 0 (default): Skip the test; 
_ebtest = q (>0) :Perform the test for ARCH structure up to the q-th 
order. The number q (>0) is the highest order tested. 
 

_end Specify the ending observation number for estimation. 
_end = rows(y) (default). 
 

_eq Specify the stochastic equation specification matrix for system model 
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estimation. This is a gx(gs+ks) matrix with elements -1, 0, and 1 
arranged in accordance with the order of endogenous variables followed 
by the predetermined variables. Note that g is the number of stochastic 
equations, gs is the number of endogenous variables (gs>=g), while ks 
is the number of predetermined variables. In the stochastic equation 
specification matrix _eq, an element -1 indicates the LHS endogenous 
variable. Only one -1 entry is allowed in each equation. An element 1 
indicates the use of an endogenous and/or a predetermined variable on 
the RHS of an equation. An element 0 indicates the corresponding 
unused variable. If _eq is not specified, or _eq=0 by default, a restricted 
seemingly unrelated system with common parameters across equations 
is assumed. That is, g=gs and -1 in the gs diagonals and 1 in the next 
gsxks predetermined variables portion of the matrix. If _eq is a scalar 
with value 1 or 2, then an unrestricted seemingly unrelated system is 
assumed. If _eq=1, the RHS variables are grouped by variables in the 
order of equations. That is, there are (ks/gs) blocks of identity  (gsxgs) 
matrices concatenated horizontally, which occupy the gsxks 
predetermined variables portion of the matrix. If _eq=2, the RHS 
variables are grouped by equations in the order of variables. That is, 
there are gs blocks of 1x(ks/gs) row vector of ones spanning over the 
gsxks predetermined variables portion of the matrix along the diagonal. 
Seemingly unrelated system with other forms of arrangements of RHS 
variables must be specified with the matrix form of _eq. Normally 
constant term is not needed in the equation specification, and it is 
automatically included in each equation. 
 

_garch Specify the orders of a generalized autoregressive conditonal 
heteroscedasticity (GARCH) error structure. It is a column vector 
consisting of at least two elements. The first element denotes the order 
of autoregressive (variances) portion of GARCH process, while the 
second element is the order of moving average (squared errors) portion. 
The model is estimated using maximum likelihood method conditional 
to the initialization of pre-sample series, which is the sample variance of 
the error series. The optional initial value of GARCH coefficients may 
be appended at the end of _garch for estimation. Be reminded that there 
is always a constant for the GARCH process. The constant is the last 
term of GARCH parameters. Giving the initial values is useful for 
starting a search from non-zero values of GARCH coefficients. For 
example: 
_garch = {1, 0}; 
_garch = {0, 1}; 
_garch = {1, 1, 0.5, 0.5, 0.5}; (with initial values of GARCH(1,1)) 
_garch = {0, 0}; (default) 
 

_garchx Specify additional variables included in the GARCH variance equation 
(see _garch above). This may be a data matrix of multiple variables. The 
variables must be defined with the same number of rows or observations 
as that of the regression residuals. 
 

_garcha Add asymmetry in the GARCH variance equation according to GJR 
specification. The asymmetric response is estimated for the negative 
errors with the same order specified for the moving average (squared 
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errors) portion of the GARCH variance equation  (see _garch above). 
_garcha = (default): No asymmetry; 
_garcha = 1: Compute asymmetric response. Initial values of the 
asymmetry parameters may be appended 
 

_hacv Compute heteroscedasticity and autocorrelation-consistent variance-
covariance matrix and perform adjustment to standard error and t-ratio 
of estimated coefficients accordingly. This may be a column vector up 
to 3 elements. 
_hacv = 0 (default): No adjustment; 
_hacv = 1: Compute heteroscedasticity consistent variance-covariance 
matrix; 
_hacv = {0,p}: Compute p-th order autocorrelation-consistent variance-
covariance matrix with declining weights of autocovariances (Newey-
West estimators), p=1,2,...; 
_hacv = {1,p}: Compute heteroscedasticity and p-th order 
autocorrelation consistent variance-covariance matrix with declining 
weights of autocovariances (Newey-West estimators), p=1,2,....;  
_hacv = {1,p,1}: Compute heteroscedasticity and p-th order 
autocorrelation-consistent variance-covariance matrix with the equal 
weighted autocovariances, p=1,2,....; Therefore, _hacv = {0,p}is the 
same as _hacv = {0,p,0} and _hacv = {1,p}is the same as _hacv = 
{1,p,0}. 
 
Note: If _hacv is used in conjunction with the instrumental variable 
estimation (see, _ivar below) in setting the number of iterations (see, 
_iter below) to achieve the convergence of estimated parameters, this is 
essentially the Generalized Method of Moments (GMM). _hacv is 
meaningful only when there is potential misspecification problem of 
autoregressive and/or heteroscedastic error structure.  
 
_hacv may be used in conjunction with the system model estimation. If 
the method of 2SLS (see _method below) is requested with non-zero 
_hacv, then two stage GMM estimation is performed. Similarly, if the 
method of 3SLS is requested with non-zero _hacv, then three stage 
GMM estimation is performed. However, the computed variance-
covariance matrix for the system may become non-positive definite due 
to excess numerical rounding errors or the improper autocovariance 
structures specified. 
 

_id Specify the identity equation specification matrix for a system model. 
Similar size and setup as _eq (see above) except that its entries can be 
any value as required. If _id is not specified, or _id=0 by default, there 
is no identity. Note: gs=rows(_eq|_id) to ensure the system 
compatibility. 
 

_iter  Maximum number of iterations requested for iterative or nonlinear 
model estimation. 
_iter = 1; (default) 
 

_ivar Instrumental variable estimation requested with instrumental variables 
specified in matrix _ivar.  If _dlags[1] > 0, _ivar may be given with a 
positive scalar (i.e. _ivar = 1) and perform instrumental variable 
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estimation with the internal instrumental variables obtained from the 
explanatory variables and their lags. If the matrix form of _ivar is 
specified, the external instrumental variables are used for that 
cols(_ivar) >= cols(X) + _const and rows(_ivar) >= rows(X). Constant 
term is automatically included in _ivar. 
_ivar = 0; (default) 
 
For a system model, external instrumental variable estimation may be 
requested with the instrumental variables specified in matrix _ivar. The 
data matrix _ivar will be combined with all predetermined variables to 
form the basis for instrumental variable estimation. 
 
_ivar may be used together with _iter and _hacv (see above) to produce 
the GMM estimation. 
 

_jacob Controls the use of Jacobians in deriving the log-likelihood function 
from the residuals. Since a correct log-likelihood function may include 
non-vanishing log-Jacobian terms, the Jacobian transformation which is 
a function of the estimated parameters should be defined. If the 
analytical Jacobian function is used, _jacob is set to the location 
(address) of the function. If you do not wish to write out the Jacobian 
analytically, you may set _jacob = 1. Then the numerical Jacobian is 
computed for each sample observation, which is usually a time 
consuming process. In case of requesting numerical Jacobians, the first 
column of the data matrix used to define the residuals must be the 
dependent variable Y (recall that J(Z,ε) = |∂ε/∂Y| and Z = [Y,X]). 
_jacob=0 (default): do not use Jacobians. 
 

_ma 
 

Specify the order of a moving average (MA) error structure. If an 
additional autoregressive process is desired for an autoregressive 
moving average  ARMA structure, use the variable _arma instead (see 
above). Optional initial values of the moving average coefficients may 
be appended at the end of _ma for estimation. Providing the initial 
values is useful for starting a search from non-zero values of moving 
average coefficients. For example: 
_ma = 1; 
_ma = {1, 0.5}; (with initial value of MA(1) parameter) 
_ma = 0; (default) 
 

_method Specify the estimation method for an AR model. 
_method = 0 (default): Cochrane-Orcutt iterative LS method; 
_method = {0,1}: Cochrane-Orcutt iterative ML method; 
method = 1: Beach-MacKinnon iterative ML method (for _ar=1 only, 
and _drop=0 is in effect); 
_method = 2 or {2,0}: Hildreth-Lu grid search LS method (for _ar=1 
only); 
_method = {2,1}: Hildreth-Lu grid search ML method (for _ar=1 only). 
Note: higher AR order (_ar>1) can only use _method = 0 or method = 
{0,1}. 
 
Specify the estimation method for a system model. 
_method = 0 (default): Ordinary least squares (biased); 
_method = 1: Limited information maximum likelihood; 
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_method = 2: Two-stage least squares; 
_method = 3: Three-stage least squares; 
_method = 4: Full information maximum likelihood. 
Note: LIML and FIML are not true nonlinear maximum likelihood 
estimation. Instead they are types of instrumental variables estimation. 
Three variants of the FIML method are available: 
_method = {4,0} (or 4): FIML instrumental variable method; 
_method = {4,1}: FIML linearized method; 
_method = {4,2}: FIML Newton method.  
 
Specify the estimation method for a nonlinear model (including a linear 
model with nonlinear error structure such as ARMA and GARCH). 
_method = 0 (default): Steep-ascent or decent method for mathematical 
optimization; Gauss-Newton method for nonlinear least squares 
estimation; Berndt-Hall-Hall_Hausman (BHHH) method for maximum 
likelihood estimation;  
_method = 1: Quasi-Newton BFGS update method; 
_method = 2: Quasi-Newton DFP update method; 
_method = 3: Greenstadt method; 
_method = 4: Newton-Raphson method; 
_method = 5: Quadratic hill-climbing method; 
_method = 6: Modified quadratic hill-climbing method. 
 

_names Specify a vector of character names for variables (linear model) or 
parameters (non-linear model) as appeared in a regression equation. 
 

_nlopt 
 

Specify a nonlinear optimization problem. 
_nlopt = 0 (default): Mathematical minimization of a scalar-valued 
function or nonlinear least squares estimation based on a vector-valued 
component error function; For the later case, the minimization is 
performed on the sum of squares of the vector-valued error function; 
_nlopt = 1: Mathematical maximization of a scalar-valued function or 
maximum likelihood estimation based on a vector-valued component 
error function. For the later case, the maximization is performed on the 
sum of normal log-likelihood of the vector-valued component error 
function; 
_nlopt = 2 Maximum likelihood estimation based on a vector-valued 
component log-likelihood function. The maximization is performed on 
the sum of the vector-valued component log-likelihood function; 
_nlopt = -1 Minimum distance estimation based on a vector-valued 
component distance function (e.g., squares of the vector-valued 
component error function). The minimization is performed on the sum 
of the vector-valued component distance function. 
 

_pdl 
 
 

Specify a polynomial distributed lag model if _pdl is defined as a 
rows(_pdl)x3 matrix. Each row of _pdl consists three elements: {q p r} 
where q = lags, p = orders, and r = endpoint restrictions: -1 (beginning), 
1 (ending), 2 (both), and 0 (no restriction), for each RHS variable. 
Requires rows(_pdl) = cols(X), and cols(_pdl) = 3: 
_pdl = 0; (default) 
 

_restart Number of times to restart estimation for iterative or nonlinear models 
when function value does not improve. Maximum value of _restart is 
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10. 
_restart = 0; (default) 
 

_restr Perform restricted least squares estimation with the linear restrictions 
defined in accordance with the form: Rb = q, or [R1 R0][b1 b0]’ = q, 
where b1 is the vector of slope coefficients and R1 is the restriction 
matrix corresponds to b1. Similarly, b0 is the intercept and R0 
corresponds to b0. q is the vector of restricted values. Linear restrictions 
involving intercept should be specified in conjunction with _const = 0. 
If _restr is specified, then _restr = [R1 q]. Requires rows(_restr) = 
number of restrictions, and cols(_restr) = cols(X). 
_restr = 0; (default) 
 
For a system model, restrictions in the matrix R are stacked horizontally 
in accordance with the equations, while the vertical rows indicate the 
number of restrictions imposed. Own or cross equation restrictions can 
be coded easily. In general restrictions on the constant terms are not 
required. 
 

_rlist List regression residual series. 
_rlist = 0 (default): Skip listing the series; 
_rlist = 1: List observed, predicted, and least squares residual series; 
_rlist = 2: In addition to listing least squares residual series, studentized 
residuals and leverage information are provided. Useful for checking 
influential observations and outliers. 
 

_rplot Plot regression residual series. 
_rplot = 0 (default): No plots; 
_rplot = 1: Plot residuals only;  
_rplot = 2: Plot both observed and predicted, and residuals. 
Also for plotting autocorrelation and partial autocorrelation functions if 
requested (see _acf above), a positive value of _rplot is needed. 
 
For a nonlinear model, residual plot is meaningful only for the cases 
specified with error component functions (i.e., _nlopt=0 or 1). In 
defining the error component function, the dependent variable must be 
the first column of the data matrix and it has not been transformed 
within the definition of error component function. 
 

_rstat Report regression residual statistics. 
_rstat = 0 (default): Do not report the statistics; 
_rstat =1: Report residual statistics, including DW, DH whenever 
appropriate. 
 
For a nonlinear model, residual statistics are meaningful only for the 
cases specified with error component functions (i.e., _nlopt=0 or 1). In 
defining the error component function, the dependent variable must be 
the first column of the data matrix and it has not been transformed 
within the definition of error component function. 
 

_rtest Hypothesis testings based on regression residual series. This is a  
4-element row vector: 
_rtest[1] is the same as _bjtest (see above) for Bera-Jarque test for  
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residual normality; 
_rtest[2] is the same as _bptest (see above) for Breusch-Pagan test for  
heteroscedasticity; 
_rtest[3] is the same as _bgtest (see above) for Breusch-Godfrey test  
for higher-order autocorrelation; 
_rtest[4] is the same as _ebtest (see above) for Engle-Bollerslev test  
for higher-order autoregressive conditional heteroscedasticity. 
_rtest = 0 (default): No tests are performed. 
 

_step Specify step size of line search method for iterative or nonlinear model 
estimation. 
_step = 0 (default): Cut back (half) step size is used; 
_step = 1: Quadratic step size is used. 
 

_tol Set the convergence tolerance level for iterative or nonlinear model 
estimation. 
_tol = 0.001; (default) 
 

_vcov Report the estimated variance-covariance matrix. 
_vcov = 0 (default): Do not report the variance-covariance matrix; 
_vcov = 1: Report variance-covariance matrix and correlation matrix of 
the estimated coefficients.  
 
For a nonlinear model, 
_vcov = 1: Variance-covariance matrix is derived from the method 
dependent approximated hessian (information matrix); 
_vcov = 2: Variance-covariance matrix is derived from the estimated 
hessian. 
_vcov = 3: Robust variance-covariance matrix, if available, is derived 
from the maximum likelihood estimation of component error or log-
likelihood function. 
 

_weight Perform weighted least squares estimation with the weighting variable 
defined in _weight.  _weight must be a column vector and 
rows(_weight) >= rows(X). 
_weight = 0; (default) 

 

FORECAST Input Control Variables 

In addition to the estimate and optimize input variables which control the 
model specification (e.g., _ar, _arma, _dlags, _pdl, etc.), the following are the 
FORECAST input variables: 

 
Variable Description 
 
_b 
 

 
Regression parameter estimates for computing the forecasts. Depending 
on the model specification, it may require the estimated coefficients of 
ARMA or GARCH error structures available from the previously 
estimated model. 
 

_dynamic Dynamic forecasts for lagged dependent variables model. 
_dynamic = 0 (default): Do not perform dynamic forecasts; 
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_dynamic = 1: Perform dynamic forecasts. Dynamic forecast uses 
previous predicted lagged dependent variables. 
 

_fbegin Start of forecast observation number. 
_fbegin =  _end +1; (default) 
 

_fend End of forecast observation number. 
_fend  = rows(X); (default) 
 

_fplot Plots predicted or forecast series. 
_fplot = 0 (default): Do not plots the series; 
_fplot = 1: Plot predicted or forecast series. 
 

_fstat Computes ex-post forecast error statistics. 
_fstat = 0 (default): Do not compute the statistics. 
_fstat = 1: Compute and report the statistics. 
 

_unlog Computes unlogged series of forecasts. 
_unlog = 0 (default): Do not compute unlogged series of forecasts; 
_unlog = 1: Compute unlogged series of forecasts, assuming the original 
series has been log transformed. 
 

_vb Compute and report the estimated variance-covariance matrix of the 
basic model (not including the variance-covariance matrix of AR or 
ARMA error structure if specified). 
 

Note: forecast is not available for nonlinear models. 
 

Output Control Variables 

Output control variables are available after calling the procedure estimate, 
optimize, or forecast. They may be used later in the program for further 
analysis. Depending on the input variables specified, not all the output variables will 
be available. Calling reset assigns all output variables to zero. Each call to 
estimate, optimize, or forecast assigns new values to output variables. 

 

ESTIMATE and OPTIMIZE Output Control Variables 

Variable Description 
 
__a 

 
Estimated coefficients of the autocorrelated error structure. Depending 
on the model specification, it may include AR or ARMA, and GARCH 
coefficients in that order. 
 

__b Estimated regression coefficients  (and possibly including the 
coefficients for the autocorrelated error structure, that is __a, if the 
model is so specified). For a simultaneous linear equations model, see 
also __d and __pi. 
 

__d The structural form parameter matrix of a simultaneous linear equations 
system. See also __b and __pi. 
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__dh Estimated Durbin-H statistic. 
 

__dw Estimated Durbin-Watson statistic.                      
 

__e Estimated regression residuals; for nonlinear scalar-valued function 
optimization, this is the function value at the solution.                         
 

__g Gradient vector of nonlinear objective function evaluated at the 
solution. 
 

__h Hessian matrix of nonlinear objective function evaluated at the solution. 
 

__hat Diagonal vector of Hat-matrix, X(X’X)-1X’, or leverage. 
 

__ll Maximum log-likelihood function value. 
 

__pi The reduced form parameter matrix of a simultaneous linear equations 
system, useful for computing forecasts and multiplier analysis. See also 
__b and __d. 
 

__r2 R-square (goodness of fit of the regression). 
 

__r2a Adjusted R-square. 
 

__rss Residual or error sums-of-squares.                     
 

__t Estimated t-ratio for each of the regression parameters. 
 

__v Estimated regression variance.                          
 

__vb Estimated variance-covariance matrix of the regression coefficients. 
 

__ve Estimated variances of the regression residuals. 
 

__x Data matrix of explanatory variables used in a linear model estimation. 
 

__y Data vector of dependent variable used in a linear model estimation. 
 

FORECAST Output Control Variables 

Variable Description 
 
__f 

 
Predicted or forecast series.  
 

__mape Mean absolute percent of forecast errors. 
 

__mse Mean sum squares of forecast errors.  
 

__rmspe Root mean absolute percent of forecast errors.  
 

__u1 Theil inequality coefficient (0<=__u1<=1). 
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__uc Covariance proportion of mean sum squares of errors.  
 

__ue Disturbance proportion of mean sum squares of errors.  
  

__um Bias proportion of mean sum squares of errors.  
 

__ur Regression proportion of mean sum squares of errors.  
 

__us Variance proportion of mean sum squares of errors.  
 

__vf Variance of predicted or forecast series.  
 

Note: forecast is not available for nonlinear models. 
 

Miscellaneous 

A few GAUSS built-in procedures have been modified, and they can be called 
throughout the program using GPE package. 

 
Procedure Description 
 
gradp2 

 
Computes the gradient vector or matrix (Jacobian) of a scalar- or vector-
valued function that has been defined in a procedure. The GPE 
procedure gradp2 works the same as GAUSS built-in procedure gradp 
except that gradp2 takes three input entries and has the format: g = 
gradp2(&f,x,b). &f is a pointer to a vector-valued function f(x,b) 
defined as a procedure, x is a data matrix, and b is a vector of points at 
which to compute gradient. Both x and b are used to define the function 
f.  The output of gradp2 is the same as that of gradp, which is a vector 
or matrix of first derivatives of function f evaluated at b. See GAUSS 
Language References or on-line help for more details about GAUSS 
built-in procedure gradp. 
 

hessp2 Computes the matrix of second partial derivatives (Hessian matrix) 
of a scalar-valued function that has been defined in a procedure. The 
GPE procedure hessp2 works the same as GAUSS built-in procedure 
hessp except that hessp2 takes three input entries and has the format: h 
= hessp2(&f,x,b). &f is a pointer to a vector-valued function f(x,b) 
defined as a procedure, x is a data matrix, and b is a vector of points at 
which to compute Hessian. Both x and b are used to define the function 
f. The output of hessp2 is the same as that of hessp, which is the matrix 
of second derivatives of function f evaluated at b. See GAUSS 
Language References or on-line help for more details about GAUSS 
built-in procedure hessp. 
 

 





 

 

Appendix B 
GPE Application Modules 
 

Each of the GPE application modules is given AS IS. The user is free to use and to 
make changes as needed for different purposes. However, the usual disclaimer 
applies. In particular, the following copyright statement must be presented as long as 
all or part of the program code is used in your work: 
 
© Copyright 2001-2003 by Kuan-Pin Lin and Applied Data Associates 
All Rights Reserved. 
 
THIS SOFTWARE PRODUCT IS PROPRIETARY SOURCE CODE OF APPLIED DATA 
ASSOCIATES. THIS FILE HEADER MUST ACCOMPANY ALL FILES USING ANY PORTION, 
IN WHOLE OR IN PART, OF THIS SOURCE CODE. THIS SOFTWARE PRODUCT IS DESIGNED 
TO BE USED WITH GPE2 AND GAUSS. IF YOU USE THIS SOURCE CODE FOR RESEARCH 
AND DEVELOPMENT, A PROPER REFERENCE IS REQUIRED. IF YOU WISH TO DISTRIBUTE 
ANY PORTION OF THE PROPRIETARY SOURCE CODE, IN WHOLE OR IN PART, YOU MUST 
FIRST OBTAIN WRITTEN PERMISSION FROM THE AUTHOR. 
 

Application Module B-1: GMM.GPE 
/* 
** GMM.GPE: Nonlinear GMM Estimation  
** 
** ==> call estimate(&gmmqw,x); 
** or 
** ==> call estimate(&gmmq,x); 
** 
** A set of moment functions must be defined as a procedure with the 
** name mf(x,b). The result is an nxl matrix of moments. n is the 
** number of sample observations; l is the number of moment equations; 
** x is the data matrix and b is the parameter vector. 
** 
** A global variable gmmw is used to define the weighting matrix for 
** the GMM criterion function (to be minimized). gmmw is initially 
** an identity matrix or 1 for the 1st GMM estimation; gmmw should be  
** set to gmmv(x,b), the inverse of the variance-covariance matrix of  
** moments functions, for the 2nd GMM estimation. 
** 
** gmmqw is the objective function with externally defined weighting 
** matrix gmmw, the result is a consistent GMM estimation. 
** 
** gmmq is the objective function with internally estimated weighting 
** matrix, the result is an efficient GMM estimation. 
** 
** GMM estimation is usually called in the following steps: 
** 
** ==> call estimate(&gmmqw,x); 
** ==> 
** ==> _b=__b; 
** ==> gmmw=gmmv(x,_b); 
** ==> call estimate(&gmmqw,x); 
** ==> 
** ==> _b=__b; 
** ==> call estimate(&gmmq,x); 
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** ==> 
** ==> call gmmout(x,__b); 
*/ 
 
declare gmmw ?= 1; 
 
/* 
Sample average of moments 
*/ 
proc gmmm(x,b); 
    local m,d; 
    m=meanc(mf(x,b)); 
    retp(m); 
endp; 
 
/* 
Covariance matrix of sample averages of moments 
considering White-Newey-West autocovariances 
depending on global _hacv 
*/ 
proc gmmv(x,b); 
    local n,m,v,s,j; 
    n=rows(x); 
    m=mf(x,b)/n; 
    v=m'm;        @ hetero. variances @ 
    j=1; 
    do until j>_hacv[2]; @ autocovariances @ 
        s=m'*missrv(lagn(m,j),0); 
        v=v+(1-j/(_hacv[2]+1))*(s+s'); 
        j=j+1; 
    endo; 
    retp(v); 
endp; 
 
/* 
GMM criterion function: depending on global gmmw 
Weighted sum of squared sample averages of moments 
*/ 
proc gmmqw(x,b); 
    local m; 
    m=gmmm(x,b); 
    retp(m'*gmmw*m); 
endp; 
 
/* 
GMM criterion function: general 
Weighted sum of squared sample averages of moments 
*/ 
proc gmmq(x,b); 
    local m; 
    m=gmmm(x,b); 
    gmmw=invpd(gmmv(x,b)); 
    retp(m'*gmmw*m); 
endp; 
 
proc (0) = gmmout(x,b); 
    local m,v,q,g,vb; 
    m=gmmm(x,b); 
    v=gmmv(x,b); 
    q=m'*invpd(v)*m; 
    g=gradp2(&gmmm,x,b); 
    vb=invpd(g'*gmmw*g)*g'*gmmw*v*gmmw'*g*invpd(g'*gmmw*g); 
    print; 
    print "GMM Estimation Result"; 
    print "====================="; 
    print "   Parameter   Std. Error      t-Ratio";; 
    print b~sqrt(diag(vb))~b./sqrt(diag(vb)); 
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    print; 
    print "Hansen Test Statistic of the Moment Restrictions"; 
    print ftos(rows(m)-rows(b),"Chi-Sq(%*.*lf) = ",4,0);; 
    print q; 
    __vb=vb; @ using the GMM var-cov matrix @ 
endp; 
 

Application Module B-2: JOHANSEN.GPE 
/* 
** JOHANSEN.GPE - Cointegration test procedure  
** based on Johansen's VAR approach 
** 
** ==> call johansen(z,p,c); 
** or 
** ==> {lr,lrsum} = johansen(z,p,c); 
** 
** z is the data matrix for cointegration analysis, p is number of lags  
** of VAR structure, c is the model indicator (0=no constant, 1=drift,  
** 2=trend drift). outputs are two vectors of maximum eigenvalue and  
** trace test statistics, lr and lrsum, respectively. 
*/ 
  
proc (2) = johansen(z,p,c); 
    local m,n,j,z1,dz,y1,dy,y,x,u,v,suu,svv,suv,svu; 
    local r,lr,lrsum,msk,fmt,one,e; 
 
    m=cols(z);           @ number of variables @ 
                         @ maximal lags in the test regression @ 
    z1=lagn(z,1);        @ lag of data matrix, at least p=1 @ 
    dz=z-z1;             @ construct difference data matrix @ 
    j=1; 
    do until j>=p;       @ use up to p-1 lags of differences @ 
        dz=dz~lagn(z-z1,j); 
        j=j+1; 
    endo; 
 
    y=packr(z1~dz);      @ combined data matrix @ 
    n=rows(y);           @ number of usable observations @ 
    y1=y[.,1:m];         @ lag of y data matrix @ 
    dy=y[.,m+1:2*m];     @ difference of y data matrix @ 
 
    one=ones(n,1);  
    if p>1;              @ VAR(p), p>1 @ 
        x=y[.,2*m+1:cols(y)]; @ RHS x data matrix @ 
        if c>0; 
            if c==1;     @ with drift only @    
                e=one-x*(one/x);  
            endif;       @ constant regression residuals @ 
            if c==2;     @ with trend drift @ 
                x=x~one;  
            endif;   
        endif;  
                         @ auxiliary regression residuals @ 
        u=dy-x*(dy/x);   @ (1) difference regression @ 
        v=y1-x*(y1/x);   @ (2) lag regression @ 
    else;                @ p==1, or VAR(1) @ 
        if c>0; 
            u=dy-meanc(dy)';  
            v=y1-meanc(y1)'; 
            if c==1; e=one; endif; 
        else;  
            u=dy; v=y1;  
        endif; 
    endif; 
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    if c==1; v=e~v; endif; 
    suu=u'u/n;           @ var-cov matrices @ 
    svv=v'v/n; 
    suv=u'v/n; 
    svu=suv'; 
    r=eig(invpd(suu)*suv*invpd(svv)*svu); @ compute eigenvalue @ 
    r=rev(sortc(r,1));   @ sort eigvalues in increasing order @ 
    lr=-n*ln(1-r);       @ likelihood ratio test @ 
    lrsum=rev(cumsumc(rev(lr))); @ trace test statistic @ 
 
    msk={1 1 1 1};       @ print cointegration test results @ 
    fmt={"*.*lf" 8 0,"*.*lf" 5 0,"#*.*lg" 12 5,"#*.*lg" 12 5}; 
    print ftos(c+1,"\lCointegration Test (Model %-*.*lf):",1,0); 
    print "Cointegrating  Eigv. Test  Trace Test"; 
    print "    Rank   DF   Statistic   Statistic"; 
    call printfm 
         (real(seqa(0,1,m)~(m-seqa(0,1,m))~lr~lrsum),msk,fmt); 
    retp(lr,lrsum); 
endp; 
 

Application Module B-3: PANEL1.GPE 
/* 
** PANEL1.GPE - one-way panel data analysis 
** 
** ==> call panel1u(ys,xs,n,t); 
** ys and xs are stacked of dependent and independent variables; 
** one-way effects is computed for fixed and random models. 
** ys and xs must be arranged in n blocks (cross sections) of t 
** observations (time periods). it is used to study the individual 
** (cross section) effects; to study the period (time periods) 
** effects, re-arrange ys and xs then swap n and t. 
** 
** make sure to call reset, and define the variable names in _names. 
** this version of procedure panel1 allows for unbalanced panels, 
** provided that the missing values are coded in ys and xs. 
*/  
proc (0) = panel1(ys,xs,n,t); 
    local y,x,ym,xm,yms,xms,k; 
    local y1,x1,z,zm,ts,i,i1,sem2; 
    local rssr,rssur,dfr,dfur,bp,wf,v1,v,w,ws,h; 
    local b1,b2,vb1,vb2,a1,a2,va1,va2,xm1,xm2; 
 
    /* panel data processing */ 
    k=cols(xs); 
    @ ys,xs: stacked data series @ 
     
    @ use do loop to generate ym,xm,yms,xms,ts @ 
    ts=t*ones(n,1); @ initialzation @ 
    ym=zeros(n,1); xm=zeros(n,k); 
    i=1; 
    do until i>n; 
        i1=(i-1)*t; 
        y1=ys[i1+1:i1+t]; 
        x1=xs[i1+1:i1+t,.]; 
        z=packr(y1~x1); 
        ts[i]=rows(z); 
        zm=meanc(z); 
        ym[i]=zm[1]; 
        xm[i,.]=zm[2:rows(zm)]';         
        i=i+1; 
    endo; 
    yms=vec(reshape(ym,t,n)); 
    xms=reshape(reshape(xm',k*t,n)',n*t,k); 
     
    /* pooled (restricted) regression */ 
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    z=packr(ys~xs); 
    y=z[.,1]; 
    x=z[.,2:k+1]; 
    call estimate(y,x); 
    rssr=__rss; 
    dfr=__df; 
     
    @ testing for random one-way effects @ 
    i=1; i1=0; sem2=0; 
    do until i>n; 
        sem2=sem2+sumc(__e[i1+1:i1+ts[i]])^2; 
        i1=i1+ts[i]; 
        i=i+1; 
    endo; 
    bp=(sumc(ts)/2)*(1/(meanc(ts)-1))*(((sem2/sumc(__e^2))-1)^2); 
     
    /* between-group (mean) regression */ 
    call estimate(ym,xm); 
    v1=__v.*ts;  @ v1 is a nx1 vector @ 
     
    /* within-group (mean deviation) regression */ 
    @ unrestricted regression @ 
    z=packr((ys-yms)~(xs-xms)); 
    y=z[.,1]; 
    x=z[.,2:k+1]; 
    call estimate(y,x); 
    rssur=__rss; 
    dfur=__df-(n-1);     
    v=__v*(__df/dfur); @ df adjusted variance @ 
    @ testing for fixed one-way effects @ 
    wf=((rssr-rssur)/(dfr-dfur))/(rssur/dfur); 
 
    /* fixed effects model */ 
    b1=__b; 
    vb1=__vb*(__df/dfur); 
    xm1=xm~(-ones(n,1)); 
    a1=ym-xm1*b1; @ section/period difference @ 
    va1=v/meanc(ts)+xm1*vb1*xm1'; 
 
    /* random effects model */     
    w=1-sqrt(v./v1); @ if v>v1 then w=0+, w is a nx1 vector @ 
    w=(w.<=0).*__macheps + (w.>0).*w;  @ 0 < w <= 1 @ 
    @ if w=1, it is fixed effects model @ 
    @ if w=0, it is a pooled model (no effects) @ 
     
    ws=vec(reshape(w,t,n)); 
    z=packr((ys-ws.*yms)~(xs-ws.*xms)); 
    y=z[.,1]; 
    x=z[.,2:k+1]; 
    call estimate(y,x);  
    b2=__b; 
    vb2=__vb*(__df/dfur); 
    xm2=xm~(-1/w);  @ w must be > 0 @ 
    a2=w.*(ym-xm2*b2); 
    va2=(w^2).*(v/meanc(ts)+xm2*vb2*xm2'); 
         
    h=(b1[1:k]-b2[1:k])'*inv(vb1[1:k,1:k]-vb2[1:k,1:k])*(b1[1:k]-b2[1:k]); 
 
    /* print output */ 
    print; 
    print "Panel Data Model Estimation Procedure:"; 
    print "(1) Pooled Regression"; 
    print "(2) Between-Groups Regression"; 
    print "(3) Fixed Effects (Within-Groups) Regression"; 
    print "(4) Random Effects (Weighted Within-Groups) Regression"; 
    print; 
    print "Wald F Test Statistic for Fixed Effects"; 
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    print ftos(dfr-dfur,"F(%*.*f,",4,0);; 
    print ftos(dfur,"%*.*f) = ",4,0);; 
    print wf; 
    print; 
    print "Breusch-Pagan LM Test Statistic for Random Effects"; 
    print ftos(1,"Chi-Sq(%*.*f) = ",4,0);; 
    print bp; 
    print; 
    print "Hausman's Test for Fixed and Randon Effects"; 
    print ftos(k,"Chi-Sq(%*.*f) = ",4,0);; 
    print abs(h); 
    print; 
    print "Within-Groups Estimates:"; 
    print "       Fixed         S.E.       Random         S.E.";; 
    print b1~sqrt(diag(vb1))~b2~sqrt(diag(vb2)); 
    print; 
    print "One-Way Effects:"; 
    print "Section/Period      Fixed         S.E.       Random         S.E.";; 
    print seqa(1,1,n)~a1~sqrt(diag(va1))~a2~sqrt(diag(va2)); 
endp; 
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Application Module B-4: PANEL2.GPE 
/* 
** PANEL2.GPE - two-way panel data analysis 
** 
** ==> call panel2(ys,xs,n,t); 
** ys and xs are stacked of dependent and independent variables; 
** two-way effects is computed for fixed and random models. 
** ys and xs must be arranged in n blocks (cross sections) of t 
** observations (time periods). 
** 
** make sure to call reset, and define the variable names in _names. 
** this version of procedure panel2 allows for unbalanced panels, 
** provided that GAUSS "missing value" (.) is used to identify the  
** missing data in ys and xs. 
*/  
proc (0) = panel2(ys,xs,n,t); 
    local ymi,xmi,ymis,xmis,ystar,xstar,k; 
    local ymt,xmt,ymts,xmts,ymm,xmm,ts,ns,ms,missing,e; 
    local y,x,y1,x1,z,zm,i,j,i1,sem1,sem2; @ temp. var. @ 
    local rssr,rssur,dfr,dfur,bp,wf,h,v1,v2,v3,v,w1,w2,w3,w1s,w2s; 
    local b1,b2,vb1,vb2,a1i,a1t,a2i,a2t,c1,c2; 
 
    /* panel data processing (complicated, do not change) */ 
    k=cols(xs);   @ not incl. constant term @ 
    missing=miss(__miss,0); 
    ms=sumc(((ys~xs).==missing)'); @ index for missing obs. @ 
 
    @ use do loop to generate ymi, xmi, ymt, xmt, ... @ 
    @ data initialization @ 
    ts=t*ones(n,1); ns=n*ones(t,1); 
    ymi=zeros(n,1); xmi=zeros(n,k); 
    ymt=zeros(t,1); xmt=zeros(t,k); 
     
    i=1; 
    do until i>n; 
        i1=(i-1)*t; 
        y1=ys[i1+1:i1+t]; 
        x1=xs[i1+1:i1+t,.]; 
        z=packr(y1~x1); 
        ts[i]=rows(z); 
        zm=meanc(z); 
        ymi[i]=zm[1]; 
        xmi[i,.]=zm[2:rows(zm)]'; 
        i=i+1; 
    endo; 
 
    @ swap (n,t) indexing for ys and xs, named y and x @ 
    @ keep ys and xs intact @ 
    y=vec(reshape(ys,n,t));  
    x1=vec(reshape(xs[.,1],n,t)); 
    i=2; 
    do until i>k; 
        x1=x1~vec(reshape(xs[.,i],n,t)); 
        i=i+1; 
    endo; 
    x=x1; 
     
    i=1; 
    do until i>t; 
        i1=(i-1)*n; 
        y1=y[i1+1:i1+n]; 
        x1=x[i1+1:i1+n,.]; 
        z=packr(y1~x1); 
        ns[i]=rows(z); 
        zm=meanc(z); 
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        ymt[i]=zm[1]; 
        xmt[i,.]=zm[2:rows(zm)]'; 
        i=i+1; 
    endo; 
     
    @ ymm,xmm: overall means @ 
    ymm=meanc(ymi)'; 
    xmm=meanc(xmi)'; 
 
    @ ymis,xmis: stacked section means @ 
    ymis=vec(reshape(ymi,t,n)); 
    xmis=reshape(reshape(xmi',k*t,n)',n*t,k); 
    @ ymts,xmts: stacked time period means @ 
    ymts=reshape(ymt,n*t,1); 
    xmts=reshape(xmt,n*t,k); 
 
    /* pooled (restricted) regression */ 
    z=packr(ys~xs); 
    y=z[.,1]; 
    x=z[.,2:k+1]; 
    call estimate(y,x); 
    rssr=__rss; 
    dfr=__df; 
 
    @ first put __e in the original order of data series @ 
    @ with 0 for missing, and not count for sum or average @ 
    e=__e;  
    i=1; 
    do until i>n*t; 
        if ms[i]>0; 
            e=e[1:i-1]|0|e[i+1:rows(e)]; 
        endif; 
        i=i+1; 
    endo; 
     
    @ testing for two-way effects @ 
    bp=(sumc(ts)/2)*( 
    (1/(meanc(ts)-1))*((sumc(sumc(reshape(e,n,t)')^2)/sumc(sumc(e^2))-1)^2)+ 
    (1/(meanc(ns)-1))*((sumc(sumc(reshape(e,n,t))^2)/sumc(sumc(e^2))-1)^2)); 
         
    /* 
    bp=(n*t/2)*( 
    (1/(t-1))*((sumc(sumc(reshape(__e,n,t)')^2)/sumc(sumc(__e^2))-1)^2)+ 
    (1/(n-1))*((sumc(sumc(reshape(__e,n,t))^2)/sumc(sumc(__e^2))-1)^2)); 
    */ 
 
    @ between-groups (cross sections) means regression @     
    call estimate(ymi,xmi); 
    v1=ts.*__v; @ nx1 vector @ 
 
    @ between-groups (time periods) means regression @ 
    call estimate(ymt,xmt); 
    v2=ns.*__v; @ tx1 vector @ 
 
    /* fixed effects model */ 
    @ within-groups (cross sections and time periods) regression @ 
    ystar=ys-ymis-ymts+ymm; 
    xstar=xs-xmis-xmts+xmm; 
    z=packr(ystar~xstar); 
    y=z[.,1]; 
    x=z[.,2:k+1]; 
    call estimate(y,x); 
    rssur=__rss; 
    dfur=__df-(n-1)-(t-1); @ adust df @ 
    v=__v*(__df/dfur); 
 
    @ testing for fixed two-way effects @ 
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    wf=((rssr-rssur)/(dfr-dfur))/(rssur/dfur); 
 
    b1=__b; 
    vb1=__vb*(__df/dfur); 
    c1=ymm-xmm*b1[1:k];    @ overall effects, note: b1[k+1]=0 @ 
    a1i=(ymi-ymm)-(xmi-xmm)*b1[1:k]; @ cross sections effects @ 
    a1t=(ymt-ymm)-(xmt-xmm)*b1[1:k]; @ time periods effects @ 
 
    /* random effects model (weights must be computed for each obs (nxt)) */ 
    v3=meanc(v1)+meanc(v2)-v;  @ v3 is a scalar @ 
    w1=1-sqrt(v./v1);          @ w1 is a nx1 vector @ 
    w1=(w1.<=0).*__macheps + (w1.>0).*w1; @ 0 < w1 <= 1 @ 
    w2=1-sqrt(v./v2);          @ w2 is a tx1 vector @ 
    w2=(w2.<=0).*__macheps + (w2.>0).*w2; @ 0 < w2 <= 1 @ 
    w3=maxc((1-sqrt(v./v3))|__macheps); 
    w3=meanc(w1)+meanc(w2)-w3; @ w3 is a scalar @ 
 
    w1s=vec(reshape(w1,t,n)); 
    w2s=reshape(w2,n*t,1); 
    ystar=ys-w1s.*ymis-w2s.*ymts+w3.*ymm; 
    xstar=xs-w1s.*xmis-w2s.*xmts+w3.*xmm; 
    z=packr(ystar~xstar); 
    y=z[.,1]; 
    x=z[.,2:k+1];     
    call estimate(y,x); 
 
    b2=__b; 
    vb2=__vb*(__df/dfur); 
    c2=w3.*(ymm-xmm*b2[1:k])+b2[k+1]; @ overall effect @ 
    a2i=(w1.*ymi-w3.*ymm)-(w1.*xmi-w3.*xmm)*b2[1:k]; @ individual effects @ 
    a2t=(w2.*ymt-w3.*ymm)-(w2.*xmt-w3.*xmm)*b2[1:k]; @ period effects @ 
    h=(b1[1:k]-b2[1:k])'*inv(vb1[1:k,1:k]-vb2[1:k,1:k])*(b1[1:k]-b2[1:k]); 
     
    /* print output */ 
    print; 
    print "Panel Data Model Estimation Procedure:"; 
    print "(1) Pooled Regression"; 
    print "(2) Between-Groups (Cross Sections) Regression"; 
    print "(3) Between-Groups (Time Periods) Regression"; 
    print "(4) Fixed Effects (Within-Groups) Regression"; 
    print "(5) Random Effects (Weighted Within-Groups) Regression"; 
    print; 
    print "Wald F Test Statistic for Fixed Effects"; 
    print ftos(dfr-dfur,"F(%*.*f,",4,0);; 
    print ftos(dfur,"%*.*f) = ",4,0);; 
    print wf; 
    print; 
    print "Breusch-Pagan LM Test Statistic for Random Effects"; 
    print ftos(2,"Chi-Sq(%*.*f) = ",4,0);; 
    print bp; 
    print; 
    print "Hausman's Test for Fixed and Randon Effects"; 
    print ftos(k,"Chi-Sq(%*.*f) = ",4,0);; 
    print abs(h); 
    print; 
    print "Within-Groups Estimates:"; 
    print "       Fixed         S.E.       Random         S.E.";; 
    print b1~sqrt(diag(vb1))~b2~sqrt(diag(vb2)); 
    print; 
    print "Two-Way Effects:"; 
    print "                    Fixed       Random"; 
    print "     Overall " c1~c2; 
    print; 
    print "Cross Sections Effects:"; 
    print "    Sections        Fixed       Random";; 
    print seqa(1,1,n)~a1i~a2i; 
    print; 
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    print "Time Periods Effects:"; 
    print "     Periods        Fixed       Random";; 
    print seqa(1,1,t)~a1t~a2t; 
endp; 
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Application Module B-5: RANDOM1.GPE 
/* 
** RANDOM1.GPE - random coefficients model for panel data analysis 
** 
** ==> call random1(ys,xs,n,t); 
** ys and xs are stacked of dependent and independent variables; 
** random coefficients model based on Hildreth, Houck, and Swamy is  
** estimated. ys and xs must be arranged in n blocks (cross sections)  
** of t observations (time periods). in addition to random coefficients 
** estimates, the individual parameter prediction for each cross  
** section is reported. it is used to study the individual 
** (cross section) effects; to study the period (time periods) 
** effects, re-arrange ys and xs then swap n and t. it can be used  
** for unbalanced panel data analysis, provided that GAUSS  
** "missing value" (.) is used to identify the missing data.  
** 
** before calling the procedure to estimate a random coefficients 
** model, make sure to call reset and define the variable names in 
** _names. for a large number of individuals (cross sections),  
** _print = -1 should be set to surpress printing of the regression  
** results. 
** 
** note: the following GPE variables should not be used with random1: 
** _begin, _end, _dlags, _restr, _const 
** _weight, _hacv, _ivar, _arma, _garch 
*/  
proc (0) = random1(ys,xs,n,t); 
    local b,vb,gb,bstar,vbstar,bw,vbw,swamy,i,k,w,a; 
    local i1,ik,y1,x1,z1,ginv,vinv,sumgv,sumgvw; @ temp. var. @ 
 
    /* invidual OLS regressions */ 
    k=cols(xs)+1; @ constant added @ 
    b=zeros(k,n); 
    vb=zeros(n*k,k); 
    bw=0; 
    vbw=0; 
     
    i=1; 
    do until i>n; 
        i1=(i-1)*t; 
        ik=(i-1)*k; 
        y1=ys[i1+1:i1+t]; 
        x1=xs[i1+1:i1+t,.]; 
        @ in case of missing values @ 
        z1=packr(y1~x1);  
        y1=z1[.,1]; 
        x1=z1[.,2:cols(z1)]; 
        @ ts[i]=rows(z1); @ 
        call estimate(y1,x1); 
        b[.,i]=__b; 
        vb[ik+1:ik+k,.]=__vb; 
        bw=bw+invpd(__vb)*__b; 
        vbw=vbw+invpd(__vb);              
        i=i+1; 
    endo; 
 
    /* Swamy Test for Random Coefficients */ 
    bw=invpd(vbw)*bw; 
    swamy=0; 
    i=1; 
    do until i>n; 
        ik=(i-1)*k; 
        swamy=swamy+(b[.,i]-bw)'*invpd(vb[ik+1:ik+k,.])*(b[.,i]-bw); 
        i=i+1; 
    endo; 
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    gb=vcx(b'); 
 
    sumgv=0; 
    i=1; 
    do until i>n; 
        ik=(i-1)*k; 
        sumgv=sumgv+invpd(gb+vb[ik+1:ik+k,.]); 
        i=i+1; 
    endo; 
 
    /* random coefficients estimates */ 
    vbstar=invpd(sumgv); 
 
    bstar=0; 
    i=1; 
    do until i>n; 
        ik=(i-1)*k; 
        w=vbstar*invpd(gb+vb[ik+1:ik+k,.]); 
        bstar=bstar+w*b[.,i]; 
        i=i+1; 
    endo; 
 
    /* individual parameter vectors prediction */ 
    sumgvw=0; 
    i=1; 
    do until i>n; 
        ik=(i-1)*k; 
        sumgvw=sumgvw+(vbstar*invpd(gb+vb[ik+1:ik+k,.])'*vbstar'); 
        i=i+1; 
    endo; 
 
    ginv=invpd(gb); 
 
    bw=zeros(k,n); 
    vbw=zeros(k,n); @ variances only @ 
    i=1; 
    do until i>n; 
        ik=(i-1)*k; 
        vinv=invpd(vb[ik+1:ik+k,.]); 
        a=invpd(vinv+ginv)*ginv; 
        a=a~(eye(k)-a); 
        bw[.,i]=a*(bstar|b[.,i]); 
        sumgv=(sumgvw~vbstar)|(vbstar'~(gb+vb[ik+1:ik+k,.])); 
        vbw[.,i]=diag(a*sumgv*a');     
        i=i+1; 
    endo; 
 
    /* output report */ 
    print; 
    print "Randon Coefficients Model Estimation:"; 
    print "(1) Individual Equation OLS Regression"; 
    print "(2) Generalized Least Squares Regression"; 
    print "(3) Individual Equation Parameters Prediction"; 
    print; 
    print "Swamy Test Statistic for Random Coefficients"; 
    print ftos(k*(n-1),"Chi-Sq(%*.*f) = ",4,0);; 
    print swamy; 
    print; 
    print "Random Coefficients Estimates:"; 
    print "         No.    Parameter         S.E.";; 
    print seqa(1,1,k)~bstar~sqrt(diag(vbstar)); 
    print; 
    i=1; 
    do until i>k; 
        print "Individual Parameter Prediction:" i; 
        print "Section/Period  Parameter         S.E.";; 
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        print seqa(1,1,n)~bw[i,.]'~sqrt(vbw[i,.]'); 
        print; 
        i=i+1; 
    endo; 
endp; 
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Application Module B-6: SYSTEM1.GPE 
/* 
** SYSTEM1.GPE - systems of regression equations 
** 
** ==> call system1(ys,xs,n,t); 
** a system of regression equations is estimated using single equation 
** least squares. ys and xs are stacked of dependent and independent  
** variables; ys and xs must be arranged in n blocks (cross sections)  
** of t observations (time periods). the model is not limited for  
** panel data analysis. seemingly unrelated regression equations with  
** varity of restrictions may be estimated. however, missing values  
** (or unbalanced panel) can not be used. the alternative approach is  
** to estimate the model as a simultaneous linear equations system.  
** 
** before calling the procedure to estimate a system of regression 
** equations, make sure to call reset and define the variable names 
** in _names. if the constant term is suppressed for estimation (e.g., 
** due to explicit data construction), _const should be set to 0. 
** a more efficient maximum likelihood estimator can be obtained by  
** setting the number of iterations (_iter) and convergent tolerlence  
** (_tol). 
** 
** note: the following GPE variables should not be used with system1: 
** _begin, _end, _dlags, _restr, _weight, _hacv, _ivar, _arma, _garch 
*/ 
 
proc (0) = system1(ys,xs,n,t); 
    local x,e,b,vb,v,vinv,b0,vb0,ll,ll0,fail; 
    local i,j,k,i1,j1,x1,y1,z1,it,xx,xy; 
     
    /* pooled regression */ 
    call estimate(ys,xs); 
    b=__b; 
    vb=__vb; 
    ll=__ll; 
    e=reshape(__e,n,t)'; 
    v=e'e/t; @ not same as v=vcx(e); @ 
    @ consider both cross section hetero. and serial corr. @ 
    /* 
    @ consider cross section heteroscedasticity only @ 
    v=diagrv(eye(n),diag(v)); 
    */ 
     
    @ take care of no constant, if specified @ 
    if _const==0;  
      x=xs;  
    else;    
      x=xs~ones(n*t,1); 
    endif;  
    k=cols(x); 
 
    print; 
    print "System of Regression Equations:"; 
    print ftos(n,"Number of Equations = %-*.*lf",12,0); 
    print ftos(k,"Number of Parameters = %-*.*lf",12,0); 
    print ftos(t,"Number of Observations = %-*.*lf",12,0); 
    print; 
         
    it=1; fail=0; 
    do until it>_iter; 
        b0=b; vb0=vb; ll0=ll;         
        /* 
        @ memory extensive computation @    
        vinv=invpd(v.*.eye(t));         
        vb=invpd(x'*vinv*x); 
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        b=vb*(x'*vinv*ys); 
        */ 
        @ memory saving computation @ 
        @ less efficient with double loops @ 
        vinv=invpd(v); 
        xx=0; xy=0; 
        i=1; 
        do until i>n; 
            i1=(i-1)*t; 
            j=1; 
            do until j>n; 
                j1=(j-1)*t; 
                xx=xx+vinv[i,j]*x[i1+1:i1+t,.]'*x[j1+1:j1+t,.]; 
                xy=xy+vinv[i,j]*x[i1+1:i1+t,.]'*ys[j1+1:j1+t]; 
                j=j+1; 
            endo; 
            i=i+1; 
        endo; 
        vb=invpd(xx); 
        b=vb*xy; 
        e=reshape(ys-x*b,n,t)'; 
        v=e'e/t; 
        /* 
        v=diagrv(eye(n),diag(v)); 
        */ 
        ll=-0.5*t*(n*(1+ln(2*pi))+ln(det(v))); 
         
        format /lds 4,0; print "Iteration = " it;; 
        format /los 12,5; print "Log-Likelihood = " ll; 
        print "Parameters = " b'; 
        if ll0>ll;             
            b=b0; vb=vb0; ll=ll0; fail=1; 
        endif; 
        if abs(b-b0)<_tol; break; endif; 
                     
        it=it+1; 
    endo; 
     
    print; 
    print "Log-Likelihood Function Value = " ll; 
    if fail==1; 
        print "WARNING: Log-Likelihood Fails to Improve!"; 
    endif; 
    if it>_iter; 
        print "WARNING: Iteration Limit Exceeded!"; 
    endif; 
    print; 
    print "   Parameter         S.E.";; 
    format /ros; print b~sqrt(diag(vb)); 
    print; 
endp; 
 





 

 

Appendix C 
Statistical Tables 

 
Statistical tables for normal distribution, t distribution, Chi-squared distribution, and 
F distribution are available from most statistics references. Durbin-Watson bounds 
test statistics are readily available in econometric textbooks. In this appendix, we list 
only the not-so-popular statistical tables for testing unit roots and cointegration as 
discussed in Chapter XVI. 
 

Table C-1. Critical Values for the Dickey-Fuller Unit Root Test  
Based on t-Statistic 

Model 

Model I: ∆Xt = (ρ-1) Xt-1 + Σ
i=1,2,…

ρi ∆Xt-i + εt 
Model II: ∆Xt = α + (ρ-1) Xt-1 + Σ

i=1,2,…
ρi ∆Xt-i + εt 

Model III: ∆Xt = α + β t + (ρ-1) Xt-1 + Σ
i=1,2,…

ρi ∆Xt-i + εt 

Test Statistic 

τρ t-statistic (non-symmetric distribution, testing ρ = 1) 
τα t-statistic (symmetric distribution, testing α = 0 given ρ = 1) 
τβ t-statistic (symmetric distribution, testing β = 0 given ρ = 1) 

Source 

Fuller (1976, p. 373); Dickey and Fuller (1981). 
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Model Statistic N 1% 2.5% 5% 10% 

I τρ 25 -2.66 -2.26 -1.95 -1.60 
  50 -2.62 -2.25 -1.95 -1.61 
  100 -2.60 -2.24 -1.95 -1.61 
  250 -2.58 -2.23 -1.95 -1.61 
  500 -2.58 -2.23 -1.95 -1.61 
  >500 -2.58 -2.23 -1.95 -1.61 
II τρ 25 -3.75 -3.33 -3.00 -2.62 
  50 -3.58 -3.22 -2.93 -2.60 
  100 -3.51 -3.17 -2.89 -2.58 
  250 -3.46 -3.14 -2.88 -2.57 
  500 -3.44 -3.13 -2.87 -2.57 
  >500 -3.43 -3.12 -2.86 -2.57 
III τρ 25 -4.38 -3.95 -3.60 -3.24 
  50 -4.15 -3.80 -3.50 -3.18 
  100 -4.04 -3.73 -3.45 -3.15 
  250 -3.99 -3.69 -3.43 -3.13 
  500 -3.98 -3.68 -3.42 -3.13 
  >500 -3.96 -3.66 -3.41 -3.12 
II τα 25 3.41 2.97 2.61 2.20 
  50 3.28 2,89 2.56 2.18 
  100 3.22 2.86 2.54 2.17 
  250 3.19 2.84 2.53 2.16 
  500 3.18 2.83 2.52 2.16 
  >500 3.18 2.83 2.52 2.16 
III τα 25 4.05 3.59 3.20 2.77 
  50 3.87 3.47 3.14 2.75 
  100 3.78 3.42 3.11 2.73 
  250 3.74 3.39 3.09 2.73 
  500 3.72 3.38 3.08 2.72 
  >500 3.71 3.38 3.08 2.72 
III τβ 25 3.74 3.25 2.85 2.39 
  50 3.60 3.18 2.81 2.38 
  100 3.53 3.14 2.79 2.38 
  250 3.49 3.12 2.79 2.38 
  500 3.48 3.11 2.78 2.38 
  >500 3.46 3.11 2.78 2.38 
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Table C-2. Critical Values for the Dickey-Fuller Unit Root Test  
Based on F-Statistic 

Model 

Model II: ∆Xt = α + (ρ-1) Xt-1 + Σ
i=1,2,…

 ρi ∆Xt-i + εt 
Model III: ∆Xt = α + β t + (ρ-1) Xt-1 + Σ

i=1,2,…
 ρi ∆Xt-i + εt 

Test Statistic 

φ1 F-statistic (testing α = 0 and ρ = 1 on Model II) 
φ2 F-statistic (testing α = 0, β = 0, and ρ = 1 on Model III) 
φ3 F-statistic (testing β = 0 and ρ = 1 on Model III) 

Source 

Dickey and Fuller (1981). 
 
Model Statistic N 1% 2.5% 5% 10% 

II  φ1 25 7.88 6.30 5.18 4.12 
  50 7.06 5.80 4.86 3.94 
  100 6.70 5.57 4.71 3.86 
  250 6.52 5.45 4.63 3.81 
  500 6.47 5.41 4.61 3.79 
  >500 6.43 5.38 4.59 3.78 
III  φ2 25 8.21 6.75 5.68 4.67 
  50 7.02 5.94 5.13 4.31 
  100 6.50 5.59 4.88 4.16 
  250 6.22 5.40 4.75 4.07 
  500 6.15 5.35 4.71 4.05 
  >500 6.09 5.31 4.68 4.03 
III  φ3 25 10.61 8.65 7.24 5.91 
  50 9.31 7.81 6.73 5.61 
  100 8.73 7.44 6.49 5.47 
  250 8.43 7.25 6.34 5.39 
  500 8.34 7.20 6.30 5.36 
  >500 8.27 7.16 6.25 5.34 
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Table C-3. Critical Values for the Dickey-Fuller Cointegration  
t-Statistic τρ Applied on Regression Residuals 

Model 

Yt = α + Xt β + εt 
∆εt = (ρ-1) εt-1 + Σi=1,2,…ρi∆εt-i + ut 
K = Numbers of variables in the cointegration tests, i.e., [Yt, Xt].  
t = 1,2,…, N (500). 
 
Model 2: E(Yt) = E(Xt) = 0 (both X and Y have no drift). 
Model 2a: E(Xt) ≠ 0 (at least one variable in X has drift). 
Model 3: E(Yt) ≠ 0 but E(Xt) = 0 (only Y has drift). 
 

Test Statistic 

τρ t-statistic (testing ρ = 1) 

Source 

Phillips and Ouliaris (1990). 
 
Model K 1% 2.5% 5% 10% 

2 2 -3.96 -3.64 -3.37 -3.07 
 3 -4.31 -4.02 -3.77 -3.45 
 4 -4.73 -4.37 -4.11 -3.83 
 5 -5.07 -4.71 -4.45 -4.16 
 6 -5.28 -4.98 -4.71 -4.43 
2a 2 -3.98 -3.68 -3.42 -3.13 
 3 -4.36 -4.07 -3.80 -3.52 
 4 -4.65 -4.39 -4.16 -3.84 
 5 -5.04 -4.77 -4.49 -4.20 
 6 -5.36 -5.02 -4.74 -4.46 
 7 -5.58 -5.31 -5.03 -4.73 
3 2 -4.36 -4.07 -3.80 -3.52 
 3 -4.65 -4.39 -4.16 -3.84 
 4 -5.04 -4.77 -4.49 -4.20 
 5 -5.36 -5.02 -4.74 -4.46 
 6 -5.58 -5.31 -5.03 -4.73 

 
Note: For the case of two variables in Model 2a, X is trended but Y is not. It is 
asymptotically equivalent to ADF unit root test for Model III (see Table C-1, τρ for 
N=500). If only Y has drift (Model 3), the cointegration equation can be expressed as 
Yt = α + γ t + Xt β + εt. Therefore, the same critical values of Model 2a apply to 
Model 3 for one extra variable t (but do not count for K).  



APPENDIX C 

 317 

Table C-4. Critical Values for Unit Root and Cointegration Tests  
Based on Response Surface Estimates 

 
Critical values for unit root and cointegration tests can be computed from the 
equation:  
 
CV(K, Model, N, e) = b + b1 (1/N) + b2 (1/N)2 
 

Notation 

Model: 1=no constant; 2=no trend; 3=with trend;  
K: Number of variables in cointegration tests (K=1 for unit root test);  
N: Number of observations or sample size; 
e: Level of significance, 0.01, 0.05, 0.1. 

Source 

MacKinnon (1991). 
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    K  Model     e           b         b1         b2 
    1    1    0.01     -2.5658     -1.960     -10.04 
    1    1    0.05     -1.9393     -0.398       0.00 
    1    1    0.10     -1.6156     -0.181       0.00 
    1    2    0.01     -3.4335     -5.999     -29.25 
    1    2    0.05     -2.8621     -2.738      -8.36 
    1    2    0.10     -2.5671     -1.438      -4.48 
    1    3    0.01     -3.9638     -8.353     -47.44 
    1    3    0.05     -3.4126     -4.039     -17.83 
    1    3    0.10     -3.1279     -2.418      -7.58 
    2    2    0.01     -3.9001    -10.534     -30.03 
    2    2    0.05     -3.3377     -5.967      -8.98 
    2    2    0.10     -3.0462     -4.069      -5.73 
    2    3    0.01     -4.3266    -15.531     -34.03 
    2    3    0.05     -3.7809     -9.421     -15.06 
    2    3    0.10     -3.4959     -7.203      -4.01 
    3    2    0.01     -4.2981    -13.790     -46.37 
    3    2    0.05     -3.7429     -8.352     -13.41 
    3    2    0.10     -3.4518     -6.241      -2.79 
    3    3    0.01     -4.6676    -18.492     -49.35 
    3    3    0.05     -4.1193    -12.024     -13.13 
    3    3    0.10     -3.8344     -9.188      -4.85 
    4    2    0.01     -4.6493    -17.188     -59.20 
    4    2    0.05     -4.1000    -10.745     -21.57 
    4    2    0.10     -3.8110     -8.317      -5.19 
    4    3    0.01     -4.9695    -22.504     -50.22 
    4    3    0.05     -4.4294    -14.501     -19.54 
    4    3    0.10     -4.1474    -11.165      -9.88 
    5    2    0.01     -4.9587    -22.140     -37.29 
    5    2    0.05     -4.4185    -13.461     -21.16 
    5    2    0.10     -4.1327    -10.638      -5.48 
    5    3    0.01     -5.2497    -26.606     -49.56 
    5    3    0.05     -4.7154    -17.432     -16.50 
    5    3    0.10     -4.4345    -13.654      -5.77 
    6    2    0.01     -5.2400    -26.278     -41.65 
    6    2    0.05     -4.7048    -17.120     -11.17 
    6    2    0.10     -4.4242    -13.347       0.00 
    6    3    0.01     -5.5127    -30.735     -52.50 
    6    3    0.05     -4.9767    -20.883      -9.05 
    6    3    0.10     -4.6999    -16.445       0.00 
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Table C-5: Critical Values for the Johansen’s Cointegration Likelihood 
Ratio Test Statistics 

Notations 

VAR Model: 1=no constant; 2=drift; 3=trend drift 
N: Sample Size, 400 
M: Number of Variables 
r: Number of Cointegrating Vectors or Rank 
Degree of Freedom = M-r  

Source 

Johansen (1988), Johansen and Juselius (1990), and Osterwald-Lenum (1992). 
 

 
    Model  M-r       1%    2.5%      5%     10%     20%     50% 
λmax    1     1     6.51    4.93    3.84    2.86    1.82    0.58 
       1     2    15.69   13.27   11.44    9.52    7.58    4.83 
       1     3    22.99   20.02   17.89   15.59   13.31    9.71 
       1     4    28.82   26.14   23.80   21.58   18.97   14.94 
       1     5    35.17   32.51   30.04   27.62   24.83   20.16 
       2     1   11.576   9.658   8.083   6.691   4.905   2.415 
       2     2   18.782  16.403  14.595  12.783  10.666   7.474 
       2     3   26.154  23.362  21.279  18.959  16.521  12.707 
       2     4   32.616  29.599  27.341  24.917  22.341  17.875 
       2     5   38.858  35.700  33.262  30.818  27.953  23.132 
       3     1    6.936   5.332   3.962   2.816   1.699   0.447 
       3     2   17.936  15.810  14.036  12.099  10.125   6.852 
       3     3   25.521  23.002  20.778  18.697  16.324  12.381 
       3     4   31.943  29.335  27.169  24.712  22.113  17.719 
       3     5   38.341  35.546  33.178  30.774  27.899  23.211 
λtrace   1     1     6.51    4.93    3.84    2.86    1.82    0.58 
       1     2    16.31   14.43   12.53   10.47    8.45    5.42 
       1     3    29.75   26.64   24.31   21.63   18.83   14.30 
       1     4    45.58   42.30   39.89   36.58   33.16   27.10 
       1     5    66.52   62.91   59.46   55.44   51.13   43.79 
       2     1   11.576   9.658   8.083   6.691   4.905   2.415 
       2     2   21.962  19.611  17.844  15.583  13.038   9.355 
       2     3   37.291  34.062  31.256  28.436  25.445  20.188 
       2     4   55.551  51.801  48.419  45.248  41.623  34.873 
       2     5   77.911  73.031  69.977  65.956  61.566  53.373 
       3     1    6.936   5.332   3.962   2.816   1.699   0.447 
       3     2   19.310  17.299  15.197  13.338  11.164   7.638 
       3     3   35.397  32.313  29.509  26.791  23.868  18.759 
       3     4   53.792  50.424  47.181  43.964  40.250  33.672 
       3     5   76.955  72.140  68.905  65.063  60.215  52.588 
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_vcov, 50, 96, 130, 199 
_weight, 134 

Instrumental variable, 170, 192 
Instrumental variable estimation, IV, 3, 

167, 185 
  
Jacobian, 211 
Jacobian transformation, 103 
  
Klein Model I, 197 
  
L’Hôspital’s rule, 105 
Latent variable, 116 
Least squares estimation, 41 
Least squares prediction, 41. See 

Forecasting 
Likelihood function, 89 
Limited dependent variable model, 115 
Limited information maximum likelihood, 

LIML, 196 
Linear probability model, 116 
Linear restriction, 54, 203 

Wald F-test, 56, 69 
Logistic curve, 116 
Logit model, 116 
Log-likelihood function, 89, 103, 118, 

123, 210 
Log-normal probability distribution, 90 
Longitudinal data, 251 
  
Maximum likelihood estimation, 86, 103 
Moment function, 179 
Moment restrictions, 180 
Moving average, 158 
Multicollinearity, 75 

condition number, 31, 76 
Theil’s measure, 77 
variance inflation factors, VIF, 79 

Multiple regression, 50 
Multiplicative heteroscedasticity, 137 
  
Newey-West estimator, 143 
Nonlinear full information maximum 

likelihood, 209 
Nonlinear least squares, 86, 101 
Nonlinear optimization, 83 

BFGS quasi-Newton method, 86 
DFP quasi-Newton method, 86 
gradient, first derivatives, 83 
Greenstadt method, 86 
hessian, second derivatives, 83 

line search, 87 
modified quadratic-hill climbing 

method, 87 
Newton-Raphson method, 86 
quadratic hill-climbing (QHC) method, 

87 
steepest-ascent method, 86 

Nonlinear rational expectation, 179, 189 
Normal probability distribution, 89 
Numerical derivatives, 83 
Numerical Jacobian, 104, 289 
  
Ordinary least squares, 45 
Orthogonality condition, 180 
Output control variable, 293, 295 

__a, 275 
__b, 82, 275 
__e, 225 
__r2, 78 
__rss, 133 
__vb, 82, 275 

  
Panel data, 251 
Panel data analysis, 251 

between-estimates, 253 
Breusch-Pagan LM test for random 

effects, 258 
deviation approach, 252 
dummy variable approach, 252 
fixed effects, 252 
Hausman specification test for fixed or 

random effects, 258 
individual effects, 251 
one-way analysis, 251 
partial deviation approach, 257 
random effects, 258 
SUR method, 264 
time effects, 251 
two-way analysis, 261 
Wald F-test for fixed effects, 253 
within-estimates, 252 

Partial adjustment, 167 
Partial autocorrelation coefficient, 147, 

234 
Partial autocorrelation function, PACF, 4, 

148, 233, 241 
Partial correlation coefficient, 75 
Partial regression coefficient, 52 
Perfect collinearity, 66 
Permanent income hypothesis, 167, 192, 

223, 227 
Principal components, 80 
Probit model, 116 



 

 

 

P-value, 48 
  
Residual analysis, 48 

Bera-Jarque normality test, 61, 135 
Durbin-Watson test statistic, 49 
first-order rho, 49 
kurtosis, 62 
skewness, 62 

Residual diagnostics, 61 
DFFITS, 63 
influential observations, 61 
leverage, 63 
outliers, 61 
standardized predicted residuals, 63 
standardized residuals, 63 
studentized residuals, 63 

Residual sum of squares, RSS, 56 
Restricted least squares, 54, 173, 218, 266 
Ridge regression, 80 
  
Seasonality, 65 
Seemingly unrelated regression, SUR, 

196, 264 
Shepard lemma, 204 
Simple regression, 46 
Spurious regression, 215, 224 
Structural change, 57 

Chow test, 57 

dummy variable approach, 70 
Sum-of-squares, 83, 97 
System of simultaneous equations, 195 

endogenous variable, 195 
identity equation, 196 
predetermined variable, 195 
stochastic equation, 196 

  
Three-stage least squares, 3SLS, 196 
Time series analysis, 233 

serial correlation in the mean, 233 
serial correlation in the variance, 233 

Time series conversion, 37, 39 
Tobit analysis, 123 
Transfer function. See ARMAX 

regression model 
Translog cost function, 204 
t-ratio, 47 
Two-stage least squares, 2SLS, 196 
  
Unconstrained optimization, 83 
Unit roots test, 215 
  
Variance-covariance matrix, 50, 96, 110, 

131, 143, 180 
  
Weighted least squares, 109 
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